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Highlights Impact and implications
� Hepatopulmonary syndrome is associated with low levels of
sphingosine-1-phosphate (S1P).

� Fingolimod (a functional agonist of S1P) improves pulmo-
nary vascular tone, oxygenation, and survival in an experi-
mental model.

� Fingolimod improves hepatocyte proliferation and portal
pressure and decelerates hepatic fibrosis in a CBDL
mouse model.
https://doi.org/10.1016/j.jhep.2023.03.018

© 2023 European Association for the Study of the Liver. Published by Elsevier B.V
A low level of plasma sphingosine-1-phosphate (S1P) is
associated with severe pulmonary vascular shunting, and
hence, it can serve as a marker of disease severity in patients
with hepatopulmonary syndrome (HPS). Fingolimod, a func-
tional agonist of S1P, reduces hepatic inflammation, improves
vascular tone, and thus retards the progression of fibrosis in a
preclinical animal model of HPS. Fingolimod is being proposed
as a potential novel therapy for management of patients
with HPS.
. All rights reserved. J. Hepatol. 2023, 79, 167–180
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Background & Aims: Hepatopulmonary syndrome (HPS) is characterised by a defect in arterial oxygenation induced by pul-
monary vascular dilatation in patients with liver disease. Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator,
suppresses vasodilation by reducing nitric oxide (NO) production. We investigated the role of S1P in patients with HPS and the
role of fingolimod as a therapeutic option in an experimental model of HPS.
Methods: Patients with cirrhosis with HPS (n = 44) and without HPS (n = 89) and 25 healthy controls were studied. Plasma levels
of S1P, NO, and markers of systemic inflammation were studied. In a murine model of common bile duct ligation (CBDL), vari-
ations in pulmonary vasculature, arterial oxygenation, liver fibrosis, and inflammation were estimated before and after adminis-
tration of S1P and fingolimod.
Results: Log of plasma S1P levels was significantly lower in patients with HPS than in those without HPS (3.1 ± 1.4 vs. 4.6 ± 0.2;
p <0.001) and more so in severe intrapulmonary shunting than in mild and moderate intrapulmonary shunting (p <0.001). Plasma
tumour necrosis factor-a (76.5 [30.3–91.6] vs. 52.9 [25.2–82.8]; p = 0.02) and NO (152.9 ± 41.2 vs. 79.2 ± 29.2; p = 0.001) levels
were higher in patients with HPS than in those without HPS. An increase in Th17 (p <0.001) and T regulatory cells (p <0.001) was
observed; the latter inversely correlated with plasma S1P levels. In the CBDL HPS model, fingolimod restored pulmonary vascular
injury by increasing the arterial blood gas exchange and reducing systemic and pulmonary inflammation, resulting in improved
survival (p = 0.02). Compared with vehicle treatment, fingolimod reduced portal pressure (p <0.05) and hepatic fibrosis and
improved hepatocyte proliferation. It also induced apoptotic death in hepatic stellate cells and reduced collagen formation.
Conclusions: Plasma S1P levels are low in patients with HPS and even more so in severe cases. Fingolimod, by improving
pulmonary vascular tone and oxygenation, improves survival in a murine CBDL HPS model.

© 2023 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Introduction
Hepatopulmonary syndrome (HPS) is characterised by a defect
in arterial oxygenation induced by pulmonary vascular dilata-
tion in the setting of liver disease.1 In clinical practice, persis-
tent dyspnoea and the presence of hypoxaemia indicate HPS.2

In a recent study of the 42,749 individuals, HPS was detected in
194 (0.45%) patients, of which 182 had cirrhosis. Among them,
143 (78.5%) patients underwent contrast-enhanced trans-
thoracic echocardiography, and 98 (54%) had delayed shunt-
ing. Forty-one (22.5%) of these patients with cirrhosis had
confirmed HPS.3 Most patients have underlying intrapulmonary
vasodilatation, which worsens over time with progressive
hypoxaemia.4 The presence of HPS increases the frequency
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and severity of complications related to portal hypertension
and thus mortality. Moreover, successful transplantation is
often limited by progressive hypoxaemia.5

The hallmark of HPS is microvascular dilatation in the pul-
monary arterial circulation, and such dilatations, especially in
alveolar regions, contribute to hypoxaemia.6 The vasodilation is
assumed to result from excessive vascular production of va-
sodilators, particularly nitric oxide (NO).7 The exact mechanism
of increased endogenous NO production and its relationship to
the presence of portal hypertension, hyperdynamic circulation,
and degree of liver injury remain uncertain. Overproduction of
tumour necrosis factor alpha (TNF-a), as a result of endotoxin
stimulation of Kupffer cells is one of the mechanisms leading to
xygen therapy; Hypoxia; Pulmonary vascular disorders.
023; available online 28 March 2023
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Fingolimod improves Hepatopulmonary Syndrome
HPS development. Endothelin-1 (ET-1) and TNF-a interaction,
occurring in the lung vasculature, has been shown in an
experimental model to contribute to the development of
experimental HPS.8 Pulmonary microvascular endothelial
changes appear to be induced by increased endothelial NO
synthase (eNOS)-derived NO production as well as by
enhanced expression of inducible NO synthase (iNOS) activity
in intravascular macrophages.9

At present, there are no effective medical therapies for HPS.
In a small subset of patients, pentoxifylline has been found to
be effective,10 possibly owing to its anti-TNF actions.11 Larger
studies are required to confirm the therapeutic potential of
pentoxifylline. In another study from our group, we found that
the combination of pentoxifylline and rifaximin showed addi-
tional benefits over pentoxifylline alone.12 However, larger
studies are needed to provide an effective therapy for HPS.
Supplementary oxygen therapy does improve oxygenation in
patients with HPS. However, the pulmonary capillaries are
grossly dilated, and oxygen molecules from the adjacent alveoli
are unable to permeate sufficiently to the centre of the dilated
vessel. This diffusion defect is able to be only partially over-
come by the use of supplementary oxygen.13 In addition, re-
sults from uncontrolled trials and anecdotal evidence indicate
that treatment of HPS with almitrine, antibiotics, beta-blockers,
cyclooxygenase inhibitors, systemic glucocorticoids and
cyclophosphamide, inhaled NO, NO inhibitors, and somato-
statin is not effective.14,15 The transjugular intrahepatic porto-
systemic shunt creation in patients with HPS showed only a
transient relief from clinical symptoms. However, this was not
maintained in half of the patients after 3 months, indicating a
limited role of transjugular intrahepatic portosystemic shunt as
a bridge to transplantation in patients with HPS.16 Liver trans-
plantation remains the only effective treatment for patients with
HPS till date.

Sphingosine-1-phosphate (S1P) is a naturally occurring
bioactive lipid with various biological functions.17 During nor-
motension conditions, through its receptor, Sphingosine-1-
phosphate receptor 1 (S1PR1), it mediates the flow, decreases
the vascular tone, and induces the vasoconstriction. During
hypertensive conditions, it works through S1PR3 and increases
the vascular tone. Its functional agonist, fingolimod, is known to
reduce NO levels and vasodilation.18

Fingolimod is also an immunomodulator that sequesters
lymphocytes in lymph nodes, preventing them from contrib-
uting to an autoimmune reaction.19 It is phosphorylated intra-
cellularly to fingolimod phosphate, which binds to the S1P
receptor, and reduces the recirculation of lymphocytes from
lymph nodes to blood and peripheral tissue.20 Presently, it is
used as a prophylactic drug in acute rejection after solid organ
transplantation and for the treatment of multiple sclerosis.21

Antifibrotic effects of fingolimod have been reported in renal,
cardiac, and muscular tissues.22

We hypothesise that a low level of S1P is associated with
the development of HPS in cirrhosis. We further evaluated
whether supplementation with fingolimod, an S1P agonist, can
improve hypoxaemia and vasoconstriction. We undertook the
present study to investigate the role of S1P in HPS and its
association with systemic inflammation in patients with
cirrhosis. As S1P has a short half-life, fingolimod might repre-
sent an attractive therapy for HPS.
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Patients and methods

Patients

Patients with cirrhosis of the liver seen at the Institute of Liver
and Biliary Sciences (ILBS), New Delhi, India, were screened for
the presence of HPS and were included in the study. The study
was approved by the institutional ethics committee (F.25/5/
107/ILBS/AC/2016/11252/299). Patients aged between 18 and
64 yr with HPS were enrolled after taking written informed
consent. HPS was diagnosed by alveolar–arterial oxygen
gradient >15 mmHg (or >20 mmHg in patients >64 yr of age)
and intrapulmonary vasodilatation as confirmed by saline
contrast echocardiography. Patients were further classified
based on arterial blood gas analysis and were graded as mild
(partial pressure of oxygen [PaO2], 80–90 mmHg), moderate
(PaO2, 60 to <80 mmHg), severe (PaO2, 50 to <60 mmHg), and
very severe (PaO2, <50 mmHg).15 Patients with significant
intrinsic cardiopulmonary disease, advanced hepatic enceph-
alopathy, inadequate echocardiogram, antibiotic use within the
past 1 month, any current use of exogenous nitrates, active
infection, or presence of hepatocellular carcinoma or any other
malignancy were excluded from the study. The laboratory staff
performing the experiments were blinded to the clinical details.
Patients were managed according to the standard of care. The
patient groups were compared with a group of age- and sex-
matched healthy controls (n = 25).

Peripheral blood

Whole blood was subjected to red blood cell lysis followed by
immune phenotyping, to analyse the innate and adaptive im-
mune cells. RNA was isolated, and then real-time PCR was
used for gene expression analysis of candidate genes. Plasma
was separated and stored at -80 �C until further use for cyto-
kine ELISA for S1P, NO, IL-1b, and TNF-a. This is further
detailed in the Supplementary methods.

Animal model of common bile duct ligation

The animal study was approved by the Institutional Animal
Ethics Committee of the ILBS (IAEC/ILBS/17/01). C57BL/6
male mice (age 10–12 wk) were procured from the Center of
Comparative Medicine, ILBS. All the animals received humane
care according to the criteria outlined in the Guide for the Care
and Use of Laboratory Animals Eighth Edition (2011) published
by the National Research Council of the National Academies
and the Committee for the Purpose of Control and Supervision
of Experiments on Animals. Details of surgical procedure and
scheme of experimentation is found in the Supplemen-
tary methods.

Statistical analysis

The baseline clinical parameters of the patients and animals are
presented as mean ± SD or median (IQR), as appropriate. The
normally distributed data were analysed using Student’s t test
and one-way ANOVA followed by post hoc comparisons by the
Bonferroni method. The skewed data were analysed using the
Kruskal–Wallis test followed by multiple comparisons by
adjusting the probability. Spearman’s correlation was calcu-
lated for correlation analysis. The log transformation for S1P,
2023. vol. 79 j 167–180
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TNF-a, and IL-1b was also applied. The Kaplan–Meier analysis
was performed for survival analysis. For finding the threshold
value, receiver operating characteristic (ROC) curve was used.
Statistical analyses were performed using SPSS for Windows
version 22 (IBM SPSS, Armonk, NY, USA). The representative
graphs were prepared using GraphPad Prism version 8.0
(GraphPad Software, Insight partners, CA, USA).

Results

Patient characteristics

We recruited 297 patients with cirrhosis. These patients were
subjected to arterial blood gas analysis. Patients with PaO2

<90 mmHg (n = 57, 19.6%) and with intrapulmonary shunting
on saline contrast echocardiography (n = 44, 14.8%) were
included as HPS in the study, and the rest as no HPS. Patients
with cirrhosis (n = 89), with PaO2 >90 mmHg and no evidence of
HPS and matched for age, sex, and model of end-stage liver
disease (MELD) score with the patients with HPS, were
included as disease controls. The clinical parameters between
the patients with HPS (group B) and those without HPS (group
A) were comparable (Table 1). The heart rate and mean arterial
pressure, the Child–Turcotte–Pugh and MELD scores were also
comparable. Of the patients, 80% had received diuretics and
60% were on beta-blockers. The aetiology of cirrhosis was
dominantly alcohol in both the groups, followed by non-
alcoholic fatty liver disease and viral hepatitis (Table 1).

Low levels of S1P predict severe shunting in patients
with HPS

At baseline, plasma S1P levels of study patients and healthy
controls were measured. We observed significantly reduced
S1P concentrations in patients with cirrhosis compared with
healthy controls (p <0.001). S1P levels were lower in patients
with HPS than in those without HPS (p <0.001) (Fig. 1B).
Table 1. Baseline characteristics of cirrhosis patients with cirrhosis with and w
the nature of variables (normally or non-normally distributed).

Variable Cirrhosis without HPS (gr

Age (yr)
Sex (male), n (%)
Haemoglobin (g/dl)
RBC counts (109/L)
Platelets (109/L)
Total leucocyte count (103 cells/ml)
Serum sodium (mEq/L)
Serum potassium (mEq/L)
Aspartate aminotransferase (IU/ml)
Alanine aminotransferase (IU/ml)
Presented with ascites, n (%)
Grade I
Grade II

Presented with hepatic encephalopathy, n (%)
Presented with bleed, n (%)
Oesophageal varices, n (%)
Gastric varices, n (%)
Hepatorenal syndrome, n (%)
Aetiology: alcohol, n (%)
Viral hepatitis, n (%)
Non-alcoholic steatohepatitis, n (%)
Others, n (%)
MELD score

Values of p were given for the comparison between patients with cirrhosis with and withou
model for end-stage liver disease; RBC, red blood cell.

Journal of Hepatology, July
We also compared the S1P levels in patients with mild,
moderate, and severe HPS. We found significantly lower levels
of S1P in patients with severe shunting than in those with mild
shunting (p <0.001) (Fig. 1C). The PaO2 levels were lower in
patients with HPS than in those without HPS (p = 0.001)
(Fig. 1A). The S1P levels directly correlated with PaO2 levels (r =
0.807, p <0.001), as shown in Table S1. A significant direct
correlation of S1P levels with haemoglobin (r = 0.366, p <0.01)
and platelets (r = 0.243, p = 0.005) and an inverse correlation
with MELD score (r = -0.303, p = 0.003) were seen (Table S1).

The logistic regression analysis showed that the per-unit
increase in S1P decreased the risk of HPS by 5% (odds ratio
0.95, 95% CI 0.936–0.967; p = 0.001). The ROC analysis
showed an AUC of 0.82 (specificity, 71.4%; sensitivity, 71.6%;
accuracy, 71.5%; p = 0.001), a positive predictive value of
54.5%, and a negative predictive value of 84.0% (Fig. 1D).

The ROC analysis of mild vs. severe HPS using S1P showed
an AUC of 0.78 (specificity, 78.6%; sensitivity, 79.1%; accu-
racy, 79.3%; p = 0.07), a positive predictive value of 80.1%,
and a negative predictive value of 78.6% (Fig. 1E). The overall
mortality was significantly higher in patients with HPS than in
those without HPS (p <0.001) (Fig. 1F). Based on the area under
the ROC of S1P, a cut-off value of 99 ng/ml or more showed
80% sensitivity and 73% specificity for 30-day survival
(Fig. 1G). Decreased S1P correlated with higher mortality in
patients with cirrhosis.
Vasodilators in systemic circulation in patients with HPS

In HPS, the vasodilation is assumed to result from excessive
vascular production of vasodilators, particularly NO and pro-
inflammatory cytokines such as TNF-a and ET-1. These are
implicated in induction of genes via iNOS and eNOS, which in
turn are responsible for intrapulmonary vasodilation (Fig. 2A).
The plasma NO levels were significantly higher in patients with
cirrhosis than in controls, and in patients with HPS than in
ithout HPS. Data are presented as mean ± SD or median (IQR) depending on

oup A; n = 89) Cirrhosis with HPS (group B; n = 44) p value

49 ± 10.9 50 ± 9 0.74
80 (90.9) 37 (88) 0.64

10.6 ± 2.1 9.62 ± 1.9 0.76
3.2(1.9–5.3) 2.81 (1.74–4.0) 0.84
90 (50–118) 77 (52–101.7) 0.13
5.0 (3.4–6.4) 5.8 (4.2–8.5) 0.35
134.5 ± 5.6 133.02 ± 5.5 0.17

4.1 ± 0.9 3.88 ± 0.4 0.33
60 (39.5–76.5) 58 (39–82) 0.24
37 (23.1–49.5) 27.2 (18–40) 0.42

60 (84.5)
11 (15.4)

26 (72.2)
10 (27.7)

0.50

4 (4.5) 2 (4.7) 0.12
1(1.1) 3 (7.1) 0.81

73 (82.2) 40 (90.9) 0.92
4 (4.4) 8 (18.1) 0.13
2 (2.3) 4 (9.5) 0.35

54 (61.4) 30 (71) 0.75
5 (5.6) 3 (7) 0.82
22 (25) 8 (21) 0.08

7 (8) 1 (2.3) 0.38
16.2 ± 3.8 20.2 ± 4.3 0.01

t HPS, and p <0.05 is considered significant. HPS, hepatopulmonary syndrome; MELD,
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Fig. 1. Low levels of S1P associated with HPS. (A) The scatterplot depicts the PaO2 levels (mmHg) in patients with cirrhosis with and without HPS (Student’s t test;
p = 0.001). (B) The scatterplot depicts the plasma S1P levels (ng/ml) in healthy controls and patients with cirrhosis without HPS and with HPS. (C) S1P levels in patients
with HPS as subgrouped into mild, moderate, and severe shunting (mild vs. severe; p <0.01). (D) For finding the threshold value, the ROC curve was used for S1P
between patients with cirrhosis with and without HPS. (E) The ROC curve within the patients with HPS of S1P, compared with those with mild–moderate HPS of S1P.
(F) Kaplan–Meier curve analysis elucidated the overall mortality in patients with HPS compared with those without HPS (p = 0.00). (G) Based on the AUROC of S1P, a
cut-off value of 99 ng/ml or more showed 80% sensitivity and 73% specificity for survival and an increase in 30-day mortality in patients with S1P <99 ng/ml. AUROC,
area under the ROC curve; HPS, hepatopulmonary syndrome; NPV, negative predictive value; PaO2, partial pressure of oxygen; PPV, positive predictive value; ROC,
receiver operating characteristic; S1P, sphingosine-1-phosphate.
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power to delta CT values). Significant upregulation was found between patients with HPS and those without HPS in ET-1, whereas no significance was achieved in mRNA
gene expression in whole blood for TNF-a, eNOS, and iNOS levels. (E) Among all the receptors, that is, S1PR1 to S1PR4, only S1PR3 was significantly downregulated in
patients with HPS compared with those without HPS (one-way ANOVA). eNOS, endothelial nitric oxide synthase; ET-1, endothelin-1; HPS, hepatopulmonary syndrome;
iNOS, inducible nitric oxide synthase; NO, nitric oxide; S1PR1 to S1PR4, S1P receptor 1 to S1P receptor 4; TNF-a, tumour necrosis factor-alpha.
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Fig. 3. Elevated population of Treg and Th17 cells in patients with HPS. (A) The flow cytometry was used to determine the frequency of various immune cells. The
dot plots show the gating strategy used to enumerate different immune cells in peripheral blood. (B) The table shows percentage frequency of various immune cells in
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factors for Treg cells (FoxP3) in patients with and without HPS. For Th17 transcription factor-associated (RoRg) mRNA levels were lower in patients with HPS than in
those without HPS (one-way ANOVA). HPS, hepatopulmonary syndrome; NK, natural killer; Treg, T regulatory. (This figure appears in color on the web.)
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those without HPS (p = 0.003) (Fig. 2B). Serum TNF-a levels
were higher in patients with cirrhosis with and without HPS than
in controls (p <0.001) (Fig. 2C). We found an inverse correlation
of S1P with TNF-a (r = -0.356, p <0.001) and IL-1b (r = -0.371, p
<0.001) (Table S1). In the whole blood, an upregulation in the
mRNA levels of ET-1 gene was seen in patients with HPS (p =
0.014) (Fig. 2D).

S1P also regulates the NO generation with internalisation of
its different receptors. We found that among various receptors,
namely, S1PR1 to S1PR4, only S1PR3 mRNA was down-
regulated in patients with HPS (p <0.001) (Fig. 2E).

Increased population of Treg and Th17 cells in patients
with HPS

S1P is known for stimulating lymphocyte trafficking. To un-
derstand the correlation between low levels of S1P with
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inflammation and immune cells, we performed the multicolour
flow cytometric immune phenotyping in the whole blood of
patients and controls. The gating strategy used for whole blood
analysis of immune cells is shown in Fig. 3A. We found a higher
number of T regulatory (Treg) cells and IL-17-producing Th17
cells in patients with HPS (p <0.001) (Fig. 3B). An inverse cor-
relation between S1P levels and Treg cell populations was
noted in patients with cirrhosis (r >0.3, p = 0.00).

Reversal of hypoxaemia and intrapulmonary shunting in the
CBDL HPS mouse model

The therapeutic efficacy of fingolimod was evaluated in a mu-
rine model of common bile duct ligation (CBDL)-induced HPS.
The scheme of CBDL mouse model development and admin-
istration of i.p. S1P (1 lM/kg/body weight) and fingolimod
(1 mg/kg/body weight) is shown in Fig. 4A. The doses were
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determined after initial experiments, where three different
doses for S1P (0.2, 0.5, and 1 lM/kg) and fingolimod (200 ng,
400 ng, and 1 mg/kg) were investigated. The highest dose of
S1P and fingolimod gave high mortality, whereas the lowest
doses for both did not show efficacy; thus, the medium dose
was accepted (Fig. 4A).

We studied the acute effects of fingolimod administration
after 24 h but did not find any effect on hypoxaemia and portal
pressure (Fig. S1).

At 2 wk post surgery, the CBDL mice suffered from signifi-
cant hypoxaemia compared with sham-operated animals (p
<0.001), and the PaO2 levels reduced further at Wk 4 in vehicle
control mice compared with those in the sham-operated ani-
mals (p = 0.001). In the fingolimod-treated mice, the PaO2 levels
did not decline any further and had improved oxygenation
compared with those in the vehicle-treated CBDL animals (p =
0.042) (Fig. 4B).

Intrapulmonary shunting was evaluated using Evans blue
dye by albumin accumulation in the lungs. The transendothelial
albumin influx was significantly higher in vehicle control mice
than in the sham-operated animals (p <0.001), at both Wk 2 and
4 post surgery (Fig. 4C). In both the fingolimod- and S1P-
treated groups, the Evans blue dye accumulation decreased
compared with that in the vehicle-treated animals (p = 0.041
and p = 0.038, respectively). In addition, the lung wet/dry ratio
was higher after 2 wk in CBDL animals than in sham-operated
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animals (p <0.001). The lung oedema improved in fingolimod-
and S1P-treated mice compared with that in CBDL vehicle
mice at 4 wk (p <0.05) (Fig. 4D). CBDL animals showed a non-
significant increase in liver weight until wk 4 and then a
decrease post surgery compared with that of sham-operated
mice (Fig. 4E).

Fingolimod improves survival in the CBDL mouse model

Four weeks after CBDL, the vehicle control mice, compared
with the sham-operated animals, had higher mortality (p
<0.001) (Fig. 5). Fingolimod-treated mice had reduced 28-day
mortality compared with that of the vehicle-treated group (p =
0.023) (Fig. 5). A reduction in mortality was also found in mice
with S1P administration compared with the vehicle control
animals, although the difference was not significant.

Pulmonary inflammation in bronchoalveolar lavage

In the lung tissues, we observed necrosis and disruption of
normal alveoli in CBDL vehicle, which were comparable after
fingolimod and S1P treatment (Fig. 6A). We investigated the
bronchoalveolar lavage (BAL) fluid in all animal treatment
groups. We observed macrophage infiltration and activation of
macrophages in CBDL mice, but macrophage infiltration was
significantly reduced in fingolimod-treated mice (84 ± 26 vs. 12
± 5 per area; p = 0.002). Furthermore, in S1P-treated mice, in
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comparison with vehicle-treated mice, the infiltration was
reduced (84 ± 26 vs. 24 ± 18 per area; p = 0.032) (Fig. 6B).

Fingolimod- and S1P-treated mice had significantly reduced
BAL-NO levels compared with those of the vehicle control
group (p <0.001) (Fig. 6C). To understand the compartmental-
isation of S1P, we estimated S1P in the plasma of the hepatic
vein, the heart, and pulmonary venous blood. The S1P levels in
different organs were comparable (Table S2).

Upon observing the gene regulation in the lung tissue, we
found a significant reduction of >10-fold in eNOS, >5-fold in
iNOS, and>0.5-fold inET-1 levels in fingolimod- andS1P-treated
mice (fold change to sham-operated mice; p <0.001)
(Fig. 6D).

Effect of S1P and fingolimod on hepatic fibrosis

In the CBDL experimental mouse model, liver histology showed
bile duct proliferation and inflammation, whereas no morpho-
logical changes in sham-operated animals were observed. In
the CBDL mouse model, liver fibrosis was observed by Wk 2,
which progressively increased by Wk 4 (Fig. 7A and B). After
administration of fingolimod, we found no further increase in
inflammation, cholestasis, and liver fibrosis scores compared
with scores of 2-wk post-surgery CBDL mice (Fig. 7A). A sig-
nificant difference was seen in Sirius Red staining and inflam-
mation after fingolimod treatment, compared with those in
CBDL vehicle controls and S1P-treated mice.

Serum bilirubin levels increased by 4 wk post surgery in the
CBDL vehicle group compared with those in the sham-
operated group (p = 0.001), but there was no difference in the
fingolimod-treated group and the 2-wk post-surgery vehicle
CBDL group (Fig. 7C). The total liver pro-collagen-1 alpha gene
expression was comparable between groups (Fig. 7D).

We also measured Mdr2 (Abcb4) gene expression and found
that fingolimod-treated animals had improved expression of
mdr2 compared with that of controls or S1P-treated CBDL
animals, indicating the beneficial effects of fingolimod on
improving cholestasis (Fig. S2).

Next, the hepatocyte proliferation was quantitatively
measured using proliferating cell nuclear antigen staining. He-
patocytes were found to proliferate more after fingolimod
treatment (8 ± 5 per area) than after vehicle treatment (0 per
area; p <0.001) or S1P treatment (2 ± 1 per area; p
<0.001) (Fig. 7E).

In the 2-wk post-CBDL mice, the portal pressure signifi-
cantly increased (6.7 ± 0.4 mmHg) compared with that in the
sham-operated animals (5.0 ± 0.2 mmHg; p <0.05). We found
25% reduction in portal pressure (7.8 ± 0.6 mmHg) in
serum bilirubin levels are represented as bar graphs. A significant increase is seen in
elevation in CBDL fingolimod-treated mice compared with CBDL vehicle-treated mic
mRNA expression of pro-fibrogenic gene pro-col-1a from liver tissues of different C
PCNA staining. Hepatocytes were found to proliferate more after fingolimod treat
assessment measured the portal pressure in the experimental CBDL mouse model.
portal pressure significantly increased in comparison with that in the sham-operated
with that in vehicle treated mice. (G) The primary hepatic stellate cells isolated from
broblasts. On treatment with fingolimod for 24 h in vitro, the mRNA expression was
pro-col-1a, and PDGFR. The bar shows the fold change normalised to vehicle-treate
the arrows shows the positive staining. (H) The immunofluorescence was done for T
confocal microscopy was performed to capture the images (TUNEL, 488 nm; a-SMA
col-1a, collagen-1 alpha; HSC, hepatic stellate cell; PCNA, proliferating cell nuclea
phosphate; TGF-b, transforming growth factor beta; TGFBR, transforming growth
end labelling. (This figure appears in color on the web.)
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fingolimod-treated mice at 4 wk compared with vehicle-treated
mice (10.4 ± 0.5 mmHg; p <0.05). The reduction in portal
pressure was partially accompanied by reduction in fibrosis, as
evidenced by reduced collagen proportionate area in
fingolimod-treated animals (Fig. 7F).

Fingolimod treatment caused a significant decrease in
ductular proliferation, accompanied by reduced mononuclear
cell recruitment and low mRNA levels of inflammatory cyto-
kines. This suggests that reduction in hepatic fibrosis may lead
to improved pulmonary vasodilation. To investigate it further,
primary hepatic stellate cells were isolated from wild-type mice
and cultured. On treatment with fingolimod in vitro, we found a
decrease in expression of pro-fibrogenic genes such as
transforming growth factor beta, alpha-smooth muscle actin,
and pro-collagen-1 alpha (Fig. 7G).

To understand the mechanism of action of fingolimod, we
performed the TUNEL (terminal deoxynucleotidyl transferase
dUTP nick end labelling) assay on hepatic stellate cells. A
significantly higher expression of TUNEL and alpha-smooth
muscle actin colocalisation in liver tissues of CBDL mice
treated with fingolimod was observed than in vehicle control
and S1P-treated animals (p = 0.001). Immunohistochemistry
showed lower levels of pro-collagen-1 alpha but comparable
levels of TIMP1 and MMP9 expression in fingolimod-treated
mice than in vehicle controls (p = 0.03) (Fig. 7H). This in-
dicates that fingolimod induces hepatic stellate cell deactiva-
tion or death, resulting in reduced collagen formation
and fibrosis.

As proof of concept, proteomic analysis was done on whole
liver tissues of CBDL mice and analysed using the PLS-DA plot.
The partial least squares-discriminant analysis (PLS-DA) plot
segregated fingolimod-treated animals from sham-operated
and vehicle-treated ones with distinct expression of various
proteins (Fig. S3A and B). The fingolimod-treated animals had
lower collagen-1 alpha and collagen-1 alpha 2 sub-forms. An
upregulation in leutrienes, kyuneurine, and asialoglycoprotein
receptor II was seen, suggesting that after fingolimod treat-
ment, metabolic changes occur, which might aid in attenuating
fibrosis progression (Fig. S3C). This was also supported by the
significantly lower expression of macrophage inflammatory
protein-1 alpha and monocyte chemotactic protein-1 with
lower infiltration of macrophages in the liver (Fig. S3D).

Discussion
The results of this novel study show that patients with cirrhosis
with HPS have significantly lower levels of S1P than those
without HPS. High plasma TNF-a, NO levels, and Th17 and
the CBDL vehicle group compared with the sham-operated mice, and no further
e (p = 0.05) was observed. (D) The bar diagram shows a fold change difference in
BDL groups. (E) The hepatocyte proliferation was quantitatively measured using
ment than without vehicle treatment or after S1P treatment. (F) Haemodynamic
The bar diagram shows the portal pressure (mmHg). In 2-wk post-CBDL mice, the
animals. The portal pressure decreased in fingolimod-treated mice in comparison
wild-type mice and cultured until passage 3 before being converted to myofi-

estimated using real-time PCR for pro-fibrogenic genes such as TGF-b, a-SMA,
d controls. One-way ANOVA was used. The scale bars for H&E staining is 200 lm;
UNEL and for a-SMA (marker for HSCs) to estimate the apoptosis of HSCs. The
, 594 nm). a-SMA, alpha smooth muscle actin; CBDL, common bile duct ligation;
r antigen; PDGFR, platelet-derived growth factor receptor; S1P, sphingosine-1-
factor beta receptor; TUNEL, terminal deoxynucleotidyl transferase dUTP nick
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Treg cell populations in systemic circulation indicate a hyper-
inflammatory state in patients with HPS. In the murine CBDL
model of HPS, administration of fingolimod, a structural and
functional analogue of S1P, ameliorated the vascular injury and
restored the vascular functions by increasing the arterial blood
gas exchange. Fingliomod reduced systemic inflammation and
portal pressures, and attenuated hepatic fibrogenesis, resulting
in improved animal survival.

Patients with cirrhosis have multiple concurrent patho-
physiological events, including hepatocellular and endothelial
injury, release of toxic metabolites, systemic inflammation,
immunologic disbalance, and progressive deterioration in liver
functions.23 Bacterial infections in patients with cirrhosis can
trigger acute deterioration and are linked with low S1P levels
and high mortality.24 Our data supplement these observations
as we also found lower S1P levels in patients with HPS than
without HPS.

In the circulatory system, red blood cells constitute 95% of
total blood cells and are the main source of S1P, followed by
endothelial cells.25 Although we found lower haemoglobin
concentration in patients with HPS despite hypoxaemia, the
red blood cell counts were comparable with those in patients
without HPS. The liver plays a crucial role in maintaining the
S1P gradient in the blood as hepatocytes express and secrete
majority of S1P carriers in the blood, namely, apolipoprotein M
(65%) and albumin (30%) respectively. Apolipoprotein M binds
S1P with high affinity in a hydrophobic binding pocket.26 In
severe systemic inflammation, as is found in HPS, maintenance
of vascular barrier function is crucial to prevent complications,
such as haemorrhage, tissue ischaemia, and oedema. This
observation has a major bearing on the natural history of pa-
tients with HPS. Furthermore, S1P plays a major role in main-
taining endothelial functions.27 Our observations of a marked
reduction in S1P levels in patients with cirrhosis with HPS
reflect defects in vascular function including tone. Low S1P
levels in patients with cirrhosis could partly be attributable to
deranged functions of a recently identified S1P exporter,
Mfsd2b, which is highly expressed in erythrocytes and plate-
lets. It exports and contributes approximately up to 50% of
plasma S1P.28 It would be interesting to study the status of this
exporter further.

S1P has also been identified as a mediator of lymphocyte
egress from lymphoid tissues to blood and is modulated by
S1P/S1PR1 interactions.29 We observed low population of Treg
cells and high Th17 T-lymphocyte subsets, which were directly
proportional to low levels of S1P in plasma. These observa-
tions, taken together, link a protective role of S1P in the pre-
vention of progression of HPS and allow the introduction of
potential therapies for these patients. It would seem logical to
raise plasma S1P levels therapeutically. However, the use of
S1P poses challenges as endogenous S1P has a very short
half-life.30 It should also be taken into account that S1P has
pleiotropic effects that mainly depend on the S1P receptor
expression pattern on targeted cell types.31 Therefore, acti-
vating or deactivating specific S1P receptors may be a bet-
ter approach.

A structural analogue of S1P, fingolimod, is a potent func-
tional antagonist of the S1P subtype 1 receptor and has been
approved to treat patients with relapsing multiple sclerosis
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since 2010.21 Treatment with this novel immunomodulator
seems to reduce endothelial permeability in systemic inflam-
mation. It has also been shown to modulate S1P-related
lymphocyte egress into the blood.27 These preclinical obser-
vations encourage investigative use of this agent in endothelial
barrier enhancement and immunomodulation. In the present
study, we observed that fingolimod was a potent agent to
reduce systemic and pulmonary inflammation, enhance hepa-
tocyte proliferation, and reduce portal pressure with improve-
ment in arterial blood gases. The S1P administration itself also
showed similar trends, but owing to the short half-life, the re-
sults were inferior to those of administration of fingolimod.
Specific hepatoprotective effects of fingolimod have been
described earlier in rodent ischaemia reperfusion models in
both normal and cirrhosis animals.32 Fingolimod can act on
multiple target.33 It reduces macrophage accumulation in liver
by reducing monocyte chemoattractants, namely, monocyte
chemotactic protein 1 and macrophage inflammatory protein-1
alpha.33 It also downregulates matrix metalloprotease 2 and 9
in the glioblastoma cell line.34 These biological properties make
fingolimod an attractive therapeutic option.

However, drug-induced liver injury has been reported in
patients with multiple sclerosis treated with Fingolimod.35

These adverse events include increase in liver enzymes up to
three times the upper limit of normal in 8% of patients.36 There
might be additional concerns in patients with cirrhosis owing to
possible reduction of NO production in the intrahepatic circu-
lation, which can affect portal pressure gradients which needs
further investigations.

In the experimental CBDL model, we demonstrated that
fingolimod treatment significantly decreased ductular prolifer-
ation and mononuclear cell recruitment and lowered mRNA
levels of inflammatory cytokines. The increase in portal pres-
sure from Wk 2 to 4 was probably a result of persistently raised
intrahepatic resistance and progressive fibrosis. It is note-
worthy that chronic administration of fingolimod led to a sig-
nificant amelioration in portal pressure. Furthermore, our data
clearly demonstrate that liver fibrosis progression was attenu-
ated by fingolimod via apoptosis of hepatic stellate cells with
reduced production of collagen. Hence, we propose that fin-
golimod is a potent drug, which has multiple targets through
which it reduces inflammation, vascular injury, fibrotic activity,
and portal pressure. The improvement in liver fibrosis also
helped increase arterial blood gas exchange and reduced
systemic and pulmonary inflammation, and mortality.

HPS is not a very common complication of cirrhosis and is
often underdiagnosed. Our study was carried out in 44 well-
documented patients and provided useful clinical cut-offs. It
would be worthwhile to measure S1P levels in the pulmonary
tissue or in BAL in patients with cirrhosis. We believe that our
observations stand in line with current knowledge of the role of
S1P in severe inflammatory conditions and hepatic diseases,
and we demonstrate it to be a key mediator in the pathogenesis
and progression of HPS in patients with cirrhosis. Measure-
ment of S1P levels can help stratify patients requiring priority
treatment including liver transplantation.

Our data justify further elucidation of the diagnostic and
therapeutic role of S1P and its functional analogue, fingolimod,
in patients with HPS.
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