J.M.F. Dos Santos

J.M.F. Dos Santos
  • PhD and Habilitation
  • Professor (Full) at University of Coimbra

About

567
Publications
91,089
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
26,952
Citations
Introduction
J.M.F. Dos Santos currently works at the Department of Physics , University of Coimbra. J.M.F. does research in Higher Education, Radiation detection and Vacuum technology. Current projects are Electroluminescence studies from Noble gases with molecular additives and its use as amplification process of ionization signals.
Current institution
University of Coimbra
Current position
  • Professor (Full)

Publications

Publications (567)
Preprint
We investigate the performance of Opticks, an NVIDIA OptiX API 7.5 GPU-accelerated photon propagation compared with a single-threaded Geant4 simulation. We compare the simulations using an improved model of the NEXT-CRAB-0 gaseous time projection chamber. Performance results suggest that Opticks improves simulation speeds by between $58.47\pm{0.02}...
Preprint
Full-text available
If neutrinoless double beta decay is discovered, the next natural step would be understanding the lepton number violating physics responsible for it. Several alternatives exist beyond the exchange of light neutrinos. Some of these mechanisms can be distinguished by measuring phase-space observables, namely the opening angle $\cos\theta$ among the t...
Article
Noble gas radiation detectors with optical readout are gaining popularity in fields like astrophysics and particle physics due to their ability to produce both ionization and scintillation signals in response to ionizing radiation interaction. In addition, the amplification of primary ionization signals can be achieved by promoting secondary scinti...
Article
A new, simple and robust design for a gas proportional scintillation counter (GPSC) is studied. One sole electrode, the anode, is used to define the electric field in the drift and scintillation regions of the detector volume. The anode has an annular shape aligned with the photosensor axis. Such design allows to keep constant the solid angle subte...
Article
Full-text available
The imaging of individual Ba ²⁺ ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba ²⁺ ion imaging inside a high-pressure xenon gas environment. Ba ²⁺ ions chelated with mo...
Preprint
Full-text available
Noble gas radiation detectors with optical readout are gaining popularity in fields like astrophysics and particle physics due to their ability to produce both ionization and scintillation signals in response to ionizing radiation interaction. In addition, the amplification of primary ionization signals can be achieved by promoting secondary scinti...
Article
Full-text available
Xenon scintillation has been widely used in rare event detection experiments, such as in neutrinoless double beta decay, double electron captures and dark matter searches. Nonetheless, experimental values for primary scintillation yield in gaseous xenon (GXe) remain scarce and dispersed. The mean energy required to produce a scintillation photon, w...
Article
Full-text available
The CYGNO collaboration is developing next generation directional Dark Matter (DM) detection experiments, using gaseous Time Projection Chambers (TPCs), as a robust method for identifying Weakly Interacting Massive Particles (WIMPs) below the Neutrino Fog. SF 6 is potentially ideal for this since it provides a high fluorine content, enhancing sensi...
Preprint
Full-text available
The CYGNO experiment aims to build a large ($\mathcal{O}(10)$ m$^3$) directional detector for rare event searches, such as nuclear recoils (NRs) induced by dark matter (DM), such as weakly interactive massive particles (WIMPs). The detector concept comprises a time projection chamber (TPC), filled with a He:CF$_4$ 60/40 scintillating gas mixture at...
Article
CYGNO is an international collaboration with the aim of operating a 1 m 3 optical time projection chamber (TPC) for directional Dark Matter (DM) searches and solar neutrino spectroscopy, to be deployed at the Laboratori Nazionali del Gran Sasso (LNGS). A He/CF 4 (60/40) mixture is used, along with a triple Gas Electron Multiplier (GEM) cascade to a...
Preprint
Full-text available
The NEXT-White detector, a high-pressure gaseous xenon time projection chamber, demonstrated the excellence of this technology for future neutrinoless double beta decay searches using photomultiplier tubes (PMTs) to measure energy and silicon photomultipliers (SiPMs) to extract topology information. This analysis uses $^{83m}\text{Kr}$ data from th...
Preprint
The CYGNO collaboration is developing next generation directional Dark Matter (DM) detection experiments, using gaseous Time Projection Chambers (TPCs), as a robust method for identifying Weakly Interacting Massive Particles (WIMPs) below the Neutrino Fog. SF6 is potentially ideal for this since it provides a high fluorine content, enhancing sensit...
Article
Full-text available
Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing fo...
Preprint
Full-text available
The imaging of individual Ba$^{2+}$ ions in high pressure xenon gas is one possible way to attain background-free sensitivity to neutrinoless double beta decay and hence establish the Majorana nature of the neutrino. In this paper we demonstrate selective single Ba$^{2+}$ ion imaging inside a high-pressure xenon gas environment. Ba$^{2+}$ ions chel...
Article
Full-text available
The INFN Cloud project was launched at the beginning of 2020, aiming to build a distributed Cloud infrastructure and provide advanced services for the INFN scientific communities. A Platform as a Service (PaaS) was created inside INFN Cloud that allows the experiments to develop and access resources as a Software as a Service (SaaS), and CYGNO is t...
Article
NEXT-100 is currently being constructed at the Laboratorio Subterráneo de Canfranc in the Spanish Pyrenees and will search for neutrinoless double beta decay using a high-pressure gaseous time projection chamber (TPC) with 100 kg of xenon. Charge amplification is carried out via electroluminescence (EL) which is the process of accelerating electron...
Article
Full-text available
We correct an overestimation of the production rate of $$^{137}$$ 137 Xe in the DARWIN detector operated at LNGS. This formerly dominant intrinsic background source is now at a level similar to the irreducible background from solar $$^8$$ 8 B neutrinos, thus unproblematic at the LNGS depth. The projected half-life sensitivity for the neutrinoless d...
Article
Full-text available
We are going to discuss the R&D and the prospects for the CYGNO project, towards the development of an innovative, high precision 3D tracking Time Projection Chamber with optical readout using He:CF 4 gas at 1 bar. CYGNO uses a stack of triple thin GEMs for charge multiplication, this induces scintillation in CF 4 gas, which is readout by PMTs and...
Presentation
Full-text available
Many state-of-the-art optical readout micro-patterned gaseous detectors (MPGDs) are equipped with of standard Gas Electron Multipliers (GEMs), which are 50 μm thick. The COBRA_125, a 125 μm thick, triple-electrode MPGD has the potential to further increase the optical gain of these detectors: whereas in a GEM, the Electroluminescence light is only...
Article
Full-text available
A bstract The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in ¹³⁶ Xe, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterráneo de Canfranc. Achieving an energy resolution of 1% FWH...
Article
Full-text available
The CREMA collaboration is pursuing a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen ( \mu μ p) with 1 ppm accuracy by means of pulsed laser spectroscopy. In the proposed experiment, the \mu μ p atom is excited by a laser pulse from the singlet to the triplet hyperfine sub-levels, and is quenched back to the singlet st...
Article
Full-text available
The CYGNO project for the development of a high precision optical readout gaseous TPC for directional Dark Matter search and solar neutrino spectroscopy will be presented. It is to be hosted at Laboratori Nazionali del Gran Sasso. CYGNO peculiar features are the use of sCMOS cameras and PMTs coupled to GEMs amplification of a helium-based gas mixtu...
Preprint
Full-text available
The CYGNO project aims at the development of a high precision optical readout gaseous Tima Projection Chamber (TPC) for directional dark matter (DM) searches, to be hosted at Laboratori Nazionali del Gran Sasso (LNGS). CYGNO employs a He:CF$_4$ gas mixture at atmospheric pressure with a Gas Electron Multiplier (GEM) based amplification structure co...
Preprint
Full-text available
Hydrogen-like light muonic ions, in which one negative muon replaces all the electrons, are extremely sensitive probes of nuclear structure, because the large muon mass increases tremendously the wave function overlap with the nucleus. Using pulsed laser spectroscopy we have measured three 2S-2P transitions in the muonic helium-3 ion ($\mu^3$He$^+$...
Preprint
Full-text available
The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in $^{136}$Xe, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterr\'aneo de Canfranc. Achieving an energy resolution of 1% FWHM at...
Preprint
Full-text available
The search for neutrinoless double beta decay ($0\nu\beta\beta$) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to $0\nu\beta\beta$ searches due to their intrinsically precise energy resolution and topological event identificatio...
Article
Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. In noble element systems, it is often coated with tetraphenyl butadiene (TPB) to allow detection of vacuum ultraviolet scintillation light. In this work this dependence is investigated for PTFE coated with TPB i...
Preprint
Full-text available
We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through...
Article
Full-text available
If neutrinos are their own antiparticles the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay can occur. The very long lifetime expected for these exceptional events makes its detection a daunting task. In order to conduct an almost background-free experiment, the NEXT collaboration is investigating novel synthetic molec...
Preprint
Full-text available
The CREMA collaboration is pursuing a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen ($\mu$p) with 1 ppm accuracy by means of pulsed laser spectroscopy. In the proposed experiment, the $\mu$p atom is excited by a laser pulse from the singlet to the triplet hyperfine sub-levels, and is quenched back to the singlet state...
Preprint
Full-text available
Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. In noble element systems, it is often coated with tetraphenyl butadiene (TPB) to allow detection of vacuum ultraviolet scintillation light. In this work this dependence is investigated for PTFE coated with TPB i...
Presentation
Full-text available
He-CF4 is a very attractive gas mixture for optical tracking detectors for Dark Matter Search. Whereas He assures a low target mass (relevant for track reconstruction and low WIMP mass sensitivity), CF4 is a fast and efficient scintillator in the UV and visible wavelengths, also providing sensitivity to spin-dependent WIMP-nucleon interactions. The...
Article
Full-text available
The CREMA collaboration is pursuing a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen ( \mu μ p) with 1 ppm accuracy by means of pulsed laser spectroscopy to determine the two-photon-exchange contribution with 2\times10^{-4} 2 × 10 − 4 relative accuracy. In the proposed experiment, the \mu μ p atom undergoes a laser exc...
Article
Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate th...
Article
Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from...
Article
We report a measurement of the half-life of the Xe136 two-neutrino double-β decay performed with a novel direct-background-subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with Xe136-enriched and Xe136-depleted xenon, as well as on the topology of double-electron tracks. With a fiducial mass of...
Article
A new design of a Gas Proportional Scintillation Counter (GPSC) for X-ray spectrometry is presented and a proof of concept is demonstrated. The proposed design is much simpler, having only one electrode, the anode. In addition, this electrode has an annular shape with its axis aligned with the photosensor axis. Since the scintillation region is lim...
Article
Full-text available
The strong-interaction effects both in pionic hydrogen and deuterium atoms have been re-determined with improved precision. The hadronic shift and width in pionic hydrogen together with the hadronic shift in pionic deuterium constitute a one-fold constraint for the two independent pion-nucleon scattering lengths. Furthermore, the hadronic width in...
Article
Full-text available
We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White time projection chamber (TPC) and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that is postulated to exist in x...
Preprint
Full-text available
Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate th...
Preprint
Full-text available
We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White TPC and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that has been postulated to exist in xenon that has been l...
Preprint
Full-text available
If neutrinos are their own antiparticles, the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay ($\beta\beta 0\nu$) can occur, with a characteristic lifetime which is expected to be very long, making the suppression of backgrounds a daunting task. It has been shown that detecting (``tagging'') the Ba$^{+2}$ dication produ...
Article
Full-text available
The search for a novel technology able to detect and reconstruct nuclear and electron recoil events with the energy of a few keV has become more and more important now that large regions of high-mass dark matter (DM) candidates have been excluded. Moreover, a detector sensitive to incoming particle direction will be crucial in the case of DM discov...
Preprint
Full-text available
The CREMA collaboration is pursuing a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen ($\mu$p) with 1 ppm accuracy by means of pulsed laser spectroscopy to determine the two-photon-exchange contribution with $2\times10^{-4}$ relative accuracy. In the proposed experiment, the $\mu$p atom which undergoes a laser excitatio...
Preprint
Full-text available
We report a measurement of the half-life of the ${}^{136}$Xe two-neutrino double beta decay performed with a novel direct background subtraction technique. The analysis relies on the data collected with the NEXT-White detector operated with ${}^{136}$Xe-enriched and ${}^{136}$Xe-depleted xenon, as well as on the topology of double-electron tracks....
Preprint
Full-text available
Radio-frequency carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling ion behavior on phased radio-frequency (RF) carpets in gas densities where ion dynamics are strongly influenced by buffer gas collisions. The analytic theory of ph...
Article
Full-text available
A bstract The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0 νββ ) decay of ¹³⁶ Xe using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-lif...
Poster
Full-text available
Absolute electroluminescence yield of He-CF4-isobutane mixtures.
Article
Full-text available
The CYGNO project aims at developing a high resolution Time Projection Chamber with optical readout for directional dark matter searches and solar neutrino spectroscopy. Peculiar CYGNO’s features are the 3D tracking capability provided by the combination of photomultipliers and scientific CMOS camera signals, combined with a helium-fluorine-based g...
Article
Full-text available
A bstract Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ∼ 10 ²⁷ yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment ex...
Poster
Full-text available
CYGNO is part of the CYGNUS international proto-collaboration for the development of a distributed Galactic Nuclear Recoil Observatory for directional Dark Matter search at low WIMP masses (1-10 GeV/c2) and coherent neutrino scattering measurement. CYGNO is developing a gaseous Time Projection Chamber (TPC), which will be hosted at Laboratori Nazio...
Presentation
Full-text available
Electroluminescence yield of He-CF4-isobutane mixtures
Article
Full-text available
The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In...
Article
Full-text available
We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off Xe129 is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV deexcitation photon detected simultaneously with the nuclear recoil. Using an exposure o...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03360-2.
Article
Full-text available
We report on a search for nuclear recoil signals from solar ^{8}B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant ^{8}B neutrinolike excess is found in an ex...
Preprint
Full-text available
Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ~$10^{27}$ yr, requiring suppressing backgrounds to <1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utter importance. The NEXT experiment exploits di...
Article
Full-text available
The hadronic width of the ground state of pionic hydrogen has been redetermined by X-ray spectroscopy to be $$\varGamma ^{\pi \mathrm {H}}_{1s}=(856\,\pm \,16_\mathrm{stat}\,\pm \,22_\mathrm{sys})$$ Γ 1 s π H = ( 856 ± 16 stat ± 22 sys ) meV. The experiment was performed at the high-intensity low-energy pion beam of the Paul Scherrer Institute by u...
Article
Full-text available
A bstract Double electron capture by proton-rich nuclei is a second-order nuclear process analogous to double beta decay. Despite their similarities, the decay signature is quite different, potentially providing a new channel to measure the hypothesized neutrinoless mode of these decays. The Standard-Model-allowed two-neutrino double electron captu...
Article
Full-text available
The energy levels of hydrogen-like atomic systems can be calculated with great precision. Starting from their quantum mechanical solution, they have been refined over the years to include the electron spin, the relativistic and quantum field effects, and tiny energy shifts related to the complex structure of the nucleus. These energy shifts caused...
Article
Full-text available
A bstract Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in ¹³⁶ Xe. To do so,...
Preprint
Full-text available
We report on a search for nuclear recoil signals from solar $^8$B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 keV to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant $^8$B neutrino-like excess is found in...
Article
We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp , $$^7$$ 7 Be, $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep . The precision of the $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep comp...
Preprint
Full-text available
We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off $^{129}$Xe is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV de-excitation photon detected simultaneously with the nuclear recoil. Using an expo...
Article
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential b...
Article
Full-text available
We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76±2stat events/(tonne×year×keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino...
Preprint
Full-text available
The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In...
Preprint
Full-text available
Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in $^{136}$Xe. To do so, we dem...
Article
Full-text available
Abstract The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $$^{136}$$ 136 Xe. Out of its 50 t total natural xenon inventory, 40 t will be the active target of a time projection chamber which thus contains about 3.6 t of $$^{136}$$ 136 Xe. Here, we show th...
Article
Full-text available
Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolution which degrades with energy above \(\sim \) 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of \(^{136} \h...
Preprint
Full-text available
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential b...
Preprint
Full-text available
Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. However, the reflectance of PTFE is a function of its thickness. In this work, we investigate this dependence in air for light of wavelengths 260 nm and 450 nm using two complementary methods. We find that PTFE...
Preprint
Full-text available
We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of $76\pm2_{stat}$ events/(tonne$\times$year$\times$keV) between 1-30 keV, the data enables competitive searches for solar axions, an enhanced neut...
Preprint
Double electron capture by proton-rich nuclei is a second-order nuclear process analogous to double beta decay. Despite their similarities, the decay signature is quite different, potentially providing a new channel to measure the hypothesized neutrinoless mode of these decays. The Standard-Model-allowed two-neutrino double electron capture ($2\nu...
Article
Full-text available
Xe is used as the target medium for many experiments searching for 0νββ. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of ¹³⁷Xe created by the capture of neutrons on...
Preprint
The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double beta ($0\nu\beta\beta$) of $^{136}$Xe using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with $\sim1$tonne of enriched xenon could reach, in a few years of operation, a sensitivity to the half-life of $0...
Article
Full-text available
A bstract High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of prima...
Preprint
Full-text available
The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $^{136}$Xe. It will operate 40t of natural xenon in a time projection chamber, thus containing about 3.6t of $^{136}$Xe. Here, we show that its projected half-life sensitivity is $2.4\times10^{27}\,$yr, us...
Preprint
Full-text available
Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $\sim$200 keV. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $^{136}$Xe at its $Q$-value, $Q_{\beta\beta}\...
Preprint
Full-text available
\Xe{136} is used as the target medium for many experiments searching for \bbnonu. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of \Xe{137} created by the capture of...
Article
Full-text available
We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keVee, we observe <1 event/(tonne day keVee), which is more than 1000 times lower...
Article
Full-text available
Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above ∼5 GeV/c^{2}, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic process...
Article
Full-text available
A bstract Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterráneo de Canfranc with xenon depleted in...
Article
Full-text available
A bstract In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event si...
Article
Full-text available
A bstract Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay ( ββ 0 ν ), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino...
Article
Full-text available
The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above 6 GeV/c2 scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one...
Preprint
Full-text available
Motivated by the possibility of guiding daughter ions from double beta decay events to single-ion sensors for barium tagging, the NEXT collaboration is developing a program of R&D to test radio frequency (RF) carpets for ion transport in high pressure xenon gas. This would require carpet functionality in regimes at higher pressures than have been p...
Preprint
Full-text available
Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $\sim$5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic pr...
Preprint
Full-text available
We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of $(22 \pm 3)$ tonne-days. Above $\sim\!0.4\,\mathrm{keV}_\mathrm{ee}$, we observe $<1 \, \text{event}/(\text{to...
Poster
Full-text available
This innovative neutron detection technique consists on the dispersion of a fine powder containing 10 B in a gaseous proportional counter, resulting in a neutron sensitive aerosol that does not require 3 He gas, which is extremely scarce and expensive. A proportional counter with B 4 C micro powder dispersed in a P 10 atmosphere was built and teste...
Article
The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 metric ton liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well...
Preprint
Full-text available
The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6\,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 tonnes of liquid xenon in the target. A one...
Preprint
High pressure xenon Time Projection Chambers based on secondary scintillation, electroluminescence, signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionization tr...

Network

Cited By