
Utilization of Markov Model and Non-Parametric Belief Propagation for
Activity-Based Indoor Mobility Prediction in Wireless Networks

Joanna Kołodziej
Department of Mathematics

and Computer Science
University of Bielsko-Biała

ul. Willowa 2, Bielsko-Biała, Poland
Email: jkolodziej@ath.bielsko.pl

Fatos Xhafa
Department of Languages
and Informatics Systems

Technical University of Catalonia
08034 Barcelona, Spain.
Email: fatos@lsi.upc.edu

Abstract—A foremost objective in wireless networks is to fa-
cilitate the communication of mobile users and the widespread
tracking and prediction of their mobility regardless of their
point of attachment to the network. In indoor environments
the effective users’ motion prediction system and wireless
localization technology play an important role in all aspects of
people’s daily lives, including e.g. living assistant, navigation,
emergency detection, surveillance/tracking of target-of-interest,
evacuation purposes, and many other location-based services.
Prediction techniques that are currently used do not consider
the motivation behind the movement of mobile nodes and incur
huge overheads to manage and manipulate the information
required to make predictions.

In this paper we propose an activity-based continuous-time
Markov model to define and predict the human movement
patterns. Then we demonstrate the utility of Nonparametric
Belief Propagation (NBP) technique in particle filtering, for
both estimating the node locations and representing location
uncertainties, and for prediction of the areas that would be
visited and those that would not in the future. NBP method
admits a wide variety of statistical models, and can represent
multi-modal uncertainty. This prediction system may be used
as an additional input into intelligent building automation
systems.

Keywords-Indoor Environment, Wireless Network, Markov
Chain, Markov Jump Process, Nonparametric Belief Propaga-
tion, Data Partitioning

I. INTRODUCTION

One of the foremost objectives of a wireless network
is to facilitate the communication of mobile users and
the widespread tracking and prediction of their mobility
regardless of their point of attachment to the network. In
indoor environments the effective users’ motion prediction
system and wireless localization technology play an impor-
tant role in all aspects of people’s daily lives, including e.g.
living assistant, navigation, emergency detection, surveil-
lance/tracking of target-of-interest, evacuation purposes, and
many other location-based services. Prediction techniques
that are currently used do not consider the motivation behind
the movement of mobile nodes and incur huge overheads to
manage and manipulate the information required to make
predictions. However, experience from many studies have

shown that mobility of users is in fact done not at random
but is activity-based.

User’s mobility prediction is an important maneuver that
aims to determine the location of the user in the network
by the manipulation of the available information about the
user’s activity. The prediction accuracy depends on the user
mobility model and the prediction methodology. Many mod-
els currently in use assume a basically random movement of
the user. While this is sufficient to simulate the performance
of network level protocols, this assumption is not suitable
for application level evaluation, even when assuming some
specific distributions.

To overcome such limitations we propose in this paper
an extension of the Activity based Mobility Prediction al-
gorithm using Markov modeling (AMPuMM), presented in
[Mathivaruni, et al., 2008 ], by the implementation of the
Markov jump continuous-time process framework to predict
the future location of the users. We have limited our study of
indoor environments. The presented user’s mobility model
is a component of the general activity-based model and the
user’s movement patterns are defined as the paths in a multi-
graph representing the physical environment. We support
the prediction methodology by the Non-parametric Belief
Propagation algorithm, which is just briefly studied in this
work.

The remainder of the paper is organized as follows. In
Sec. II we define the activity-based model for the indoor
user’s behavior. In Sec. III the main idea of the AMPuMM
model and its generalization by using the continuous-time
Markov process is presented. The idea of the belief and non-
parametric belief propagation support in the user’s location
prediction is demonstrated in Sec. IV. We end the paper in
Section V with some conclusions and indications for future
work.

II. ACTIVITY-BASED MODEL

In activity-based modeling a typical user’s daily behavior
is defined as sequences of activities derived from a set of
parameters. The model’s type can be distinguished by the
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way it illustrates the users decisions of when and how an
activity is carried out. This model is thus driven by the user’s
activity.

In [Breyer et al., 2004] and [König-Ries et al., 2006] the
authors propose an activity-based user-centered approach to
various types of wireless networks (in particular, mobile
ad-hoc networks). In this model the user’s mobility is
not considered as a primary criterion, it is defined as a
result of the user’s decisions and activities and enables the
execution of activities by connecting the locations of two
consecutive activities. The model derives an integrated view
on mobility and network usage from a users real-world
activity and thereby obtains mobility patterns and service
usage preferences in a natural way.

Figure 1. Activity-based model modules

The main idea of the model is present in Fig. 1. It
consists of the four following modules (see also [Breyer et
al., 2004]):

• Activity Model: This module calculates the ’timetables’
for the user’s non-networking activities;

• Motion Module: This module derives the necessary
movements for a given user’s activity;

• Service Module: This module supports the needful
services for the user’s activity;

• Environment Model: This module, which is usually
represented as a multi-graph, provides the necessary
information about the paths and activity location in the
simulation area.

In the following two sub-sections we briefly describe
two main modules in the system, namely Activity and
Environment Models.

A. Activity Model

The main objective of the activity model is to transform
an abstract list of possible non-networking activities into
a concrete schedule (list of the activities). Each activity is
characterized by the following parameters:

• Starting time: it is defined as a fixed point of time, in
which the activities either start or are scheduled;

• Duration: the time, in which the activities finish or
they are predicted to be completed. In the later case
the activities’ duration is usually defined by using some
specified random distribution;

• Priority: the criterion, which can be specified by the
user in order to make some preferences in the activities.
The user’s activities are scheduled in the order of their
priority when time conflicts arise. Each user can specify
its own set of priorities.

To define the activity model we have to specify a list
of the non-networking user’s actions. The user’s actions are
classified into several groups. The concept of an action class
leads to the collective term of an activity. It represents the
entirety of parameter sets for the activity class.

Let us suppose an university department as a hypothetic
scenario. The typical actions of the staff members can be
providing the lectures, seminars and lab work, providing
the exams, preparation to the classes, research work, going
to the library, attending departmental meetings. There is
another class of possible social activities, which must be also
analyzed, i.e. going to the cafeteria, eating lunch, relaxing. In
the case of lack of the detailed specification of the teaching
topics (low level of details), the seminars, labs and lectures
can be generalized to an activity of a course. These actions
typically share common locations and are both regular and
recurring events over time.

For the detailed characterization of the user’s activities,
their starting and duration times must be specified. Accord-
ing to such a criterion we can divide the activities into two
groups: those with a fixed starting time like providing the
lecture, and free-floating activities like borrowing a book
from the library. The duration of an activity can be also
fixed or variable within a certain range. Usually, free-floating
activities have durations that adhere to random distributions.
To avoid the overlapping of the activities in time, the users
can classify the activities according the priority criterion.
The activities of higher priority take precedence over activ-
ities of lower priority when there are conflicting starting or
ending times.

The activity model is used mainly for the calculation of
the concrete activity schedules for a user. It can be achieved
by the specification of an optimal plan by placing freely
scheduling activities around the ones with fixed starting time.

B. Environment Model

To define a proper environment model it is necessary to
specify firstly the constraints of the movements in the real-
life mobility models. The mobile nodes in such systems have
to adhere to the constraints given by buildings, vegetation
or route sections.

As an example of such model we can define the pedes-
trians movements in the departmental scenario presented in
the previous sub-section. It is represented as an undirected
multigraph G = (V,E(w)), where:
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• V - is a set of the vertices in the graph. We define it as
sum V = T ∪L, where T denotes the transition nodes
and L - a set of the location nodes;

• E(w) - is a set of graph multiple edges. The parameter
w denotes the width of the path, which is expressed
as a number of edges for the paths in the department
between two location or transition nodes.

The example graph structure is presented in Figure 2.

Location Nodes

 Transition (Navigation)
Nodes

C

Lib

LH2

LH2

Lab1

Lab2

C - Cafetria
Lib - Library
LH1&2 - Lecture Halls
Lab1&2 - Laboratiories
Of-office

Of

Figure 2. An environment multi-graph model

The edges in the graph define the walkable paths in and
around the department. By using the edge ’width’ parameter
we can model a realistic group movement where several peo-
ple are moving at the same time. It means that individuals are
able to move side by side on one of these parallel paths. The
vertices of the environment graph typically represent places
where several trails meet, we call them transition nodes, and
the users’ activity locations like cafeteria, library, lecture
room, lab room, etc. Each of these locations is suitable
for certain activities and can be additionally characterized
by its own mobility profile. We can call them location
nodes and they are often interpreted as the targets when
a person is moving and equate to likely destinations during
any movement sequence. The sequence of nodes from one
location node to another one are defined as the paths in
the environment multi-graph. We call as preferred paths the
paths, which are most commonly ’generated’ by a given user
during the daily activity. The paths in the graph generates
the users’ activity and, in particular, mobility patterns.

The environmental multi-graph model and the activity
model are the basis for the mobility modeling [Bettstetter,
2001], [Scourias et al., 1999]. The use of the analytical
mobility models is facilitated by the particular location
node shape and type. Reaching a vertex connected to an

activity location is equivalent to beginning the execution of
an activity. Moreover, it involves a different type of mobility
than the one connecting two consecutive activity locations.
In the following section we present the user’s mobility model
based on the Markov process.

III. ACTIVITY-BASED MOBILITY MODELS

Activity Markov-based models accumulate and store in-
formation about the mobility behavior of the users in terms
of the time sequence in which activities are performed. In
this section we firstly highlight the main idea of the Activity-
based Mobility Prediction model using Markov modeling
(AMPuMM) [Mathivaruni, et al., 2008 ] used for the predic-
tion of the future location of the mobile nodes in wireless
networks. Then we propose a modification of such model to
use the environmental multi-graph as a ’road map’-like tool
for the users’ mobility prediction and define a continuous-
time Markov jump process [Ait-Sahalia et al., 2009] for the
user’s movement prediction. Next, we prove that AMPuMM
model is a simple approximation to the Markov jump process
that is the actual dynamics of the system. Finally, we use
a Non-parametric Belief Propagation (NBP) [Sudderth et
al., 2003] for prediction of the propagation of further user’s
activities and location.

A. Activity-based User’s Mobility Prediction using Markov
Modeling (AMPuMM)

The aim of the Activity-based user’s Mobility Prediction
using Markov Modeling algorithm (AMPuMM), presented
in [Mathivaruni, et al., 2008 ], is to define the user’s activity
patterns, based on the monitoring of user’s past activity
provided in a specified time interval, to make a prediction of
his next activity. The transition between activities is modeled
as a Markov chain to predict (n+ 1)-th day location using
n days information.

The user’s activities are classified into two groups: naviga-
tion activities and location activities. The location activities
are performed while user is staying at a location (cafeteria,
lecture room, lab in the department scenario presented in
Sec. II). Navigation activities are associated with the phys-
ical motion of the users between the locations. The authors
in [Mathivaruni, et al., 2008 ] propose a minimum threshold
value tmin, which is set for an activity to be considered as
a location activity.

The model is based on the observation of the users’
everyday activities. Each period in this model is segmented
into different time slots. For each slot time, the activity
data is gathered and stored separately. The probability of
occurrence of the activity and the probability to move from
one activity to next one can be extracted from users’ trace
(which is in fact the path in an environment multi-graph).

Formally, a vector A = [a1, a2, . . . , a7] defines the vector
of seven activity states considered in [Mathivaruni, et al.,
2008 ], and let us denote by N(ai) the number of time
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slots in which the activity ai is provided. The transition
probability from an activity i to activity j is given by the
relative frequency of the sequence ai, aj (ai, aj ∈ A). The
activity transition is modeled as a Markov chain with the
states from the set A and the transition probability matrix
P defined as follows:

P =

⎡
⎢⎢⎢⎣
p11 . . . p17

p21 . . . p27

...
...

...
p71 . . . p77

⎤
⎥⎥⎥⎦ (1)

where

pij =
N(ai − aj)
N(a′

i − aj)
, (2)

and N(ai − aj) denotes the number of time slots in which
the activity aj follows activity ai, and N(a

′
i − aj) is the

number of time slots in which the activity aj doesn’t follow
the activity ai.

The user’s activity (location) pattern is used to develop a
model that predicts the user’s (n+1)-th period’s movements
given n time intervals of information. The Markov chain
model uses the current activity on the (n+1)-th time interval
to predict the next activity for a single interval.

An initial state probability vector is defined by Λ(ai) =
N(ai)/N(a

′
i), next state probability vector is defined by

A(t) = A(t − 1) × P , where A(t) is the ’state’ of the
activity vector A in the t-th time slot. It means that each day
(time period) of the observation can be additionally divided
into the several time segments, and, instead of one transition
matrix for the whole day, few transition matrices for each
individual activity can be defined and considered. Thus, the
generated Markov chain has a multidimensional transition
matrix, which in fact increases the model complexity.

B. Generalization of AMPuMM model - Markov jump pro-
cess approach

There are a few drawbacks with the AMPuMM model
presented in Sec. III-A. One main drawback of this model is
the difficulty in the implementation of the multidimensional
transition matrix. It is very hard to extract the information
about the joint actions of the users. It can be concluded
from the experimental evaluation of the model performed
in [Mathivaruni, et al., 2008 ] that this approach can be
effective just for a small area model (not so many activities
and users) and in the case of ignoring of the ’transition
(navigation)’ nodes. The activity in AMPuMM model is
restricted just to an action of the user, which terminates
in a specified location. Another drawback is the restriction
of such model just to the discrete time case, which means
that to achieve a good prediction it is necessary to consider
many time slots, which again increases the complexity of
the model.

To overcome such disadvantages we propose to define
the user’s mobility prediction as the Markov continuous-time

jump process [Ait-Sahalia et al., 2009]. Let us denote by A a
set of all states of a system and by a; b ∈ A the states of the
system. The states can be interpreted as the user’s locations.
A jump process is a random variable X(t) parameterized
by time t ∈ [0;∞). This random variable starts from an
initial state a0 at time t = 0 and stays in this state until
some time t1 when it makes a transitions to a different state
a1. Similarly, it stays in this state until a later time t2 > t1
at which it jumps to a different state a2. Then, if t1, t2, . . .
are the set of jump times, then X(t) = a0 for t ∈ [0; t1),
X(t) = a1 for t ∈ [t1; t2), and so on.

We assume that the jump process X(t) can be defined
for all non-negative values of t. The probability of changing
(jumping) from the state a to the state b is defined as r(a, b),
such that:

(1) r(a, a) = 0, and
(2) for all a ∈ A

∑
a r(a, b) = 1.

Once the process is in a state a, the time period that
it stays in this state is a random variable governed by the
distribution function Fa(t) (for each state a different distri-
bution function can be specified). The transition probability
distribution can be then defined in the following way:

P (τ ≤ t,X(τ) = b, x(0) = a) = r(a, b) · Fa(t). (3)

We denote by p(b, a|t) as the conditional probability that
the jump process is in state b at time t given that it was in
state a at time 0. Given times 0 < t1 < t2 < . . . < tn < s
and t > 0, the Markov property for a jump process is defined
as follows:

P (X(t+ s) = b|X(s) = a;X(tn) = an; . . . ;X(t1) = a1)
= p(b, a|t)

(4)
In such processes the time is modeled by the exponential

distribution:
Fa(t) = 1 − e−γat (5)

with the following probability density function: fa(t) =
γae

−γat. Given a set of previous states at earlier times, the
Markov jump process ‘forgets’ all but the state at the most
recent time.

With the Markov property, joint probabilities for Markov
jump process can be written as

P (X(t+ s) = a;X(s) = b;X(0) = c) = p(a, b|t)p(b, c|s)
·P (X(0) = c)

(6)
for t, s > 0. Hence the Chapman-Kolmogorov equation [Ait-
Sahalia et al., 2009] for the Markov jump process is defined
in the following way:

p(a, c|(t+ s)) =
∑

p(a, b|t)p(b, c|s) (7)

Usually a geometrically distributed discrete random vari-
able is an approximation to the continuous time expo-
nentially distributed random variable (see [Ait-Sahalia et
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al., 2009]). Therefore, we can demonstrate now that the
AMPuMM model can be defined as a simple approximation
to our Markov jump process.

Let us denote by Â = [a1, . . . , ak] the vector of all
possible activities of the users, which is in fact a simple
generalization of the vectorA specified in Sec. III-A. We can
also consider a generalization of the Markov chain modeling
the user’s activity transition with the transition probability
matrix P̂ defined as follows:

P =

⎡
⎢⎢⎢⎣
p11 . . . p1k

p21 . . . p2k

...
...

...
pk1 . . . pkk

⎤
⎥⎥⎥⎦ (8)

The probability that a Markov chain remains in state i for
n steps can be calculated as follows: if pii = 0, then the
only possibility is n = 0; it must always make a transition
and never stay in the same state. Otherwise, the probability
is calculated using the following formulae:

pn
ii = enln(pii) = enln(1−pg(i)) (9)

where pg(i) ≡ ∑
j �=i pji is the probability of leaving the

state i. For pg(i) � 1, we achieve ln(1− pg(i)) ≈ −pg(i),
so then this probability is exponentially distributed with rate
pg(i). This suggests that a Markov jump process can be
defined as follows:

r(j, i) =
pji

pg(i)
(10)

for i 	= j so that this quantity is normalized and γa ≡
γpg(a) where γ−1 expresses time units. This defines the
time scale of the jump process, and the choice γ = 1 makes
the n step of the Markov chain equivalent to t = n in the
Markov jump process.

IV. NON-PARAMETRIC BELIEF PROPAGATION SUPPORT

The monitoring of the user’s daily activities generates as
the result many user’s patterns, which in graph terms can
be modeled as the paths in the environment multi-graph.
For an efficient mobility and users’ location prediction
some fast and accurate filtering method is needed to be
implemented. Additionally, such kind of filtering method can
support rather complex Markov mechanism by ’distributing’
the prediction into the set of the coherent processes of the
low complexity and can be sufficient for both estimating the
users’ locations and representing the location uncertainties.
We utilized for this purpose the nonparametric belief prop-
agation method (NBP) as a recent generalization of particle
filtering and a variant of the popular belief propagation (BP)
algorithm [Sudderth et al., 2003]. NBP has the advantage
that it is easily implemented in a distributed fashion, admits
a wide variety of statistical models, and can represent
multi-modal uncertainty. NBP has been successfully applied
in self-localization of the nodes in the sensor networks
(see [Noureddine et al., 2010], [Ihler et al., 2004]).

A. Belief Propagation(BP) Method

To introduce the Belief Propagation method, for the
undirected graph G = (V,E) we specify the neighborhood
Γ(a), a ∈ V of a node a using the following formulae:

Γ(a) = {b|(a, b) ∈ E}, (11)

which means that Γ(a) is a set of nodes adjacent to the node
a.

The undirected graphs are usually the basis for more com-
plex graphical models, which can be also used in the users’
mobility prediction in wireless networks. Graph-theoretic
models associate each node a ∈ V with an unobserved
random variable xa and some noisy local observation ya.
The graph properties describe the statistical relationship in
the set of all hidden and observed variables, denoted by
x = {xa|a ∈ V } and y = {ya|a ∈ V } respectively. In
particular, the graph encodes the Markov properties of the
random variables through the possible graph separation (we
can consider the neighborhoods, which are separated by the
sets of nodes or, like in the departmental scenario presented
in Sec. II, by the transition nodes (see Fig. 2)).

Using the Hammersley-Clifford theorem [Clifford, 1990]
we can specify the distribution of the variables xa and ya

using the following formulae:

p(x, y) =
∏

(a,b)∈E

ψa,b(xa, xb)
∏
a∈V

ψa(xa, ya) (12)

where ψ denotes the potential function. The Eq. (12) quan-
tifies the relationship between an environment graph and the
joint distribution of its random variables.

The main goal of the users’ mobility prediction is
the specification of the conditional marginal distributions
p(xa|y) for all nodes a ∈ V , which can be directly
calculated by Belief Propagation (BP) method. BP takes the
form of a message-passing algorithm between nodes, the
most common of which is a parallel update algorithm, where
each node calculates outgoing messages (the provided user’s
activities) to its neighbors simultaneously. Each iteration of
the BP algorithm can be expressed in terms of an update to
the outgoing message at iteration n from each node b ∈ V
to each neighboring node a ∈ Γ(t) in terms of the previous
iteration’s incoming messages from b neighbors Γ(b), not
including a itself, i.e.:

mn
ba(xa) = α

∫
xb
ψa,b(xa, xb)ψb(xb, yb)

×∏
u∈Γ(b)\am

n−1
ub (xb)dxb

(13)

where, α denotes an arbitrary proportionality constant. At
any iteration, each node can produce an approximation
p̂n(xa|y) to the marginal distribution p(xa|y) by combining
the incoming messages with the local observation:

p̂n(xa|y) = αψ(xa, ya)
∏

b∈Γ(a)

mn
ba(xa) (14)
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Each iteration of the BP algorithm involves only local
message updates, thus it can be successfully applied to any
class of undirected graphs.

B. Non-parametric belief propagation support - preliminary
analysis

For graph-based models with continuous hidden variables,
analytic evaluation of the BP update integral in Eq. (13)
is often intractable. In Non-parametric belief propagation
(NBP), which is a modification of the BP method, the re-
sulting message is represented using a sample-based density
estimate. In classical NBP approach the mixture of Gaussian
densities is considered (however, the formal description
of the NBP methodology is not restricted to this specific
distribution). We modified the NBP framework by using
a mixture of density functions of the negative exponential
distribution in a Markov jump process defined in Sec. III-B.

Let fa(t) = γae
−γat be the density function of the

specified for the Markov jump process. We accept it as
a potential function ψ in Eq. (12). Let us also define an
N -component mixture approximation of mba(xa) by the
following formulae:

mba(xa) =
N∑

i=1

w(i)
a f (i)

a (t) (15)

where w(i)
a is the weight associated with the i-th mixture

component f (i)
a (t). If we assume the independency of the

variables the product of the messages in Eq. (12) can be
modeled by the direct product of the negative exponential
distribution, which is negative exponential joint distribution
for the mixture defined in Eq. (15). Thus, the propagation
of the user’s messages (beliefs) according the rule specified
in Eq. (15) can be realized in two steps: (a) by sampling
the updated user’s message from the joint density; (b)
by propagating each sample from the message product by
approximating the belief update integral in Eq. (12). The
sampling procedures can be realized by using the Gibbs
sampler ( [ Geman et al., 1984]).

V. CONCLUSIONS AND FUTURE WORK

In this paper we propose an activity-based continuous-
time Markov model to define and predict the human move-
ment patterns. We used the Markov jump method for
the specification of the user’s mobility as the stochastic
continuous-time process with a negative exponential time
distribution. We demonstrate the utility of Nonparametric
Belief Propagation (NBP) technique in user’s pattern filter-
ing, for both estimating the user’s locations and representing
location uncertainties, and for prediction of the areas that
will, or will not, be visited in the future. NBP method admits
a wide variety of statistical models, and can represent multi-
modal uncertainty. We have shown that our model is able
to overcome several limitations of existing models in the
literature.

This prediction system may be used as an additional
input into intelligent building automation systems. We plan
to define the detailed properties of the NBP model for
the proposed negative exponential distribution mixture and
provide the experimental evaluation of the model.

In our future work we plan to implement the users’
messages propagation model with the NBP approach.
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