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Modulation of microglia can attenuate

neuropathic pain symptoms and enhance

morphine effectiveness
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Abstract:

Microglia play a crucial role in the maintenance of neuronal homeostasis in the central nervous system, and microglia production of

immune factors is believed to play an important role in nociceptive transmission. There is increasing evidence that uncontrolled acti-

vation of microglial cells under neuropathic pain conditions induces the release of proinflammatory cytokines (interleukin – IL-1�,

IL-6, tumor necrosis factor – TNF-�), complement components (C1q, C3, C4, C5, C5a) and other substances that facilitate pain

transmission. Additionally, microglia activation can lead to altered activity of opioid systems and neuropathic pain is characterized

by resistance to morphine. Pharmacological attenuation of glial activation represents a novel approach for controlling neuropathic

pain. It has been found that propentofylline, pentoxifylline, fluorocitrate and minocycline decrease microglial activation and inhibit

proinflammatory cytokines, thereby suppressing the development of neuropathic pain. The results of many studies support the idea

that modulation of glial and neuroimmune activation may be a potential therapeutic mechanism for enhancement of morphine anal-

gesia. Researchers and pharmacological companies have embarked on a new approach to the control of microglial activity, which is

to search for substances that activate anti-inflammatory cytokines like IL-10. IL-10 is very interesting since it reduces allodynia and

hyperalgesia by suppressing the production and activity of TNF-�, IL-1� and IL-6. Some glial inhibitors, which are safe and clini-

cally well tolerated, are potential useful agents for treatment of neuropathic pain and for the prevention of tolerance to morphine an-

algesia. Targeting glial activation is a clinically promising method for treatment of neuropathic pain.
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Abbreviations: C – complement, CNS – central nervous sys-

tem, IL – interleukin, MAPK – mitogen-activated protein ki-

nase, PKC – protein kinase C, TNF – tumor necrosis factor

Microglia under neuropathic pain

Researchers are working to characterize the changes

in the nervous system that occur during the develop-

ment of neuropathic pain in animal models. An under-

standing of how neuropathic pain develops is neces-

sary to guide development of new pain therapies. Re-

cent evidence suggests that glia play a crucial role in

the maintenance of neuronal homeostasis in the cen-

tral nervous system [46, 74, 75, 107, 119]. Glial cells

represent 70% of the cells in the central nervous sys-

tem (CNS) under normal conditions, and microglia

represent 5–10% of glia [124]. Microglial cells have

a small soma bearing thin and branched processes un-
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der normal conditions [124]. The most characteristic

feature of microglia is their rapid activation in

the CNS in response to pathological events, including

trauma, ischemia, inflammation, hypoxia, neurode-

generation and viral or bacterial infection. After acti-

vation, microglia cells change morphology from

a resting, ramified shape into an active, amoeboid

shape [46, 75, 83, 107]. Activated microglia have dual

regulatory functions in the maintenance and facilita-

tion of tissue homeostasis in the CNS. They remove

dead cells or dangerous debris by releasing toxic fac-

tors and phagocytosis, but they also repair injured

cells by releasing neurotrophic factors [25, 74, 79,

89]. In contrast to neuronal processes, the phenome-

non of microglial cell activation is multidirectio-

nal, and these cells dynamically modulate neuronal

function under both normal and pathological condi-

tions.

Clinical neuropathic pain syndrome can develop as

a result of damage to nerves due to tumors, diabetic

neuropathy, herpes zoster, complex regional pain syn-

drome, AIDS, sclerosis multiplex, hypoxia, or stroke

[15, 60]. Studies in recent years have suggested

an important role for microglial activation observed

during neuropathic pain [13]. However, the role of glia

in the cellular mechanisms underlying the symptoms

of neuropathic pain, such as hyperalgesia or allo-

dynia, is not clear [26, 126, 129]. Microglial cells se-

crete a large variety of substances, including growth

factors, cytokines, complement components, lipid me-

diators, extracellular matrix components, enzymes,

free radicals, neurotoxins, nitric oxide and prosta-

glandins [68]. Indeed, it seems that activation of glia

in the CNS is a driving force behind pain [13, 26, 34,

46, 75, 107, 124]. Some proinflammatory cytokines

derived from microglia are already known to be com-

mon mediators of allodynia and hyperalgesia [7, 13,

15, 18, 93, 124, 125]. Glial activation enhances neu-

ronal nociceptive transmission, but the mechanism

of this phenomenon is poorly understood. Production

of various immune factors, including cytokines inter-

leukin (IL)-1�, IL-1�, IL-10, IL-6 and tumor necrosis

factor (TNF)-� as well as complement components

C1q, and C5a, is believed to play an important role

in nervous system inflammation and may lead to ab-

normal processing of pain signals [13, 15, 18, 63,

124].

Immune factors in neuropathic pain

conditions

Cytokines

The interleukin-1 (IL-1) family includes IL-1� and

IL-1�, which bind to the IL-1-type 1 receptor and the

IL-1 receptor accessory protein. Microglia and macro-

phages have been identified as the major source of

IL-1� [29, 117], which is known as one of the princi-

pal pro-inflammatory cytokines released in response

to damage [37, 73, 95]. Accumulating evidence indi-

cates a potential relationship between IL-1�, neuronal

apoptosis and neuropathic pain [19, 93, 111, 121, 124,

128]. It is known, for instance, that intrathecal ad-

ministration of IL-1� induces allodynia and hyperal-

gesia in rats [57, 63, 77, 78, 80]. Recently, Wang et al.

[121] provided evidence that IL-1� serves as an exter-

nal apoptosis-triggering signal, mediated by phospho-

rylation of p38 mitogen activated protein kinase

(MAPK) and subsequent activation of caspase-3. In

accordance with this idea, intrathecal administration

of an IL-1 receptor antagonist prevented neuronal

apoptosis and consequently diminished the develop-

ment of neuropathic pain symptoms [63, 94, 111]. In-

terestingly, intrathecal administration of IL-1�, in

contrast to IL-1�, dose-dependently attenuated symp-

toms of neuropathic pain after nerve injury [63], simi-

lar way as IL-1 receptor antagonist did. This is par-

ticularly interesting because both IL-1� and IL-1�

bind to the IL-1 receptor type I, a specific cell surface

receptor that is present in the spinal cord and in dorsal

root ganglion (DRG) neurons [77]. The mechanism by

which IL-1� induces rapid effects in sensory neurons

after IL-1 receptor type I activation is not well established.

It was suggested by Obreja et al. [77] that tyrosine

kinases and protein kinase C, which are activated by

IL-1� could be involved. The exact role of IL-1� and

IL-1� in the CNS have not been clarified, but the presence

of IL-1 receptor type 1 on sensory neurons suggests that

these cytokines may directly influence nociceptive trans-

mission after nerve injury [77, 78, 80]. It is intriguing that

IL-1� and IL-1�, acting through the same receptor, can

differentially influence nociceptive transmission and the

neuropathic pain response [63].

Interleukin-6 (IL-6) is a multifunctional cytokine

involved in many neuroimmunological processes.

IL-6 is known as an important mediator of inflamma-

tory and immune responses in the periphery. How-

298 �����������	��� 
����
�� ����� ��� �������



ever, recent studies indicate that IL-6 is also produced

in the CNS and may play an important role in a vari-

ety of functions such as cell-to-cell signaling, coordi-

nation of neuroimmune response, protection of neu-

rons from insult, as well as in neuronal differentiation,

growth, and survival [32, 46, 67]. IL-6 may also con-

tribute to the etiology of neuropathological disorders,

including AIDS, dementia complex, Alzheimer’s dis-

ease, multiple sclerosis, systemic lupus erythemato-

sus, CNS trauma and meningitis [28, 32]. Recently,

a strong increase in ipsilateral to the sciatic nerve

injury IL-6 gene expression was observed in regions

important for nociceptive transmission, such as the

spinal cord and DRG [63]. Interestingly, the induction

of IL-6 mRNA was more pronounced in the DRG

than in the spinal cord [51, 63]. Flatters et al. [23]

suggested that spinal administration of IL-6 following

nerve injury elicited antinociceptive effects. The

inhibitory effects of IL-6 on neuronal hyperexcitability

after injury suggest IL-6 to be a potential modulator of

neuropathic pain [23]. IL-6���mice developed a lower

level of hyperalgesia after carrageenan injection than

wild-type mice [132]. Together, these data suggest

that IL-6 plays an important role in nociceptive trans-

mission that is still not well recognized.

Interleukin-10 (IL-10) is considered to be the

most powerful anti-inflammatory cytokine, potently

down-regulating TNF-�, IL-1� and IL-6 production

and release [71]. We observed that IL-10 mRNA levels

in the ipsilateral DRG and spinal cord increased after

sciatic nerve injury [63]. Recently, Ledeboer et al.

[48] demonstrated that IL-10, when injected in

a region of the spinal cord where activated glial cells

are present, dramatically reversed the pain state in

animal models of chronic pain. Additionally, studies

in animal models have shown that IL-10 prevents or

reverses every pathological pain state examined,

including pain induced by spinal inflammation, trau-

matic neuropathy and spinal trauma, without altering

normal sensation [5]. Although, the precise functions

of IL-10 in the CNS require further clarification,

IL-10 is well known as an important negative regula-

tor of proinflammatory gene expression [33, 96].

It can down-regulate the expression of receptors for

proinflammatory cytokines [96] and up-regulates en-

dogenous functional antagonists of proinflammatory

cytokines such as the IL-1 receptor antagonist [39].

It has been shown by Milligan et al. [66] that intrathe-

cal administration of a novel AAV2-IL-10 vector in

rodents prevented and reversed neuropathic pain.

Furthermore, the Avigen company has also published

that AV333, a plasmid that drives the production of

IL-10, can reverse neuropathic pain symptoms when

injected intrathecally. Animal models have shown that

AV333 is well tolerated and completely reverses neu-

ropathic pain symptoms for up to 90 days from a single

course of treatment [5]. As yet, however, drugs directly

influencing IL-10 biosynthesis are unavailable [125].

Tumor necrosis factor � (TNF-�) is a proinflam-

matory cytokine produced by microglia in the CNS

[36, 108]. This cytokine is released in response to vari-

ous insults or injury [62] and it has been shown that in-

jection of a neutralizing TNF-� antibody into lesion

sites may significantly reduce experimental ischemic

injury [6, 61]. Although, TNF-� has been implicated in

the acceleration of injury, current studies suggest that

TNF-� may also serve a protective role [3, 24]. Further

evidences indicate that TNF-� can provide protection

to neurons because it is able to encourage the expression

of antiapoptotic and antioxidative proteins [24].

Moreover, it was also shown that TNF-� plays a role in

both, the long-term behavioral recovery and the histo-

logical repair of tissues in TNF-�-deficient mice, and

on the other hand, has a deleterious effect during the

acute response that occurrs in a traumatized brain [98].

Some recent reports indicate that such dual action of

TNF-� is mediated via different receptors, with the p55

TNF-� receptor 1 and the p75 TNF-� receptor 2 re-

sponsible for neurotoxic and neuroprotective effects,

respectively [24, 133].

Complement components

The activation of microglial cells under neuropathic

pain also appears to involve complement proteins, an

innate humoral immune defense system. Complement

mediates a large variety of cellular and humoral inter-

actions in the immune response, including neuronal

cell death, cell adhesion, B- and T-cell differentiation,

phagocytosis and chemotaxis [10, 72, 100]. There is

also emerging evidence that uncontrolled activation

of complement biosynthesis can lead to inflammation

with a resulting loss of neurons and oligodendrocytes,

ultimately inducing profound tissue damage [104]. In-

creased biosynthesis of various complement factors in

the CNS has also been reported in animal models,

e.g., after peripheral and central axotomy [30, 40, 41,

82, 110], excitotoxic kainic acid lesions [30, 82] and

global brain ischemia [97]. Recently, microarray

expression profiles have shown substantial changes in
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gene expression in the ipsilateral dorsal horn of the

spinal cord in response to peripheral nerve injury, the

animal model of neuropathic pain. Many of the com-

monly regulated transcripts were complement compo-

nents, such as C1q, C3 and C4, and were found in

CNS to be expressed only by spinal microglia [31].

Interestingly, the biggest up-regulation was observed

for C1q. Activation of C1q may lead to increased lev-

els of functionally active C1 complexes, thus driving

local activation of the classical complement activation

cascade [10], or may instead trigger cellular responses

by binding to C1q receptors [9, 10]. The induction of

oxygen or nitrogen intermediates by C1q may play an

important role in the pathogenesis of CNS diseases

[115]. Additionally, membrane-bound C1q is thought

to play an important role in the adhesion of macro-

phages to the extracellular matrix and in cell-to-cell

interactions between macrophages and other cell

types, the processes involved in neurodegeneration

[8]. In addition, Griffin et al. [31] found that the com-

plement component C5 and C5a receptor are also

up-regulated in spinal microglia after peripheral nerve

injury. Interestingly, mice null for C5 had reduced

neuropathic pain sensitivity and C5a receptor peptide

antagonist reduces allodynia in neuropathic pain mod-

els [31]. The results of many studies indicate that the

induction of the complement cascade in spinal micro-

glia after peripheral nerve injury contributes to neuro-

pathic pain, which suggests the potential benefits of

using complement inhibitors as a novel therapeutic

approach in the treatment of inflammatory and degen-

erative neurological diseases also highlighted by the

report of Huang et al. [31, 38].

Glial inhibition influences neuropathic

pain development

Activated microglial cells in the spinal cord may re-

lease proinflammatory cytokines and other substances

thought to facilitate pain transmission [12, 13, 15, 22,

54, 120, 124, 125]. Therefore, pharmacological at-

tenuation of glial activation represents a novel ap-

proach for controlling neuropathic pain [125]. It

seems that microglia might be responsible for the ini-

tiation of neuropathic pain states [22, 46, 58]. Recent

studies indicate that preemptive treatment with glial

inhibitors seems to be more effective than their ad-

ministration only after glial cells have already been

activated [21, 50, 91]. Many current studies aim to

find substances inhibiting the biosynthesis of proin-

flammatory cytokines. It has been found that pro-

pentofylline, pentoxifylline, minocycline and ibudi-

last inhibit cytokines and lower astroglia and micro-

glia activation, thereby suppressing the development

of neuropathic pain [49, 56, 64, 76, 91, 92, 112].

Propentofylline, is a methylxanthine derivative,

previously found to attenuate astrocytic activation in

a rodent ischemia model [18]. In ischemia, pro-

pentofylline has been shown to be neuroprotective

through a multitude of actions, including inhibition of

glutamate release [2, 69] and increased nerve growth

factor secretion [101]. In vitro studies revealed that

propentofylline maintains astrocytic glutamate uptake

and inhibits potentially neurotoxic functions adopted

by microglia upon pathological activation [99]. In

formalin-induced pain in rats, the local injection of

propentofylline reduced the pain behavior by decreas-

ing TNF-� [21]. In a rodent model of neuropathic pain,

systemic application of propentofylline produces

a decrease in mechanical allodynia [114]. The antial-

lodynic activity of propentofylline by suppression of

astroglial and microglial activity supports the concept

that modulation of glial activation may be therapeuti-

cally promising in the treatment or prevention of neu-

ropathic pain [91, 114].

Pentoxifylline is a non-specific cytokine inhibitor

and an inhibitor of phosphodiesterase, which can in-

hibit the synthesis of TNF-�, IL-1� and IL-6 [53, 56,

76]. The local injection of pentoxifylline reduced in-

flammatory pain by decreasing TNF-� [21]. Some

studies have demonstrated that pentoxifylline influ-

ences the development of neuropathic pain behavior

in rats and mice [53, 64], and that when injected in

a preemptive analgesia schema, it reduces postopera-

tive pain in patients [20, 113, 130]. The antinocicep-

tive effects of pentoxifylline are correlated with the

reduction of the production of TNF-�, IL-1�, and IL-6

through inhibition of nuclear factor-�B, and stimula-

tion of IL-10 expression in the spinal cord and brain

[53, 118]. However, the therapeutic effects of pentoxi-

fylline on developed neuropathic pain remain to be

determined by future studies.

Minocycline, a semisynthetic second-generation

tetracycline with adequate penetration into the brain

and cerebrospinal fluid [4, 14, 131], has emerged as

a potent inhibitor of microglial activation and prolif-

eration, without any known direct action on astrocytes

or neurons [1, 116]. The effects of minocycline are me-
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diated by microglial cells and are distinct from the an-

timicrobial actions of this drug [35, 45]. Administra-

tion of minocycline either systemically or intrathe-

cally attenuated hyperalgesia in rat models of

neuropathy. The effect is associated with an inhibition

of spinal microglial activation and attenuation of ex-

pression of proinflammatory cytokines [50, 64, 91].

The authors emphasized that minocycline attenuated

the development of behavioral hypersensitivity in the

rat model of neuropathic pain when the inhibitor was

injected preemptively [50, 91]. The beneficial effects

of minocycline are associated with reduction of in-

ducible nitric oxide synthase and cyclooxygenase-2

expression, a decrease in cytokine and prostaglandin

release, and a decrease in the induction of IL-1�-con-

verting enzyme in microglia [134, 135]. Other authors

showed that the analgesic effects of minocycline in

a rat model of neuropathic pain result from attenuation

of expression of IL-1�, IL-6, TNF-�, IL-1�-converting

enzyme, TNF-�-converting enzyme, IL-1 receptor

antagonist and IL-10 in the lumbar dorsal spinal cord

[50, 136].

AV411 (ibudilast) is a relatively nonselective

phosphodiesterase inhibitor that suppresses glial acti-

vation [44, 47, 49, 109]. In activated glial cells in vitro,

ibudilast suppresses, in a concentration-dependent

manner, the production of proinflammatory cytokines

such as TNF-� and IL-1�. It also increases the pro-

duction of the anti-inflammatory cytokine IL-10 [70,

109]. Recently, Ledeboer et al. [47, 49] showed that

ibudilast might be effective in the treatment of neuro-

pathic pain and may attenuate sciatic nerve injury-

induced allodynia in rats. Since AV411 is effective in

animal models of neuropathic pain and has been in

long use in Japan to treat bronchial asthma [43, 44], it

seems likely to be a promising potential therapeutic

agent [43, 44, 47, 49].

The plasmid AV333 has proven effective in inducing

the potent anti-inflammatory cytokine IL-10 after in-

trathecal injection and appears to reverse neuropathic

pain through attenuation of glial cell activity [5].

Glial inhibitors enhance morphine

effectiveness in neuropathic pain

Many studies indicate that neuropathic hyperalgesia

leads to lowered morphine efficacy and quicker de-

velopment of morphine tolerance [59, 64, 65, 81, 85]

and some authors have suggested that uncontrolled

activation of microglial cells after nerve injury can

lead to altered activities of opioid systems or opioid-

specific signaling [104, 122, 123]. The impairment of

opioidergic transmission may diminish the antino-

ciceptive potency of morphine after nerve injury as

a consequence of reduced presynaptic opioid receptors

induced by loss of neurons [81, 85, 87, 88, 104]. It is

already known that microglia release neuroexcitatory

substances in response to morphine, thereby opposing

its effects [19, 122, 123, 124]. This raises an older hy-

pothesis that suppression of glial activation and the

resulting blockade of proinflammatory cytokine syn-

thesis can improve morphine efficacy [90, 103, 123].

Recently, some behavioral studies have shown res-

toration of the analgesic activity of morphine by pro-

pentofylline or pentoxifylline treatment in animal

models of neuropathic pain [21, 56, 64, 76, 90, 92,

112]. Furthermore, preemptive administration of pen-

toxifylline influenced morphine intake in the postop-

erative period in several patient groups [113, 130]. In

rats and mice, minocycline has been shown to be an

effective neuroprotective agent [52, 64, 106] that po-

tentiates the effects of single morphine administration

under neuropathic pain conditions [64].

Glial inhibitors influence the

development of morphine tolerance

Both, opioid tolerance and neuropathic pain condi-

tions share features of diminished morphine analge-

sia, leading to suggestions of a common mechanism

[59]. Chronic morphine treatment activates spinal and

cortical glial cells and induces the development of

tolerance [16, 17, 103]. The mechanism underlying

the involvement of glial cells in morphine tolerance is

unclear. It is possible that morphine can act directly

on glial cells triggering alterations in their morphol-

ogy and functions [42, 90, 92, 105, 122]. However,

some indirect pathways may also exist by which glial

cells regulate neural plasticity, e.g. they are responsi-

ble for uptake of amino acid neurotransmitters such

as glutamate that are also important factors in the de-

velopment of tolerance [90, 92, 122]. Additionally,

some authors indicate that activation of glial meta-

botropic glutamate receptors by glutamate can regu-
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late glial function and may be involved in the interac-

tion between glia and neurons [127]. Glial cells are

also considered to be crucial sources of nitric oxide

(NO), cytokines and cyclooxygenase products that in-

fluence synaptic transmission in the CNS. Inhibition

of these factors may delay morphine tolerance [86].

The altered expression of glial receptors may play

a role in producing critical changes in glia-neuron

communication in neuropathic pain, as well as in

opioid tolerance [59, 127]. The first report linking glia

to morphine tolerance demonstrated that chronic sys-

temic morphine increased glia activation in the spinal

cord [103]. Other authors have also shown that

chronic morphine administration activates astroglia

and microglia [16, 90]. The presence of opioid recep-

tors on glia and the ability of morphine to prime mi-

croglia for enhanced production of proinflammatory

cytokines suggests a possible direct interaction of

morphine with glial cells [11]. The chronic morphi-

ne-induced activation of glial proinflammatory im-

mune responses could activate the MAPK and protein

kinase C (PKC) pathways, which are key players in the

intracellular signaling cascade leading to the develop-

ment of morphine tolerance [27, 59, 90, 92, 102, 124].

Administration of the glial metabolic inhibitor

fluorocitrate has been found to attenuate the develop-

ment of morphine tolerance [103]. In our study [63],

pentoxifylline significantly blocked the development

of morphine tolerance in naive mice, as well as in

a model of neuropathic pain. Wordliczek et al. [130]

have shown that pentoxifylline provides beneficial

postoperative analgesic effects in patients undergoing

cholecystectomy by diminishing the production of

IL-6 and TNF�. Similarly, Lu et al. [55] showed that

patients who received pentoxifylline exhibited longer

patient-controlled analgesia trigger times, required

less morphine consumption, and showed a faster re-

turn of bowel function. The effect seems to be due to

both central and peripheral effects by attenuating the

production of IL-6 and TNF-� in the perioperative pe-

riod [55, 130]. Cui et al. [17] have provided evidence

that intrathecal pretreatment with minocycline attenu-

ates not only the development of morphine antino-

ciceptive tolerance, but also the activities of spinal

microglia and astrocytes induced by chronic mor-

phine treatment. This further confirms the role of spi-

nal glia in the development of tolerance to morphine

analgesia. In our experiments, preemptive and re-

peated systemic administration of minocycline sig-

nificantly blocked development of tolerance to anal-

gesic effects of morphine in naive mice as well as in

mice after sciatic nerve injury, as measured in tail-

flick, von Frey and cold plate tests [63]. The benefi-

cial effects of minocycline are associated with a re-

duction of inducible nitric oxide synthase and cyclo-

oxygenase-2 expression and a decrease in cytokine

and prostaglandin release in microglia [134, 135].

Further studies have shown that minocycline reduced

microglial activation by inhibiting p38 MAPK in mi-

croglia, and in this way delayed morphine tolerance

[16, 17, 84]. It was also suggested that AV411 (ibudi-

last) may counteract opioid tolerance by blocking the

activation of glial cells in the spinal cord in rodents.

In preclinical studies, AV411 is now being examined

and initial results have been promising in humans [5].

Conclusions

The results of many studies provide strong support for

the idea that glial inhibitors, which are safe and clini-

cally well tolerated, are potentially useful agents for

preventing tolerance to morphine analgesia. It seems

that microglia are important for the generation of neu-

ropathic pain and that modulation of microglial cells,

and thus neuroimmune activation may provide a strong

therapeutic mechanism to increase morphine effi-

ciency and prevent morphine tolerance during neuro-

pathic pain. Targeting glial activation is a novel and

clinically promising method for the treatment of neu-

ropathic pain.
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