
Joachim Vandekerckhove- PhD
- Professor (Associate) at University of California, Irvine
Joachim Vandekerckhove
- PhD
- Professor (Associate) at University of California, Irvine
About
124
Publications
45,146
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,322
Citations
Introduction
I don't keep an updated profile on ResearchGate. My publications are freely available via http://www.cidlab.com/
Current institution
Additional affiliations
October 2011 - present
Publications
Publications (124)
Repeated assessments of cognitive performance yield rich data from which we can extract markers of cognitive performance. Computational cognitive process models are often fit to repeated cognitive assessments to quantify individual differences in terms of substantively meaningful cognitive markers and link them to other person-level variables. Most...
Replication and the reported crises impacting many fields of research have become a focal point for the sciences. This has led to reforms in publishing, methodological design and reporting, and increased numbers of experimental replications coordinated across many laboratories. While replication is rightly considered an indispensable tool of scienc...
Replication and the reported crises impacting many fields of research have become a focal point for the sciences. This has led to reforms in publishing, methodological design and reporting, and increased numbers of experimental replications coordinated across many laboratories. While replication is rightly considered an indispensable tool of scienc...
As the field of computational cognitive neuroscience continues to expand and generate new theories, there is a growing need for more advanced methods to test the hypothesis of brain-behavior relationships. Recent progress in Bayesian cognitive modeling has enabled the combination of neural and behavioral models into a single unifying framework. How...
Repeated assessments of cognitive performance yield rich data from which we can extract markers of cognitive performance. Computational cognitive process models are often fit to repeated cognitive assessments to quantify individual differences in terms of substantively meaningful cognitive markers and link them to other person-level variables. Most...
Repeated assessments of cognitive performance yield rich data from which we can extract markers of cognitive performance. Computational cognitive process models are often fit to repeated cognitive assessments to quantify individual differences in terms of substantively meaningful cognitive markers and link them to other person-level variables. Most...
Evidence accumulation models (EAMs) are powerful tools for making sense of human and animal decision-making behaviour. EAMs have generated significant theoretical advances in psychology, behavioural economics, and cognitive neuroscience, and are increasingly used as a measurement tool in clinical research and other applied settings. Obtaining valid...
The Bayesian highest-density interval plus region of practical equivalence (HDI + ROPE) decision rule is an increasingly common approach to testing null parameter values. The decision procedure involves a comparison between a posterior highest-density interval (HDI) and a prespecified region of practical equivalence. One then accepts or rejects the...
We apply cognitive modeling to improve the wisdom of the crowd in a spatial knowledge task. Participants provided point estimates for where 48 US cities are located and then, using the point estimate as a center point, chose a radius large enough that they believed the resulting circle was certain to contain the city’s location. Simple and radius-w...
As the field of computational cognitive neuroscience continues to expand and generate new theories, there is a growing need for more advanced methods to test the hypothesis of brain-behavior relationships. Recent progress in Bayesian cognitive modeling has enabled the combination of neural and behavioral models into a single unifying framework. How...
We present motivation and practical steps necessary to find parameter estimates of joint models of behavior and neural electrophysiological data. This tutorial is written for researchers wishing to build joint models of human behavior and scalp and intracranial electroencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifical...
In measurement burst designs, participants’ cognitive performance is measured multiple times per day, for several days, forming a measurement burst. Ideally, these are repeated once or twice a year as people age. Such rich longitudinal data are generated by multiple processes (e.g., aging and learning) that operate on multiple timescales. We propos...
The circular drift-diffusion model (CDDM) is a sequential sampling model designed to account for decisions and response times in decision-making tasks with a circular set of choice alternatives. We present and demonstrate a fully Bayesian implementation and extension of the CDDM. This development allows researchers to apply the CDDM to data from co...
The mnemonic discrimination task (MDT) is a widely used cognitive assessment tool. Performance in this task is believed to indicate an age-related deficit in episodic memory stemming from a decreased ability to pattern-separate among similar experiences. However, cognitive processes other than memory ability might impact task performance. In this s...
The circular drift-diffusion model (CDDM) is a sequential sampling model designed to account for decisions and response times in decision-making tasks with a circular set of choice alternatives. We present and demonstrate a fully Bayesian implementation and extension of the CDDM. This development allows researchers to apply the CDDM to data from co...
Testing for Granger causality relies on estimating the capacity of dynamics in one time series to forecast dynamics in another. The canonical test for such temporal predictive causality is based on fitting multivariate time series models and is cast in the classical null hypothesis testing framework. In this framework, we are limited to rejecting t...
Testing for Granger causality relies on estimating the capacity of dynamics in one time series to forecast dynamics in another. The canonical test for such temporal predictive causality is based on fitting multivariate time series models and is cast in the classical null hypothesis testing framework. In this framework, we are limited to rejecting t...
There are many ways to measure how people manage risk when they make decisions. A standard approach is to measure risk propensity using self-report questionnaires. An alternative approach is to use decision-making tasks that involve risk and uncertainty, and apply cognitive models of task behavior to infer parameters that measure people’s risk prop...
Human decision making behavior is observed with choice-response time data during psychological experiments. Drift-diffusion models of this data consist of a Wiener first-passage time (WFPT) distribution and are described by cognitive parameters: drift rate, boundary separation, and starting point. These estimated parameters are of interest to neuro...
We present motivation and practical steps necessary to find parameter estimates of joint models of behavior and neural electrophysiological data. This tutorial is written for researchers wishing to build joint models of human behavior and scalp and intracranial electroencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifical...
The Action-sentence Compatibility Effect (ACE) is a well-known demonstration of the role of motor activity in the comprehension of language. Participants are asked to make sensibility judgments on sentences by producing movements toward the body or away from the body. The ACE is the finding that movements are faster when the direction of the moveme...
Prior expectations can bias how we perceive pain. Using a drift diffusion model, we recently showed that this influence is primarily based on changes in perceptual decision-making (indexed as shift in starting point). Only during unexpected application of high-intensity noxious stimuli, altered information processing (indexed as increase in drift r...
Roberts (2020, Learning & Behavior, 48 [2], 191–192) discussed research claiming honeybees can do arithmetic. Some readers of this research might regard such claims as unlikely. The present authors used this example as a basis for a debate on the criterion that ought to be used for publication of results or conclusions that could be viewed as unlik...
Current attempts at methodological reform in sciences come in response to an overall lack of rigor in methodological and scientific practices in experimental sciences. However, most methodological reform attempts suffer from similar mistakes and over-generalizations to the ones they aim to address. We argue that this can be attributed in part to la...
Joint computational modeling of human EEG and behavior reveal cognition during decision making
Roberts (2020) discussed research claiming honeybees can do arithmetic. Some readers of this research might regard such claims as unlikely. The present authors used this example as a focus for a debate on the criterion that ought to be used for publication of results that could be viewed as unlikely by a significant number of readers. The resulting...
Decision-making in two-alternative forced choice tasks has several underlying components including stimulus encoding, perceptual categorization, response selection, and response execution. Sequential sampling models of decision-making are based on an evidence accumulation process to a decision boundary. Animal and human studies have focused on perc...
Decision-making in two-alternative forced choice tasks has several underlying components including stimulus encoding, perceptual categorization, response selection, and response execution. Sequential sampling models of decision-making are based on an evidence accumulation process to a decision boundary. Animal and human studies have focused on perc...
There are many ways to measure how people manage risk when they make decisions. A standard approach is to measure risk propensity using self-report questionnaires. An alternative approach is to use decision-making tasks that involve risk and uncertainty, and apply cognitive models of task behavior to infer parameters that measure people’s risk prop...
The Extended Condorcet Model allows us to explore interindividual consensus concerning culturally held knowledge. Also, it enables a process-level description of interindividual differences in the knowledge a person has of the consensus, their willingness to guess in the absence of knowledge, and their bias in guessing. These person-specific charac...
The present study compares the fit of two- and three-parameter logistic (2PL and 3PL) models of item response theory in the performance of preschool children on the Raven’s Colored Progressive Matrices. The test of Raven is widely used for evaluating nonverbal intelligence of factor g. Studies comparing models with real data are scarce on the liter...
In many forensic psychiatric hospitals, patients’ mental health is monitored at regular intervals. Typically, clinicians score patients using a Likert scale on multiple criteria including hostility. Having an overview of patients’ scores benefits staff members in at least three ways. First, the scores may help adjust treatment to the individual pat...
Current attempts at methodological reform in sciences come in response to an overall lack of rigor in methodological and scientific practices in experimental sciences. However, some of these reform attempts suffer from the same mistakes and over-generalizations they purport to address. Considering the costs of allowing false claims to become canoni...
Why is there no consensual way of conducting Bayesian analyses? We present a summary of agreements and disagreements of the authors on several discussion points regarding Bayesian inference. We also provide a thinking guideline to assist researchers in conducting Bayesian inference in the social and behavioural sciences.
Everyday life presents many experiences that can make people feel connected to another and leave them feeling loved. We conducted two ecological momentary assessment studies (N = 52 and N = 160) to examine people's subjective perceptions of the impact of these experiences by capturing the extent to which they felt loved at several randomly sampled...
The target article on robust modeling (Lee et al. in review) generated a lot of commentary. In this reply, we discuss some of the common themes in the commentaries; some are simple points of agreement while others are extensions of a practical or abstract nature. We also address a small number of disagreements or confusions.
The target article on robust modeling (Lee et al.) generated a lot of commentary. In this reply, we discuss some of the common themes in the commentaries; some are simple points of agreement while others are extensions of a practical or abstract nature. We also address a small number of disagreements or confusions.
The Extended Condorcet Model allows us to explore interindividual consensus concerning culturally held knowledge. At the same time, it enables a process-level description of interindividual differences in the knowledge a person has of the consensus, their willingness to guess in the absence of knowledge, and their bias in guessing. These person-spe...
Encoding of a sensory stimulus is believed to be the first step in perceptual decision making. Previous research has shown that electrical signals recorded from the human brain track evidence accumulation during perceptual decision making (Gold and Shadlen, 2007; O’Connell et al., 2012; Philiastides et al., 2014). In this study we directly tested t...
In an attempt to increase the reliability of empirical findings, psychological scientists have recently proposed a number of changes in the practice of experimental psychology. Most current reform efforts have focused on the analysis of data and the reporting of findings for empirical studies. However, a large contingent of psychologists build mode...
Is it statistically appropriate to monitor evidence for or against a hypothesis as the data accumulate, and stop whenever this evidence is deemed sufficiently compelling Researchers raised in the tradition of frequentist inference may intuit that such a practice will bias the results and may even lead to "sampling to a foregone conclusion". In cont...
In an attempt to increase the reliability of empirical findings, psychological scientists have recently proposed a number of changes in the practice of experimental psychology. Most current reform efforts have focused on the analysis of data and the reporting of findings for empirical studies. However, a large contingent of psychologists build mode...
Cultural consensus theory is a statistical framework (CCT) for the study of individual differences in the knowledge of culturally shared opinions. In this article, we demonstrate how a CCT analysis can be used to study individual differences and cultural consensus on what makes people feel loved, or more generally any social behaviors that are gove...
Previous research has shown that individuals with greater cognitive abilities display a greater speed of higher-order cognitive processing. These results suggest that speeded neural information processing may facilitate evidence accumulation during decision making and memory updating and thus yield advantages in general cognitive abilities. We used...
Previous research has shown that individuals with greater cognitive abilities display a greater speed of higher-order cognitive processing. These results suggest that speeded neural information processing may facilitate evidence accumulation during decision making and memory updating and thus yield advantages in general cognitive abilities. We used...
Compared to the relatively standard way of conducting null hypothesis significance testing, there seem to be fairly large differences in opinion among experts in Bayesian statistics on how best to conduct Bayesian inference. Employing Bayesian methods involves making choices about prior distributions, likelihood functions, and robustness checks, as...
We use quantum probability (QP) theory to investigate individual differences in causal reasoning. By analyzing datasets from Rehder (2014) on comparative judgments, and from Rehder and Waldmann (2016) on absolute judgments, we show that a QP model can both account for individual differences in causal judgments, and why these judgments sometimes vio...
A theory of decision making predicts distinct time periods that contribute to a response time (RT): visual encoding time (VET; figure-ground segregation), visual evidence accumulation (VEA), motor evidence accumulation (MEA), and motor execution time (MET). It is our goal to accurately measure these time periods within participants using EEG and hu...
Perceptual decision-making is commonly studied using stimuli with different physical properties but of comparable affective value. Here, we investigate neural processes underlying human perceptual decisions in the affectively rich domain of pain using a drift-diffusion model in combination with a probabilistic cueing paradigm. This allowed us to ch...
Encoding of a sensory stimulus is believed to be the first step in perceptual decision making. Previous research has shown that electrical signals recorded from the human brain track evidence accumulation during perceptual decision making (Gold and Shadlen, 2007; O’Connell et al., 2012; Philiastides et al., 2014). In this study we directly tested t...
Previous research has shown that individuals with greater cognitive abilities display a greater speed of higher-order cognitive processing. These results suggest that speeded neural information-processing may facilitate evidence accumulation during decision making and memory updating and thus yield advantages in general cognitive abilities. We used...
Hypothesis testing is a special form of model selection. Once a pair of competing models is fully defined, their definition immediately leads to a measure of how strongly each model supports the data. The ratio of their support is often called the likelihood ratio or the Bayes factor. Critical in the model-selection endeavor is the specification of...
We describe and demonstrate an empirical strategy useful for discovering and replicating empirical effects in psychological science. The method involves the design of a metastudy, in which many independent experimental variables—that may be moderators of an empirical effect—are indiscriminately randomized. Radical randomization yields rich datasets...
The editorial for a Special Issue of the journal Psychonomic Bulletin & Review.
Hypothesis testing is a special form of model selection. Once a pair of competing models is fully defined, their definition immediately leads to a measure of how strongly each model supports the data. The ratio of their support is often called the likelihood ratio or the Bayes factor. Critical in the model selection endeavor is the specification of...
Most data analyses rely on models. To complement statistical models, psychologists have developed cognitive models, which translate observed variables into psychologically interesting constructs. Response time models, in particular, assume that response time and accuracy are the observed expression of latent variables including 1) ease of processin...
We demonstrate the use of three popular Bayesian software packages that enable researchers to estimate parameters in a broad class of models that are commonly used in psychological research. We focus on WinBUGS, JAGS, and Stan, and show how they can be interfaced from R and MATLAB. We illustrate the use of the packages through two fully worked exam...
Exploring methods to verify human cognitive processing times with EEG, human behavior and hierarchical Bayesian methods
We demonstrate the use of three popular Bayesian software packages that enable researchers to estimate parameters in a broad class of models that are commonly used in psychological research. We focus on WinBUGS, JAGS, and Stan, and show how they can be interfaced from R and MATLAB. We illustrate the use of the packages through two fully worked exam...
We describe and demonstrate an empirical strategy useful for discovering and replicating empirical effects in psychological science. The method involves the design of a meta-study, in which many independent experimental variables—that may be moderators of an empirical effect—are indiscriminately randomized. Radical randomization yields rich data se...
People often interact with environments that can provide only a finite number of items as resources. Eventually a book contains no more chapters, there are no more albums available from a band, and every Pok?mon has been caught. When interacting with these sorts of environments, people either actively choose to quit collecting new items, or they ar...
People with higher IQ scores also tend to perform better on elementary cognitive-perceptual tasks, such as deciding quickly whether an arrow points to the left or the right Jensen (2006). The worst performance rule (WPR) finesses this relation by stating that the association between IQ and elementary-task performance is most pronounced when this pe...
We introduce the fundamental tenets of Bayesian inference, which derive from two basic laws of probability theory. We cover the interpretation of probabilities, discrete and continuous versions of Bayes' rule, parameter estimation , and model comparison.
We introduce the fundamental tenets of Bayesian inference, which derive from two basic laws of probability theory. We cover the interpretation of probabilities, discrete and continuous versions of Bayes' rule, parameter estimation, and model comparison. Using seven worked examples, we illustrate these principles and set up some of the technical bac...
Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Ou...
Background
Attention deficit hyperactivity disorder (ADHD) is frequently associated with poorer reading ability; however, the specific neuropsychological domains linking this co-occurrence remain unclear. This study evaluates information-processing characteristics as possible neuropsychological links between ADHD symptoms and RA in a community-base...
Over the last four decades, sequential accumulation models for choice response times have spread through cognitive psychology like wildfire. The most popular style of accumulator model is the diffusion model (Ratcliff Psychological Review, 85, 59–108, 1978), which has been shown to account for data from a wide range of paradigms, including perceptu...
We conducted an experience sampling study in which we texted participants (N=20; 6 texts a day with semi-random timing within day) and asked them about their experiences, including how much they feel love at the moment and to what extent they have been expressing love. During the introductory session, the participants rated the 60 love scenarios in...
We conducted an experience sampling study in which we texted participants (N=20; 6 texts a day with semi-random timing within day) and asked them about their experiences, including how much they feel love at the moment and to what extent they have been expressing love.
We conducted an experience sampling study in which we texted participants (N=20; 6 texts a day with semi-random timing within day) and asked them about their experiences, including how much they feel love at the moment and to what extent they have been expressing love. During the introductory session, the participants rated the 60 love scenarios in...
This pragmatic study examines love as a mode of communication. Our focus is on the receiver side: what makes an individual feel loved and how felt love is defined through daily interactions. Our aim is to explore everyday life scenarios in which people might experience love, and to consider people's converging and diverging judgments about which sc...
A summary of the raw data and Extended Condorcet Model based estimates.
(PDF)
Model parameters regressed on a set of predictors.
(PDF)
We revisit the results of the recent Reproducibility Project: Psychology by the Open Science Collaboration. We compute Bayes factors-a quantity that can be used to express comparative evidence for an hypothesis but also for the null hypothesis-for a large subset (N = 72) of the original papers and their corresponding replication attempts. In our co...
Table.
Inferential statistics for each of the 72 studies and their replicates.
(PDF)
In this paper, we propose a multilevel process modeling approach to describing individual differences in within-person changes over time. To characterize changes within an individual, repeated measures over time are modeled in terms of three person-specific parameters: a baseline level, intraindividual variation around the baseline, and regulatory...
According to a recent meta-analysis, religious priming has a positive effect on prosocial behavior (Shariff et al., 2015). We first argue that this meta-analysis suffers from a number of methodological shortcomings that limit the conclusions that can be drawn about the potential benefits of religious priming. Next we present a re-analysis of the re...
The reliability of published research findings in psychology has been a topic of rising concern. Publication bias, or treating positive findings differently from negative findings, is a contributing factor to this "crisis of confidence," in that it likely inflates the number of false-positive effects in the literature. We demonstrate a Bayesian mod...
Sequential sampling decision-making models have been successful in accounting for reaction time (RT) and accuracy data in two-alternative forced choice tasks. These models have been used to describe the behavior of populations of participants, and explanatory structures have been proposed to account for between individual variability in model param...
Diffusion models are widely-used and successful accounts of the time course of two-choice decision making. Most diffusion models assume constant boundaries, which are the threshold levels of evidence that must be sampled from a stimulus to reach a decision. We summarize theoretical results from statistics that relate distributions of decisions and...
We study how people terminate their search for information when making decisions in a changing environment. In 3 experiments, differing in the cost of search, participants made a sequence of 2-alternative decisions, based on the information provided by binary cues they could search. Whether limited or extensive search was required to maintain accur...
Decision making between several alternatives is thought to involve the gradual accumulation of evidence in favor of each available choice. This process is profoundly variable even for nominally identical stimuli, yet the neuro-cognitive substrates that determine the magnitude of this variability are poorly understood. Here, we demonstrate that arou...
Prior information about features of a stimulus is a strong modulator of perception. For instance, the prospect of more intense pain leads to an increased perception of pain, whereas the expectation of analgesia reduces pain, as shown in placebo analgesia and expectancy modulations during drug administration [1]. This influence is commonly assumed t...
In this article, we present a Bayesian inference framework for cultural consensus theory (CCT) models for dichotomous (True/False) response data and provide an associated, user-friendly software package along with a detailed user's guide to carry out the inference. We believe that the time is ripe for Bayesian statistical inference to become the de...
I describe a cognitive latent variable model, a combination of a cognitive model and a latent variable model that can be used to aggregate information regarding cognitive parameters across participants and tasks. The model is ideally suited for uncovering relationships between latent task abilities as they are expressed in experimental paradigms, b...
We present the RWiener package that provides R functions for theWiener diffusion model. The core of the package are the four distribution functions dwiener, pwiener, qwiener and rwiener, which use up-to-date methods, implemented in C, and provide fast and accurate computation of the density, distribution, and quantile function, as well as a random...
Background:
Taxometric and behavioral genetic studies suggest that attention deficit hyperactivity disorder (ADHD) is best modeled as a dimension rather than a category. We extended these analyses by testing for the existence of putative ADHD-related deficits in basic information processing (BIP) and inhibitory-based executive function (IB-EF) in...
Background / Purpose:
The underlying mechanisms of expectancy-related modulation of pain were investigated using a drift diffusion model.
Main conclusion:
Cognitive pain modulation can also be rooted in altered perceptual decision-making. Additionally, the relative influence of sensory and decision-making bias varied depending on individual pa...
If the consistency test were used to select papers for inclusion in meta-analysis, the resulting estimates of true effect sizes would be no less biased. Increasing its detection rate at the risk of a higher false alarm rate biases the pooled effect size estimates more—not less—because papers reporting large effect sizes are less likely to be judged...
We demonstrate how to add a custom distribution into the general-purpose, open-source, cross-platform graphical modeling package JAGS ("Just Another Gibbs Sampler"). JAGS is intended to be modular and extensible, and modules written in the way laid out here can be loaded at runtime as needed and do not interfere with regular JAGS functionality when...