
Jinmeng Jia- Tsinghua University
Jinmeng Jia
- Tsinghua University
About
16
Publications
4,712
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
211
Citations
Introduction
Current institution
Publications
Publications (16)
Cells are regulated at multiple levels, from regulations of individual genes to interactions across multiple genes. Some recent neural network models can connect molecular changes to cellular phenotypes, but their design lacks modeling of regulatory mechanisms, limiting the decoding of regulations behind key cellular events, such as cell state tran...
The heart maintains its essential role in human life by the highly orchestrated functioning of specialized cell types. Recent advances in single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq) provides the possibility of profiling the molecular and cellular characteristics of heart cells. We collected scRNA-seq and snRNA-seq data of...
Background:
Berardinelli-Seip congenital lipodystrophy (BSCL) is a heterogeneous autosomal recessive disorder characterized by an almost total lack of adipose tissue in the body. Mutations in the AGPAT2, BSCL2, CAV1 and PTRF genes define I-IV subtype of BSLC respectively and clinical data indicate that new causative genes remain to be discovered....
[This corrects the article DOI: 10.3389/fphar.2019.01200.].
Osteogenesis imperfecta (OI), mainly caused by structural abnormalities of type I collagen, is a hereditary rare disease characterized by increased bone fragility and reduced bone mass. Clinical manifestations of OI mostly include multiple repeated bone fractures, thin skin, blue sclera, hearing loss, cardiovascular and pulmonary system abnormaliti...
The rare autosomal dominant disorder acute intermittent porphyria (AIP) is caused by the deficient activity of hydroxymethylbilane synthase (HMBS). The symptoms of AIP are acute neurovisceral attacks which are induced by the dysfunction of heme biosynthesis. To better interpret the underlying mechanism of clinical phenotypes, we collected 117 HMBS...
DNA sequencing has allowed for the discovery of the genetic cause for a considerable number of diseases, paving the way for new disease diagnostics. However, due to the lack of clinical samples and records, the molecular cause for rare diseases is always hard to identify, significantly limiting the number of rare Mendelian diseases diagnosed throug...
Background
Comparing and classifying functions of gene products are important in today’s biomedical research. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most widely used indicators for protein interaction. Among the various approaches proposed, those based on the vector space model are rel...
There is a significant number of children around the world suffering from the consequence of the misdiagnosis and ineffective treatment for various diseases. To facilitate the precision medicine in pediatrics, a database namely the Pediatric Disease Annotations & Medicines (PedAM) has been built to standardize and classify pediatric diseases. The P...
Rare diseases affect over a hundred million people worldwide, most of these patients are not accurately diagnosed and effectively treated. The limited knowledge of rare diseases forms the biggest obstacle for improving their treatment. Detailed clinical phenotyping is considered as a keystone of deciphering genes and realizing the precision medicin...
Characterized by their low prevalence, rare diseases are often chronically debilitating or life threatening. Despite their low prevalence, the aggregate number of individuals suffering from a rare disease is estimated to be nearly 400 million worldwide. Over the past decades, efforts from researchers, clinicians, and pharmaceutical industries have...