Disrupted Brain Connectivity Networks in Drug-Naive, First-Episode Major Depressive Disorder

Junran Zhang, Jinhui Wang, Qizhu Wu, Weihong Kuang, Xiaqiu Huang, Yong He, and Qiyong Gong

Background: Neuroimaging studies have shown that major depressive disorder (MDD) is accompanied by structural and functional abnormalities in specific brain regions and connections; yet, little is known about alterations of the topological organization of whole-brain networks in MDD patients.

Methods: Thirty drug-naive, first-episode MDD patients and 63 healthy control subjects underwent a resting-state functional magnetic resonance imaging scan. The whole-brain functional networks were constructed by thresholding partial correlation matrices of 90 brain regions, and their topological properties (e.g., small-world, efficiency, and nodal centrality) were analyzed using graph theory-based approaches. Nonparametric permutation tests were further used for group comparisons of topological metrics.

Results: Both the MDD and control groups showed small-world architecture in brain functional networks, suggesting a balance between functional segregation and integration. However, compared with control subjects, the MDD patients showed altered quantitative values in the global properties, characterized by lower path length and higher global efficiency, implying a shift toward randomization in their brain networks. The MDD patients exhibited increased nodal centralities, predominately in the caudate nucleus and default-mode regions, including the hippocampus, inferior parietal, medial frontal, and parietal regions, and reduced nodal centralities in the occipital, frontal (orbital part), and temporal regions. The altered nodal centralities in the left hippocampus and the left caudate nucleus were correlated with disease duration and severity.

Conclusions: These results suggest that depressive disorder is associated with disruptions in the topological organization of functional brain networks and that this disruption may contribute to disturbances in mood and cognition in MDD patients.
Table 1. Demographics and Clinical Characteristics of the Subjects

<table>
<thead>
<tr>
<th></th>
<th>NC (n = 63)</th>
<th>MDD (n = 30)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>16–81 (35.1 ± 15.9)</td>
<td>18–60 (36.1 ± 12.3)</td>
<td>.765a</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>30/33</td>
<td>8/22</td>
<td>.055b</td>
</tr>
<tr>
<td>Handedness (R/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course of Disease (weeks)</td>
<td>NA</td>
<td>2–60 (16.0 ± 14.1)</td>
<td>—</td>
</tr>
<tr>
<td>HAMD</td>
<td>NA</td>
<td>18–34 (24.3 ± 5.0)</td>
<td>—</td>
</tr>
<tr>
<td>Onset Age (years)</td>
<td>NA</td>
<td>18–59 (35.8 ± 12.2)</td>
<td>—</td>
</tr>
</tbody>
</table>

Data are presented as the range of minimum–maximum (mean ± SD). HAMD, Hamilton Depression Rating Scale; L, left; MDD, major depressive disorder; NA, nonapplicable; NC, normal control subjects; R, right.

aThe p value was obtained by two-sample two-tailed t test.

bThe p value was obtained by two-tailed Pearson chi-square test.

Methods and Materials

Subjects

A total of 95 subjects were recruited, including 31 first-episode drug-naive MDD patients and 64 age- and sex-matched healthy control subjects (Table 1). The age of MDD patients ranged from 18 to 60 years and the age of control subjects ranged from 16 to 81 years. The age of onset of MDD ranged from 18 to 59 years. The data of two subjects (one patient and one control subject) were removed because of excessive head motion (see Data Preprocessing). All patients reported herein were part of a large cohort study of major depression in the Chinese population of Han nationality in the Mental Health Center of West China Hospital. Patients were recruited consecutively from the psychiatric outpatient or inpatient departments of the university hospitals. All patients reported herein were part of a large cohort study of major depression in the Chinese population of Han nationality in the Mental Health Center of West China Hospital. Patients were recruited consecutively from the psychiatric outpatient or inpatient department of the local hospital, and the diagnosis of first-episode depression was made according to the Structured Clinical Interview of the DSM-IV (39). All control subjects were carefully screened for a current or lifetime diagnosis of any Axis I or II disorder using the Structured Clinical Interview of the DSM-IV Non-Patient Edition and Structured Clinical Interview for DSM-IV Axis I Personality Disorders. Neurological or organic disorders were determined according to personal histories and complete physical examinations. The severity of depression was rated using the 17-item Hamilton Rating Scale for Depression (HAMD) (40) and the Clinical Global Impression ofSeverity scale (41). To be eligible for the study, each patient was re-examined by a psychiatry specialist after an initial outpatient assessment. Inclusion criteria were that all patients were 1) drug-naive and were having their first episode of depression; 2) currently experiencing an episode of depression with HAMD total score ≥ 18 and a Clinical Global Impression of Severity score ≥ 4 on the day of the magnetic resonance imaging (MRI) examination; and 3) a duration of depression > 2 weeks but ≤ 60 weeks. Exclusion criteria included the presence of 1) other Axis I psychiatric disorders and symptoms; 2) a history of organic brain disorder, neurological disorders, or cardiovascular diseases; 3) pregnancy or any physical illness as assessed by personal history and laboratory analysis; and 4) the inability to undergo an MRI. No patients were treated with any antipsychotic medicine. All participants were determined to have no abnormalities on conventional MRI by two experienced radiologists. This study was approved by the local ethical committee, and written informed consent was obtained from all subjects.

Image Acquisition

All subjects underwent a resting-state functional MRI scan using a 3T magnetic resonance system (GE EXCITE, Milwaukee, Wisconsin) with an 8-channel phased array head coil. During the scan, subjects were instructed to relax with their eyes closed but not to fall asleep.

The scan lasted for 400 seconds. For the details of scanning parameters, see Supplement 1.

Data Preprocessing

Image preprocessing was carried out using the SPM5 package (http://www.fil.ion.ucl.ac.uk/spm; Wellcome Trust Centre for Neuroimaging, University College London, United Kingdom). First, the images were corrected for intravolume acquisition time differences between slices using the sinc interpolation and were corrected for the intervolume geometric displacement because of head movement using a six-parameter (rigid-body) spatial transformation. Data of one control subject and one patient were discarded because their heads moved more than 3 mm of translation or 3 degrees of rotation in any direction. After these corrections, the images were spatially normalized to the standard space of the Montreal Neurological Institute using an optimum 12-parameter affine transformation and nonlinear deformations and resampled to 3-mm cubic voxels. Finally, the resulting data were further temporally bandpass filtered (0.01–1 Hz) to reduce the effects of low-frequency drift and high-frequency physiological noises.

Network Construction

Node Definition. A network is composed of nodes and edges between nodes. Herein, nodes represent brain regions and edges represent the statistical interdependence in blood oxygen level-dependent signals between different regions. To define the brain nodes, a prior atlas of Automated Anatomical Labeling (42) was employed to divide the whole brain into 90 (45 for each hemisphere) cortical and subcortical regions of interest, with each representing a node of the network (Table S1 in Supplement 1).

Edge Definition. To define the network edges, we calculated the partial correlation coefficients between the regional mean time series of all possible pairs of brain regions. The partial correlation coefficient between any two regions represents their conditional dependencies by excluding the effects of the other 88 regions defined in the Automated Anatomical Labeling atlas. This metric has been used in previous brain network studies (22,25,33,43–45). Before the correlation analysis, the representative mean time series of each region was acquired by averaging the time series of all voxels within that region, followed by a correction of head motion effects by regressing out the head motion profiles estimated in the image realignment from the mean time course. The residuals of the regression analyses were used to compute the partial correlation in this study, resulting in a 90 × 90 partial correlation matrix for each subject (Figure S1 in Supplement 1). Finally, individual partial correlation matrices were converted into binarized matrices (i.e., adjacency matrices) $A_{ij} = [a_{ij}]$ according to a predefined threshold (see below for the threshold selection), where the entry a_{ij} was 1 if the absolute value of the partial correlation between regions i and j was larger than the threshold and was 0 otherwise.

Network Analysis

Threshold Selection. We applied a sparsity threshold S to all correlation matrices. S was defined as the ratio of the number of existing edges divided by the maximum possible number of edges in a network. This approach normalized all resultant networks to have the same number of nodes and edges by applying a subject-specific correlation coefficient threshold and minimized the effects of possible discrepancies in the overall correlation strength between groups, thereby enabling us to explore the between-group differences in relative network organization (46,47). Instead of selecting a single threshold, we thresholded each correlation matrix repeatedly over a wide range of sparsity levels according to the

www.sobp.org/journal
following criteria: 1) the average degree (the degree of a node is the number of connections linked to the node) over all nodes of each thresholded network was larger than $2 \times \log(N) \text{ with } N = 90 \text{ here, denoting the number of nodes;}$ and 2) the small-worldliness scalar σ (see below for definition) of the thresholded networks was larger than 1.1 for all participants (Figure S2 in Supplement 1). The generated threshold range of $0.10 < S < 0.34$ determined by this procedure guaranteed that the thresholded networks were estimable for small-worldliness (48) and had sparse properties with as few spurious edges as possible (25,46,49). The largest component sizes of individual networks were from 88 to 90 over the sparsity range (Figure S3 in Supplement 1). The subsequent network analyses were repeatedly performed in the accurately defined small-world regime of $0.10 < S < 0.34$ with an interval of 0.1.

Network Metrics. For brain networks at each sparsity threshold, we calculated both global and regional network measures. The global measures included 1) small-world parameters (48) involving clustering coefficient C_{clus} characteristic path length L_{char} normalized clustering coefficient γ, normalized characteristic path length λ, and small-worldliness σ; and 2) network efficiency (50) involving local efficiency E_{loc} and global efficiency E_{glob}. The regional measures included three nodal centrality measures: the degree d, characteristic path length L_{char}, and global efficiency E_{glob}. The degree d was calculated as the number of connections linked to the node) over all nodes of each network.

Network Efficiency. Network efficiency E_{glob} is defined as the average of the shortest path lengths within all possible node pairs (25,46,49). The largest component sizes of individual networks were from 88 to 90 over the sparsity range (Figure S3 in Supplement 1). The subsequent network analyses were repeatedly performed in the accurately defined small-world regime of $0.10 < S < 0.34$ with an interval of 0.1.

Network Metrics. For brain networks at each sparsity threshold, we calculated both global and regional network measures. The global measures included 1) small-world parameters (48) involving clustering coefficient C_{clus} characteristic path length L_{char} normalized clustering coefficient γ, normalized characteristic path length λ, and small-worldliness σ; and 2) network efficiency (50) involving local efficiency E_{loc} and global efficiency E_{glob}. The regional measures included three nodal centrality measures: the degree d, characteristic path length L_{char}, and global efficiency E_{glob}. The degree d was calculated as the number of connections linked to the node) over all nodes of each network. To test the null hypothesis that the observed group differences could occur by chance, for each network metric we then randomly reallocated all the values into two groups and recomputed the mean differences between the two randomized groups. This randomization procedure was repeated 10,000 times, and the 95th percentile points of each distribution were used as the critical values for a one-tailed test of the null hypothesis with a probability of type I error of .05. Of note, before the permutation tests, multiple linear regression analyses were applied to remove the confounding effects of age and gender for each network metric (independent variable: the AUC of each network metric; dependent variables: age and gender). Likewise, permutation tests were used to determine the significance levels of altered connectivity networks in the NBS analysis (Supplement 1).

Relationships Between Network Measures and Clinical Variables. Once significant between-group differences were observed in any network metrics, we further assessed the relationships between these metrics and the HAMD score and the course of disease in the MDD group, performed by multiple linear regression analyses with age and gender as unconcerned confounding factors (independent variables: network metrics showing between-group differences; dependent variables: clinical characteristics of the HAMD score or course of disease).

Results

Efficient Small-World Functional Brain Networks

The topological properties of brain networks depend on the choices of thresholds. In the current study, we determined a data-specific small-world regime at a sparsity range of $0.10 < S < 0.34$. Partial correlation thresholds ranged from .42 to .47 (mean $\pm SD = .44 \pm .01$) at $S = .10$ and from .25 to .28 (mean $\pm SD = .26 \pm .01$) at $S = .34$ across all subjects. In the precisely defined threshold range, functional brain networks of both the MDD and control groups had higher clustering coefficients (i.e., $\gamma > 1$) but almost identical characteristic path lengths (i.e., $\lambda \approx 1$), compared with comparable random networks (Figure 1A and Figure S5A in Supplement 1), which are typical features of small-worldness. Moreover, using more biologically relevant network efficiency measurements, all brain networks also demonstrated an economic small-world topology of approximately equivalent parallel information processing of global efficiency but a higher fault tolerance of local efficiency compared with matched random networks (Figure 1B and Figure S5B in Supplement 1). These results are compatible with previous studies of small-world brain networks (for reviews, see [15,17,55]).

MDD-Related Alterations in Small-World Properties

Despite common small-world architecture, statistical analyses revealed significant differences in both small-world parameters and network efficiency between MDD patients and control subjects (Figure 2). The MDD group showed significantly lower values in both the characteristic path length L_{char} (p = .020) and normalized characteristic path length λ (p = .020) compared with normal control subjects. No significant (p > .05) differences were found in local clustering of C_{clus} and γ. To test whether there existed significant group differences in the network properties, nonparametric permutation tests (54) were performed on the AUC of each network metric (small-world, network efficiency and regional centrality measures). Briefly, we first calculated the between-group difference in the mean value of each network metric. To test the null hypothesis that the observed group differences could occur by chance, for each network metric we then randomly reallocated all the values into two groups and recomputed the mean differences between the two randomized groups. This randomization procedure was repeated 10,000 times, and the 95th percentile points of each distribution were used as the critical values for a one-tailed test of the null hypothesis with a probability of type I error of .05. Of note, before the permutation tests, multiple linear regression analyses were applied to remove the confounding effects of age and gender for each network metric (independent variable: the AUC of each network metric; dependent variables: age and gender). Likewise, permutation tests were used to determine the significance levels of altered connectivity networks in the NBS analysis (Supplement 1).
altered in the patients \((p = .002, \text{ corrected}) \) (Figure 4, Table S2 in Supplement 1). The nodes included several default-mode regions (e.g., precuneus, lateral temporal, and parietal regions) and the connections were mainly involved in the long-distance connections linking different lobes. Within this network, all connections exhibited increased values in the MDD patients as compared with the control subjects. The mean connectivity value showed marginally significant correlations with the three global network metrics \((L_p: p = .059; \gamma: p = .056; \varepsilon_{\text{glob}}: p = .051) \) (Figure 4).

Relationships Between Network Measures and Clinical Variables

There were no significant \((p > .05) \) correlations between global network metrics \((C_p, \gamma, \lambda, \varepsilon_{\text{loc}} \text{, and } \varepsilon_{\text{glob}}) \) and clinical variables (HAMD scores or the duration of illness). There were also no significant \((p > .05) \) correlations between mean connectivity values within the NBS-based network and clinical characteristics. The left hippocampus was negatively \((p < .05) \) correlated with both HAMD scores and the duration of illness. The left caudate nucleus was positively \((p < .05) \) correlated with HAMD scores in at least one nodal measure (Figure 3B). The left precuneus showed marginally significant \((p < .10) \) correlation with HAMD scores (Figure 3B).

Discussion

The present study examined the topological organization of functional brain networks in MDD patients. The results reveal that MDD had decreased path length and increased global efficiency, implying a disturbance of the normal global integration of whole-
brain networks. Moreover, many local brain regions were profoundly affected by MDD: both caudate nucleus and default-mode regions showed increased nodal centralities, while several regions in the occipital, frontal, and temporal lobes showed decreased centralities. These results provide insights into our understanding of altered topological organization in functional brain networks of MDD.

Figure 3. Brain regions showing abnormal nodal centralities in brain functional networks and their relationships with clinical variables in MDD patients. (A) Regions with abnormal nodal centralities in MDD patients were rendered on the surface of the Population-Average, Landmark- and Surface-based atlas based on structural MRI volumes from 12 normal subjects (PALS-B12) in Computerized Anatomical Reconstruction and Editing Toolkit (CARET; http://brainvis.wustl.edu). See Table 2 for the detailed information. (B) Scatter plots of nodal metrics against disease duration and HAMD scores. A subcortical region (the lenticular nucleus, putamen) showed group differences in nodal centrality but is not shown here. CAL, calcarine fissure and surrounding cortex; CAU, caudate nucleus; CUN, cuneus; HAMD, Hamilton Depression Rating Scale; HIP, hippocampus; IPL, inferior parietal, but supramarginal and angular gyri; L, left hemisphere; LING, lingual gyrus; MDD, major depressive disorder; MFG, middle frontal gyrus; MTG, middle temporal gyrus; NC, normal control subjects; ORBmid, middle frontal gyrus, orbital part; ORBsup, superior frontal gyrus, orbital part; ORBsupmed, superior frontal gyrus, medial orbital; PCUN, precuneus; PHG, parahippocampal gyrus; PoCG, postcentral gyrus; R, right hemisphere; SMG, supramarginal gyrus.
The MDD-related increases in nodal centralities were mainly found in the hippocampus, parahippocampal gyrus, medial frontal and parietal regions, and inferior parietal lobe, most of which are components of the DMN (56–58). Several DMN regions have shown depression-related increases in regional cerebral blood flow to the hippocampus (3) and cerebral metabolism in the parahippocampal gyrus (2,5), precuneus (2), and posterior cingulate cortex (5). Moreover, DMN-related increases of functional connectivity have also been observed in depressed patients, such as between the subgenual cingulate and thalamus (13) and within the DMN regions (38). In this study, we also found MDD-related increases in nodal centralities in the caudate nucleus, a key brain structure involved in the regulation of cognition and mood (60). Major depressive disorder patients exhibited reduced gray matter volume in the caudate nucleus (61–63) and abnormal brain activities during specific tasks or in a resting state (9,64,65). Particularly, a recent fMRI study showed that MDD patients had increased neuronal responses in the caudate nucleus to emotional faces in a facial expression matching task (38). In this study, we also found MDD-related increases in nodal centralities in the caudate nucleus, a key brain structure involved in the regulation of cognition and mood (60). Major depressive disorder patients exhibited reduced gray matter volume in the caudate nucleus (61–63) and abnormal brain activities during specific tasks or in a resting state (9,64,65). Particularly, a recent fMRI study showed that MDD patients had increased neuronal responses in the caudate nucleus to emotional faces in a facial expression matching task (38).

Despite the common small-world topology, there were significant group differences in small-world metrics and network efficiency. The MDD patients showed a decreased path length in their brain networks as compared with control subjects, whereas there were no significant differences in local clustering. Likewise, network efficiency analysis revealed abnormal small-world organization in the MDD group, as characterized by increased global efficiency. The changes in these global network metrics could be attributable to increased long-distance functional connections in patients, involving a specific connected network mainly comprising default-mode regions (Figure 4, Table S2 in Supplement 1). Notably, a previous electroencephalogram study reported that depressed patients showed a significantly lower path length in the theta and delta frequency bands but no significant changes in clustering coefficient (34), providing further support for our findings. Given that the small-world model reflects an optimal balance between local specialization and global integration, these results thus indicate a disturbance of the normal balance in functional brain networks of MDD patients. Specifically, the findings of increased global integration and maintained local specialization in the patients suggest that functional brain networks in MDD are closer to a randomized configuration. This randomization process has been observed in brain functional networks in other neuropsychiatry diseases, such as Alzheimer’s disease (27) and schizophrenia (30). Random networks have less modularized information processing or fault tolerance compared with small-world networks (50). Therefore, our findings of loss of small-world characteristics in MDD reflect a less optimal topological organization in brain networks, thus providing further evidence that MDD is a disorder with disrupted neuronal network organization and deficient cognitive and mood processing.

<table>
<thead>
<tr>
<th>Brain Regions</th>
<th>p Values</th>
<th>Nodal Degree</th>
<th>Nodal Efficiency</th>
<th>Nodal Betweenness</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDD > Control Subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right hippocampus</td>
<td>.008</td>
<td>.010</td>
<td>.048</td>
<td></td>
</tr>
<tr>
<td>Right caudate nucleus</td>
<td>.021</td>
<td>.033</td>
<td>.047</td>
<td></td>
</tr>
<tr>
<td>Left hippocampus</td>
<td>.025</td>
<td>.012</td>
<td>.172</td>
<td></td>
</tr>
<tr>
<td>Left caudate nucleus</td>
<td>.027</td>
<td>.033</td>
<td>.036</td>
<td></td>
</tr>
<tr>
<td>Left inferior parietal, but supramarginal and angular gyr</td>
<td>.031</td>
<td>.025</td>
<td>.009</td>
<td></td>
</tr>
<tr>
<td>Left putamen</td>
<td>.036</td>
<td>.034</td>
<td>.088</td>
<td></td>
</tr>
<tr>
<td>Left precuneus</td>
<td>.036</td>
<td>.035</td>
<td>.015</td>
<td></td>
</tr>
<tr>
<td>Right supramarginal gyrus</td>
<td>.060</td>
<td>.027</td>
<td>.064</td>
<td></td>
</tr>
<tr>
<td>Left parahippocampal gyrus</td>
<td>.067</td>
<td>.040</td>
<td>.159</td>
<td></td>
</tr>
<tr>
<td>Right superior frontal gyrus, medial orbital</td>
<td>.076</td>
<td>.044</td>
<td>.220</td>
<td></td>
</tr>
<tr>
<td>Left postcentral gyrus</td>
<td>.071</td>
<td>.049</td>
<td>.045</td>
<td></td>
</tr>
<tr>
<td>MDD < Control Subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left lingual gyrus</td>
<td>.009</td>
<td>.015</td>
<td>.047</td>
<td></td>
</tr>
<tr>
<td>Right calcarine fissure and surrounding cortex</td>
<td>.012</td>
<td>.016</td>
<td>.052</td>
<td></td>
</tr>
<tr>
<td>Left middle frontal gyrus, orbital part</td>
<td>.023</td>
<td>.048</td>
<td>.005</td>
<td></td>
</tr>
<tr>
<td>Left cuneus</td>
<td>.024</td>
<td>.025</td>
<td>.020</td>
<td></td>
</tr>
<tr>
<td>Right middle frontal gyrus</td>
<td>.034</td>
<td>.038</td>
<td>.071</td>
<td></td>
</tr>
<tr>
<td>Right lingual gyrus</td>
<td>.040</td>
<td>.037</td>
<td>.157</td>
<td></td>
</tr>
<tr>
<td>Left superior frontal gyrus, orbital part</td>
<td>.041</td>
<td>.060</td>
<td>.165</td>
<td></td>
</tr>
<tr>
<td>Right middle temporal gyrus</td>
<td>.041</td>
<td>.026</td>
<td>.076</td>
<td></td>
</tr>
</tbody>
</table>

Regions were considered abnormal in MDD patients if they exhibited significant between-group differences (p < .05, uncorrected) in at least one of the three nodal centralities (shown in bold font).

MDD, major depressive disorder.
task (10). Thus, our findings are compatible with these previous studies. Increased nodal centralities of these regions suggest their strengthened roles of coordinating whole-brain networks, presumably in response to the pathological disorder of MDD.

Specifically, we found that nodal centralities of the left hippocampus were negatively related to the duration of the disease, indicating the longer the illness, the lower the nodal centralities of the left hippocampus. Hippocampal volume is believed to decrease in depression patients (66–68), and this shrinkage is positively correlated with depressive duration (69–71). In our sample, the left hippocampus was negatively related to depression severity (HAMD scores). de Asis et al. (72) reported that hippocampal hypoactivation might constitute neural substrates of geriatric depression. The depressive state can be predicted by hippocampus-related morphological changes (70) or resting-state functional connectivity (73). Thus, our finding in the hippocampus is consistent with previous studies and suggests its role in predicting the depressive state. Of note, recent research on first-episode, drug-naive MDD patients has indicated that hippocampal volume is positively correlated with symptom severity (74), whereas it is negatively correlated with disease duration in MDD (75,76). These results suggest the opposite mechanism of depressive symptom severity and duration on the volume of the hippocampus. Given the increased nodal centrality of the hippocampus in MDD patients, we speculate that disease severity and duration also have competitive effects on the intrinsic activity of the left hippocampus.

The MDD-related decreases in nodal centralities were mainly observed in occipital cortex regions, including the calcarine fissure, cuneus, and lingual gyrus. Depression has been associated with both structural and functional abnormalities in occipital regions, such as decreased gray matter volume in the cuneus (77) and decreased cerebral blood flow in the lingual gyrus (78). Moreover, evidence from first-episode, treatment-naive MDD patients has shown decreased white matter integrity related to occipital regions (79). Our findings are consistent with these. In addition, fewer nodal centralities were found in the middle frontal gyrus (orbital part), which is also compatible with a previous study showing frontal white matter lesions (79).

Several issues need to be further addressed. First, the head motions of subjects might have confounded our results. Further analyses revealed no significant group differences in the head motion profiles and no significant correlations between head motions and the network metrics. Second, in the current study, functional brain networks were constructed at a regional level by parcellating the whole brain into 90 regions based on a previously published atlas. Brain networks derived using different parcellation schemes

Figure 4. The connected network showing increased functional connections in MDD patients and its relationships with the global network metrics. (A) The region pairs showing increased functional connections in MDD patients. These connections formed a single connected network with 12 nodes and 12 connections, which was significantly (p = .002, corrected) abnormal in the patients. Of note, 9 of 12 connections are long-distance connections that link different lobes. The nodes and connections were mapped onto the cortical surfaces using in-house BrainNet viewer software. For the details, see Table S2 in Supplement 1. (B–D) Scatter plots of mean functional connectivity of this connected network against global network metrics. There were marginally significant correlations with the three metrics (t(110); p = .059; \(\lambda\); p = .056; \(E_{\text{glob}}\); p = .051). ANG, angular gyrus; DCG, median cingulate and paracingulate gyri; \(E_{\text{glob}}\), global efficiency; FFG, fusiform gyrus; IFGoperc, inferior frontal gyrus (opercular part); IFGtriang, inferior frontal gyrus (triangular part); IPL, inferior parietal lobe; L, left hemisphere; \(L_p\), characteristic path length; MDD, major depressive disorder; MOG, middle occipital gyrus; MTG, middle temporal gyrus; \(\lambda\), normalized characteristic path length; PCUN, precuneus; R, right hemisphere; SPG, superior parietal gyrus; STG, superior temporal gyrus; TPOsub, superior temporal gyrus (temporal pole).
or at different spatial scales exhibit distinct topological architectures (52,80–83). Further studies are needed to determine which brain parcellation strategy or spatial scale is most appropriate for the characterization of network topology in MDD. Third, the nodal centrality results were not corrected by multiple comparisons, meaning this should be considered an exploratory analysis. To increase statistical power, future studies need to be conducted using a large sample of MDD patients or by selecting a limited number of regions of interest. Fourth, the recruited MDD patients were heterogeneous in terms of symptom clusters. A previous fMRI study (84) suggests that different MDD symptom dimensions could have distinct neuronal mechanisms. In the future, it would be interesting to investigate whether patients with different MDD symptoms show distinct topological organizations in their brain networks. Finally, functional brain networks constructed from fMRI data are largely constrained by anatomical pathways (85,86). Accordingly, a combined analysis of multimodal imaging data will produce more fruitful information on the interaction between brain function and structure under pathological conditions.

This study was supported by the National Natural Science Foundation of China (Grant Nos. 81030027, 81030028, and 30870667) and the National Basic Research Program of China (973 Program No: 2007CB512305). Drs. Yong He and Qiyong Gong contributed equally to the study.

The authors reported no biomedical financial interests or potential conflicts of interest.

Supplementary material cited in this article is available online.

www.sobp.org/journal

