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Abstract: This paper describes a hierarchical intelligent integrated control 
system with three layers: a decision layer, a temperature optimisation and 
control layer, and a process control layer. An information fusion method is  
used in the decision layer to determine the operating state of the combustion 
process in real time. The control strategy includes the temperature optimisation 
control and process control. The parameters of fuzzy controllers are tuned by  
a multiple-objective optimisation method with an adaptive genetic algorithm to 
keep the temperature in the proper range. An intelligent method that combines 
fuzzy and expert control keeps the gas flow rate and air suction power at the 
settings.
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1 Introduction

Coke, the product of a coking process, is an important raw material in the metallurgy 
industry and is widely used in iron-making blast furnaces, casting, and metal refining. 
The key process in making coke is combustion, which takes place in a coke oven.  
The oven temperature is defined to be the average of the flue temperatures of the 
combustion chambers; it is a key parameter that reflects the level of heating in the  
whole oven. It directly influences both the quality of coke and the lifetime of the oven. 
Too low an oven temperature results in poor-quality coke and a short oven lifetime; too 
high an oven temperature not only results in poor-quality coke, but also causes 
environmental pollution and wastes energy. So, it is very important to keep the 
temperature of the oven in the proper range, and this necessitates control of the 
combustion process (Sadaki et al., 1993). 

Combustion in a coke oven is a complicated process. It features a large time delay, 
strong non-linearity, and time-varying characteristics. Three types of control systems for 
the combustion process have been reported: a coke oven temperature feedback control 
system (Nakazaki et al., 1987), a heat supply feedforward control system  
(Vander et al., 1990), and a Two-Degree-of-Freedom (TDF) heat supply control system 
(Buss and Mccollum, 1984). All of these methods are based on exact mathematical 
models; but due to the complexity of the process, none of them provide adequate control 
performance. 

The time delay, in particular, makes control of the oven temperature difficult.  
A Smith predictor is an effective way to handle a time delay, but it strongly depends on 
the exact mathematical model of the plant. Predictive control is also a practical method 
for process control, but it is sensitive to the precision of the plant model, as well. 
Although many studies on the Smith predictor and predictive control have been reported 
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(e.g., José and Alexandre, 2003; Wang et al, 2006), few are directly applicable to the 
combustion process of a coke oven because no exact mathematical model of the process 
is available. On the other hand, since fuzzy control does not require an exact 
mathematical model of a plant and is very robust, it is widely used for process control in 
industry (Stratos et al., 2006; Yanan and Collins, 2003; Cao and Frank, 2000). One of its 
advantages is that, if we take the trend in the change in oven temperature into 
consideration, it can suppress the effects of the time delay to some extent. In actual 
practice, fuzzy control has already been shown to be effective in controlling the 
temperature of a coke oven (Gao et al., 2002, 2006a, 2006b). 

Industrial processes are generally becoming larger, more precise, and more 
complicated; and it is difficult to obtain satisfactory results with a single control method. 
One way to solve this problem is to combine intelligent methods; and in fact,  
this constitutes a new way to control the temperature of a coke oven. Simulation studies 
have demonstrated the validity of the method (Gao et al., 2005a, 2005b). However, there 
are usually two problems with existing methods of controlling the combustion process of 
a coke oven: 

• Only tracking error information is utilised in the control of the oven temperature, and 
no consideration is given to the influence of discrete events, such as those arising 
from production planning and coking operations; even if they strongly affect process 
conditions. 

• The parameters of a fuzzy controller are selected based on operator experience and 
are not optimised. 

In this study, we defined the operating state of a coke oven to be a set of parameters that 
represents the process conditions in the oven. Determination of the operating state is 
important for good decision making and proper control of the combustion process.  
It is also important for improving the intelligence of the control system and increasing 
production efficiency. A simple determination of the operating state can be made just by 
checking whether or not the oven is in the maintenance period (Gao et al., 2003), but this 
method does not permit a response to changes in the operating state arising from other 
situations. 

A hybrid system is a dynamic system that contains continuous systems as well  
as discrete events (García et al., 2003; Engell et al., 2000; Romeo and Gareta, 2006; 
Paruchuri et al., 2005). It places great emphasis on the combined effect of time- and 
event-driven processes during system evolution. The combustion process can be regarded 
as a hybrid system because it can be divided into two layers: a physical layer described 
by the continuous variables of a dynamic evolution mechanism, and a layer of high-level 
coordination that features symbol manipulation and discrete monitoring and decisions. 

In this study, the mechanism of the combustion process of a coke oven was analysed 
from the standpoint of production planning in terms of the continuous physical variables 
of the process. Hybrid system theory provides an effective solution to the problem of 
controlling the temperature of a coke oven. Three layers are used in the configuration  
of an intelligent integrated combustion process control system. 

The rest of this paper is organised as follows: In Section 2, the mechanism of the 
combustion process is analysed on the basis of production planning and flue temperature, 
and a hierarchical intelligent integrated control structure is presented based on the 
determination of the operating state. In Section 3, a two-stage decision method based on 
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information fusion is used to determine the operating state of the combustion process in a 
real-time fashion. In Section 4, a self-adaptive genetic algorithm is employed to optimise 
the parameters of a fuzzy controller for each of several operating states, and expert rules 
are established to switch among these fuzzy controllers to produce appropriate settings 
for gas flow rate and air suction power. In Section 5, a combination of fuzzy and  
expert control strategies is used to stabilise the gas flow rate and air suction power,
thereby yielding good control of the oven temperature. Section 6 explains a real-world 
application of the method in the coking plant of an iron and steel company and presents 
the results of actual runs, which demonstrate the effectiveness of the method. 

2 Description of combustion process and control system 

This section describes the combustion process and presents the configuration of an 
intelligent integrated combustion process control system. 

2.1 Combustion process 

A coke oven is the most complex furnace in the metallurgy industry. It usually has  
50–100 heating units, each of which consists of a coking chamber, a combustion 
chamber, and a regenerating chamber. Figure 1 shows the structure of a coke oven 
system. The coking and combustion chambers are arranged alternately in a line. Flues in 
the combustion chambers are used to heat the coking chambers to carbonise coal.  
The fuel is coke gas, blast furnace gas, or a mixture of the two. It enters the combustion 
chambers through flues, and burns using air drawn from a smoke flue. Heat is transferred 
to the coal in the coking chambers by radiation and convection. The temperature of the 
oven is the key factor determining the quality of the coke, and it is kept in the proper 
range by regulating the gas flow rate and air suction power. The coking process employs 
four vehicles (coal charger, pusher, guide, quenching car). The side of the oven where 
the pusher operates is called the machine side, and the side where the guide operates is 
called the coke side. 

Figure 1 Coke oven system (see online version for colours) 
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Figure 2 shows some details of the structure of the coke oven. Each coking chamber  
lies between two combustion chambers, which supply heat in two directions.  
Each combustion chamber is connected to two regenerating chambers. Each regenerating 
chamber is under a coking chamber, except for the ones at the ends of the oven.  
In the combustion process, gas is burned in the combustion chamber and the heat  
is transferred to the coal in the coking chamber by radiation and convection. The coal in 
the coking chamber is carbonised to become coke in a hermetic environment. Gas and air
are preheated in the regenerating chambers and fed through oblique conduits to the 
combustion chambers, where they burn. Waste gas is discharged into other generating 
chambers. Half of the regenerating chambers draw in a mixture of gas and air for 
burning while the other half discharge waste gas. 

In the carbonisation process, raw gas from a coking chamber passes through an 
ascending pipe to a gas collection pipe. The temperature of the raw gas in an ascending 
pipe reflects the maturity of the coke in the coking chamber below. Figure 3 shows the 
typical timewise change in the temperature of the raw gas. The temperature increases 
gradually and then drops rapidly after the point where coking is finished. Furthermore, 
the curve indicates when such operations as coaling and coke pushing occur. 

Figure 2 Structure of coke oven 

Figure 3 Timewise change in temperature of raw gas in ascending pipe during one coking period 
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To keep the temperature of the oven in the proper range during one coking period,  
it is necessary to make the temperature track a reference temperature, which is 
determined by the length of the coking period, the amount of coal charged into  
each coking chamber, and the water content of the coal. The temperature can be 
controlled by regulating the gas flow rate and air suction power according to the amount 
of heat required. 

Figure 4 shows the configuration of operations and temperature control for the coking 
process. Operations (coaling, pushing, guiding, quenching) are carried out according to 
the production schedule: First, a car charges the coking chambers with coal. Next,  
the combustion process carbonises the coal into coke. Then, pushers and guide cars 
transfer the coke to a quenching car. Finally, the quenching car goes into a quenching 
tower, where the coke is cooled. The production scheduler monitors the operations and 
sends commands to the equipment to ensure the smooth production of high-quality coke. 
It also provides sufficient time for equipment maintenance. On the other hand,  
the combustion process control system stabilises the oven temperature and maintains 
favourable conditions for the production of high-quality coke by controlling the gas flow 
rate and air suction power. 

Figure 4 Configuration of coke oven operations and temperature control 

The control system for the coking process consists mainly of a production scheduler and 
a coke oven temperature control system. The series of operations from coaling to 
discharge have a significant influence on oven temperature. Continuous combustion 
under favourable conditions, or in other word, an oven temperature distribution that is 
favourable to the formation of coke, ensures the smooth running of the coking process. 
The combustion process has two different kinds of variables: discrete logic variables  
(the command to push coke, etc.) and continuous physical variables (oven temperature, 
gas flow rate, etc.). So, the control of the combustion process requires both a rational 
schedule for the discrete logic variables and effective real-time control of the continuous 
physical variables. 

Due to the complexity of the combustion process and the structure of a coke oven, the 
process has features that make control of the oven temperature difficult: 
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• Although gas flow rate is the main factor influencing oven temperature, there are 
many other factors (calorific value of gas, length of coking period, production 
schedule, etc.) as well. For example, even if the same heating method is used, the 
amount of heat produced depends on the calorific value of the gas. The relationships 
between these factors and oven temperature are strongly nonlinear. 

• The oven temperature changes very slowly. The coke oven that is the subject  
of this study is about 6 metres high and 60 metres long. It has a large thermal 
capacity, and heating and cooling take a long time. Data from actual runs show  
that it takes 2–3 h for the temperature to change noticeably when coke gas is used, 
and about six hours when blast furnace gas is used. Moreover, the time delay of the 
combustion process is not constant and depends on many factors. For example, a 
change in the calorific value of the gas results in a change in the response speed of 
the oven temperature. The time delay of the process is large and time-varying. 

• The operating state directly influences the oven temperature. Since most of the heat 
is absorbed by the coal, the state of carbonisation of the coal in the coking chambers 
not only influences the temperature of related combustion chambers but also changes 
the level of heating in the whole oven. The state of carbonisation strongly depends 
on the operating state. 

2.2 Configuration of control system of combustion process 

The following strategies are employed to control the combustion process: 

• A hybrid control system, which combines continuous control and the manipulation 
of discrete symbols, is constructed to control this complex process. 

• Due to the complexity and large time delay of the combustion process,  
it is impossible to build a temperature control system with a single controller.  
To obtain good control performance, the operating states are classified into several 
types, and a controller is designed for each one. 

• A two-stage decision method based on information fusion is used to determine the 
current operating state. 

• A self-adaptive genetic algorithm optimises the parameters of the fuzzy controllers. 

Figure 5 shows the configuration of the hybrid hierarchical control system for the 
combustion process. It contains three layers: a decision layer, an optimisation and control 
layer, and a process control layer. 

The main function of the decision layer is to determine the operating state in a  
real-time fashion. In each ascending pipe, a thermocouple measures the temperature of 
the raw gas, which is an indicator of the maturity of the coke in the coking chambers.  
The total amount of heat required depends on the maturity of the coke in each of the 
coking chambers, and is determined by the combined needs of the coking processes in all 
the chambers. The measured temperatures of the raw gas in the ascending pipes are used 
by a two-stage decision method based on information fusion to determine the operating 
state of the oven. 

The optimisation and control layer produces a set of optimal temperature controllers 
for the various operating states. The parameters of the controllers are the scaling and 
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proportion factors of fuzzy controllers (Jung et al., 1995); adaptive genetic algorithms
optimise them off line. Expert rules are employed to switch the controllers on line to 
provide quick adaptation to changes in the operating state. The control system is 
constructed using a two-loop control strategy: the outer loop controls the oven 
temperature, and the inner loops adjust the gas flow rate and air suction power to 
reference values produced by the temperature controller. The outer loop is implemented 
in the optimisation and control layer, and the inner loops are implemented in the process 
control layer. 

Figure 5 Configuration of hybrid hierarchical control system of coke oven combustion process 

3 Determination of operating state 

Since the thermal absorptivity of coal is different in the beginning, middle, and terminal 
stages of the coking process, even if the oven temperature is the same, the operating state 
is different in different stages. In this study, different controllers are used to handle this 
situation. 

The amount of heat required for coking is an important factor in the selection  
of a temperature controller. It is basically determined by discrete events in coking 
operations. This section shows how the operating state is determined from an analysis of 
the maturity of the coke, which is obtained from the measured temperature of the raw gas
in an ascending pipe, and how critical points in the coking process are extracted. 

3.1 Classification of operating states 

When coke is pushed out of the oven, it carries away a large amount of heat. So, a certain 
rhythm in pushing operations is needed to enable good control of the oven temperature. 
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That is, when coke is pushed strictly according to the production schedule, the heat 
balance in the oven is maintained; but a delay in pushing causes a change in the heating 
level of the whole oven, resulting in a change in oven temperature. 

Pushing operations are halted for two reasons. One is maintenance. There are about 
six hours of maintenance per day. This time is equally divided among the operating 
periods and is added at the end of each period. So, maintenance has little influence on 
oven temperature. The other is any kind of equipment failure that prevents mature coke 
from being pushed out on time. The longer it takes to fix the equipment, the larger the 
number of coking chambers containing mature coke there are. This changes the operating 
state and leads to a rapid increase in oven temperature. Furthermore, after the problem is 
solved and the mature coke is pushed out, the coking chambers are quickly charged with 
coal. This creates a situation in which a large number of coking chambers are in the 
beginning stage of the coking process, which changes the operating state and 
dramatically reduces the oven temperature. 

Based on the above analysis, the operating states are classified into three types: 

• S1: Normal operating state. In this state, operations (coaling, pushing, maintenance, 
etc.) are carried out according to the production schedule. The heat balance in the 
coking process is taken into consideration in the production schedule. 

• S2: No pushing. This state occurs when equipment failure has caused a relatively 
long halt in the coking process. A large number of coking chambers contain mature 
coke, and the oven temperature tends to be higher than usual. 

• S3: Quick pushing. After the equipment is fixed, the coking chambers must be 
cleared rapidly of mature coke and charged with new coal to return production to the 
normal operating state. Thus, a large number of coking chambers are in the 
beginning stage and absorb a great deal of heat. So, the oven temperature tends to be 
lower than usual. 

3.2 Determination of operating state 

It is difficult to determine the operating state in a real-time fashion because of the 
structure of the oven and limitations on production conditions. Conventionally,  
the maturity of coke in a coking chamber is assessed from the colour of the raw gas in 
the ascending pipe, which changes during the coking process. This method is very labour 
intensive for the operators; and it is also very subjective, with the results strongly 
depending on the experience of an operator. To solve these problems and obtain an 
accurate determination of the operating state, a thermocouple was installed in each 
ascending pipe to measure the temperature of the raw gas, and a two-stage decision 
method based on information fusion was used to determine the operating state (Figure 6). 

In the first stage of the decision process, the temperatures of the raw gas were 
measured by the thermocouples in the ascending pipes, and the data were processed to 
extract critical points. Then, expert rules yielded the operating state of each coking 
chamber (p1, p2, …, p60). In the second stage, the operating state of the whole coke oven 
was obtained by fusion of the first-stage outputs. 
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Figure 6 Determination of operating state using two-stage decision method 

In the first stage, the temperature data were processed by the method of moving averages, 
which smoothes the data and filters out noise. Then, critical points were extracted from 
the processed data. As seen in Figure 3, the temperature of the raw gas in an ascending 
pipe gradually increases after the start of the coking process and drops sharply after 
coking finishes. The coking process is characterised by the point at which coking 
finishes and the coke becomes mature. On the other hand, the coking period, T, which 
ranges from 18 h to 24 h, is an important parameter provided by the production 
scheduler.  

We define ti to be the coking time of the ith coking chamber (that is, the time since 
the chamber was charged with coal) and use it to define a new variable, δ:

.it
T

δ =

Now, if let the time when coking finishes be tC, then the coking index, Ci, given by 

( )i
i i C

C

tC t t
t

= ≥

indicates the maturity of the coke. 
So, the operating state, pi, of the ith coking chamber can be represented by the triplet 

(δ, ai, Ci), where ai is a flag indicating whether or not coking is finished (ai = 0 when
ti < tc and ai = 1 when ti ≥ tc). The normal operating state is further classified as early, 
middle, or terminal stage; and the state of the coke in a coking chamber is classified as 
immature, mature, undercoked, and overcoked. Table 1 shows the rules for determining 
the operating state of the ith coking chamber. 

In the first stage of the decision process, an output space consisting of the operating 
states of all the coking chambers is constructed. It is then categorised to make an input 
space for information fusion in the second stage. Statistics on the coking chambers in 
different operating states and different coking states are collected: cpe, cpm, and cpt are 
the numbers of coking chambers in the early, middle, and terminal stages, respectively; 
and cmuc, cpM, and cpoc are the numbers of coking chambers in the terminal stage for
which the coke is undercoked, mature, and overcoked. Some typical rules are listed 
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below as examples, where S(k) indicates the present (kth sampling time) operating state 
of the ith coking chamber: 

Rule OS1: IF cpoc > 5 AND cpt  25, THEN S(k) = S2;

Rule OS2: IF S(k – 1) = Stop AND cpe  20, THEN S(k) = S3.

Table 1 Rules for determining operating state of ith coking chamber 

 Parameter Status of coke 

Rule δ ai Ci pi Mi

1 0~1/3 0 – Early stage Immature 
2 1/3~2/3 0 – Middle stage Immature 
3 2/3~1 1 1–1.2 Terminal stage Undercoked 
4 2/3~1 1 1.2~1.3 Terminal stage Mature 
5 2/3~1 1 >1.3 Terminal stage Overcoked 

4 Design of oven temperature controller 

The target of the intelligent integrated optimisation and control of the combustion process 
is to stabilise the oven temperature in spite of disturbances by planning a rational 
schedule for the combustion process and properly regulating the heat supply. The key 
points for the optimisation and control layer (Figure 7) are

• to optimise the parameters of the controllers 

• to choose a controller appropriate to the operating state in a real-time fashion and 
switch to it, and to use the output of the temperature controller to calculate optimal 
settings for the gas flow rate and air suction power. 

Figure 7 Configuration of optimisation and control layer 



      

      

      

   204 M. Wu et al.    

      

      

      

      

4.1 Expert switching 

Three types of gas (coke gas, blast furnace gas, a blend of the two) are used in the coking 
process, and different heating methods are employed for each. There are two heating 
methods for blended gas: fix the flow rate of coke gas and adjust the flow rate of blast 
furnace gas, and vice versa. The heating method should be changed when the type of  
gas is changed; but if the heating method remains unchanged, a change in the type of gas 
causes the operating state to change. 

To obtain good control performance, it is necessary to employ different controllers 
for the various operating states. The following online switching rules were established 
based on the above classification, the determination of the operating state, and the heating 
method: 

Rule ES i: IF s = Si, THEN switch the controller to fuzzy control i.

That is, when the operating state, s, is determined to be Si, select fuzzy controller i.

4.2 Design and optimisation of fuzzy controller 

In fuzzy control, the experience of experts is converted into mathematical models that can 
be handled by a computer. Since experience is subjective to some extent, there are certain 
limitations on the parameters of a controller derived directly from such experience. 
Furthermore, the control system has multiple control objectives (high-quality coke, 
saving energy, etc.); this requires fine adjustment of the parameters. 

As an example, we use the temperature fuzzy controller for blended gas, which 
calculates optimal settings for the gas flow rate, to explain how a fuzzy controller is 
designed and how its parameters are optimised. Assume that the heating method is to fix 
the flow rate of coke gas and adjust the flow rate of blast furnace gas. The inputs of the 
temperature fuzzy controller are the temperature error, e, and its rate of change, ec; and 
the output is the change in the flow rate of blast furnace gas, ∆ub. The corresponding 
fuzzy sets are E, EC, and ∆Ub; and their linguistic states are {NL (negative large),  
NM (negative medium), NS (negative small), ZO (zero), PS (positive small), PM 
(positive medium), PL (positive large)}, {NL, NM, ZO, PS, PM, PL}, and {NL, NM, 
ZO, PM, PL}, respectively. The ranges of the variables are [–20, 20] for e, [–15, 15] for 
ec, and [–200, 200] for ∆ub. The membership functions of E, EC and ∆Ub are all chosen 
to be trapezoidal. The Mamdani method is used for fuzzy inference, and the centroid 
method is used for defuzzification. 

Since the scaling and proportion factors (Jung et al., 1995) Ke, Kec, and K ub can be 
used to tune the dynamic characteristics of the closed-loop system,, these parameters are 
determined based on trade-offs among response time, stability, and robustness. However, 
optimisation under these conditions is almost impossible when only the experience of 
experts is used. Thus, in this study a multiple-objective optimisation method was 
combined with a self-adaptive genetic algorithm to optimise the parameters of a fuzzy 
controller.

The optimisation targets for the temperature fuzzy controller are to stabilise the oven 
temperature, to ensure the quality of the coke, to reduce the consumption of gas, and to 
extend the lifetime of the oven. These considerations yield the following fitness function: 
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where wi (i = 1, 2, 3) is a weight and J1, J2, and J3 are the performance indices for flue 
temperature, gas consumption, and response time, respectively. They are given by 
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In equation (3), ub(k) is the blast furnace gas consumption during a sampling period  
and M is the number of control steps. In equation (4), ts(k) is the regulation time and
N is the number of steps in the transient response. The constraints are 
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max0 ( )e k e≤ ≤  (6) 

where ∆Ub max is the maximum allowable change in gas flow rate and emax is the 
maximum value of e.

A genetic algorithm is employed to optimise Ke, Kec, and K ub so as to yield  
the maximum F. Ke, Kec, and K ub are encoded as real numbers; the nth chromosome 
of the ith generation is [ , , ]
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The elitist strategy (Fujino et al., 1997; Mashohor et al., 2005) and the roulette wheel 
algorithm (Koumousis and Georgiou, 1994; Mahapatra et al., 2005) are used for 
selection. When a set of individuals constitutes a larger percentage of the population than 
a given value, some are selected using the roulette wheel algorithm to maintain the 
diversity of population; and others are selected using the elitist strategy to preserve the 
individuals with the best fitness. 

The key factors that determine the performance of the genetic algorithm are the 
crossover probability, pc, and the mutation probability, pm. Since crossover is the primary 
means of producing new individuals, pc should be relatively large. However, if it is too 
large, good patterns will be destroyed; and if it is too small, new individuals will be 
produced very slowly. pm has a significant impact on the optimisation of the parameters: 
If it is too large, convergence will be slow; and if it is too small, convergence will be 
premature. To avoid these problems, this study employed an improved genetic algorithm 
(Srinival et al. 1994), in which pc and pm are tuned automatically in response to changes 
in the fitness function; and pc and pm are regulated as follows: 
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where 0 < k1, k2, k3, k4 < 1, k2 > k1, and k4 > k3, fmax is the maximum fitness and favg is the 
average; fc is the larger of the two individuals selected for crossover; and fm is the fitness 
of an individual for mutation. Figure 8 shows a flow chart of parameter optimisation. 

Figure 8 Flow chart of parameter optimisation for fuzzy controller 



      

      

      

   Intelligent integrated control of combustion process 207    

      

      

      

      

4.3 Calculation of air suction power 

In the combustion process, the air suction power determines burning efficiency.  
It must be changed when the gas flow rate changes to ensure complete combustion. 
However, since there is no online oxygen sensor, the air-fuel ratio cannot be calculated 
directly. The relationship between air suction power and gas flow is (He et al., 2005): 

0 1 2
( ) ( )

( ) ,
( 1) ( 1)
b c

a
b c

u k u k
u k

u k u k
α α α= + +

− −

where ua(k) is the air suction power; ub(k) and uc(k) are the flow rates of blast furnace  
gas and coke oven gas, respectively; and α0, α1, and α2 are constants. In this study,  
the air suction power was calculated indirectly using the above formula. 

5 Design of gas flow rate and air suction power controllers 

Using the settings for gas flow rate and air suction power produced by the outer-loop 
temperature controller, the inner loop regulates the gas flow rate and the air suction 
power by adjusting the openings of the corresponding valves so as to stabilise the 
process. The design of these controllers is explained below. 

5.1 Control of flow rate of blast furnace gas 

Taking the control of the flow rate of blast furnace gas as an example, we explain  
how to design an appropriate TDF controller. The flow rate of blast furnace gas strongly 
depends on the pressure in the main pipe, which fluctuates dramatically. The TDF control 
system in Figure 9 suppresses fluctuations in the flow rate. A feedforward expert 
controller mainly reduces the influence of the main pipe pressure, and an expert and 
fuzzy feedback controller stabilises the flow rate and suppresses fluctuations caused by 
other factors. The sampling period for the valves was set to 15 s. 

Figure 9 Configuration of TDF control system for flow rate of blast furnace gas 

5.1.1 Design of feedforward controller 

A pressure change in the main pipe for blast furnace gas can cause a large change  
in the flow rate of the gas. The pressure of gas in the main pipe is measured and is fed 
forward as a control input for the flow rate of the blast furnace gas using the following 
expert rules: 
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Rule 1: IF ecb > 500 Pa/s, THEN u2 = –0.7

Rule 2: IF 250 Pa/s < ecb  500 Pa/s, THEN u2 = –0.6 

Rule 3: IF 150 Pa/s < ecb  250 Pa/s, THEN u2 = –0.4 

Rule 4: IF 50 Pa/s < ecb  150 Pa/s, THEN u2 = –0.2 

Rule 5: IF –50 Pa/s  ecb  50 Pa/s, THEN u2 = 0 

Rule 6: IF –150 Pa/s  ecb < –50 Pa/s, THEN u2 = 0.2 

Rule 7: IF –250 Pa/s  ecb < –150 Pa/s, THEN u2 = 0.4 

Rule 8: IF –500 Pa/s  ecb < –250 Pa/s, THEN u2 = 0.6 

Rule 9: IF ecb < –500 Pa/s, THEN u2 = 0.7

where ecb is the rate of change in the pressure of the blast furnace gas in the main pipe, 
and u2 is the change in the valve opening. 

5.1.2 Design of feedback controller 

The feedback controller employs both expert and fuzzy control methods. The fuzzy 
controller precisely adjusts the valve opening when the magnitude of the flow tracking 
error for the flow rate of blast furnace gas, ef, is less than the threshold; and the expert 
controller quickly reduces the tracking error when the magnitude of ef is greater than the 
threshold. Since –3000 m3/h < ef < 3000 m3/h in practice, the threshold was chosen to be 
6000 m3/h in this study. The following expert control rules are used: 

Rule 1: IF ef > 12000 m3/h, THEN u1 = –2.5 

Rule 2: IF 6000 m3/h < ef  12000 m3/h, THEN u1 = –2.2 

Rule 3: IF –12000 m3/h ef < –6000 m3/h, THEN u1 = 2.2 

Rule 4: IF ef < –12000 m3/h, THEN u1 = 2.5 

where u1 is the change in the valve opening. 
The inputs of the fuzzy controller are ef and ecf; and the output is the change  

in the valve opening, u1. The ranges of ef, ecf, and u1 are chosen to be [–6000, 6000], 
[–2000, 2000], and [–2, 2], respectively. Accordingly, the linguistic values of the control 
error, Ef, its rate of change, ECf, and the change in the valve opening, U1, are {NL, NM, 
NS, ZO, PS, PM, PL}, {NL, NM, ZO, PS, PM, PL}, and {NL, NM, NS, ZO, PS,  
PM, PL}, respectively. Trapezoidal functions were selected to be the membership 
functions for the linguistic values of Ef, ECf, and U1 because they are insensitive to 
linguistic values. U1 is set as shown in Table 2. For example, if E is PL and EC is ZO, 
then the output, U1, is PL. That means that, when the flow rate of blast furnace gas is 
much smaller than the reference value and the rate of change in the tracking error is also 
very small, then the valve should be opened a great deal to quickly increase the flow of 
gas. The output of the fuzzy controller is obtained by defuzzification. The total change, 

u, in the valve opening is given by 

u = u1 + u2.
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Table 2 Fuzzy rules of fuzzy feedback controller in TDF control system for flow rate of blast 
furnace gas

E
EC NL NM NS ZO PS PM PL 
NL NL NL NM NS NS ZO PS 
NS NL NM NM NS ZO PS PM 
ZO NL NM NS ZO PS PM PL 
PS NM NS ZO PS PM PM PL 
PL NS ZO PS PS PM PL PL 

5.2 Design of air suction controller 

The air suction power changes only moderately and is not greatly influenced by any 
factors. An expert control method is used to control it. Expert rules are derived based on 
the experience of experts and an analysis of historical data. ea is the error between the 
setting and the actual value of the air suction power, and ua is the change in the opening 
of the air suction valve. Some of the main rules are as follows: 

Rule 1: IF ea > 25 Pa, THEN u = –2

Rule 2: IF 8 Pa < ea  25 Pa, THEN ua = –1.5

Rule 3: IF 6 Pa < ea  8 Pa, THEN ua = –1.2

Rule 4: IF 4 Pa < ea  6 Pa, THEN ua = –0.9

Rule 5: IF 3 Pa < ea  4 Pa, THEN ua = –0.6

Rule 6: IF –3 Pa ea  3 Pa, THEN ua = 0

Rule 7: IF –4 Pa ea < –3 Pa, THEN ua = 0.6

Rule 8: IF –6 Pa ea < –4 Pa, THEN ua = 0.9

Rule 9: IF –8 Pa ea < –6 Pa, THEN ua = 1.2

Rule 10: IF –25 Pa ea < –8 Pa, THEN ua = 1.5

Rule 11: IF ea < –25 Pa, THEN ua = 2

6 System implementation and results of actual runs 

The intelligent integrated optimisation and control system developed in this study was 
used to regulate the combustion process of a coking plant in an iron and steel company. 
The results of actual runs demonstrate the validity of this method. 

6.1 System implementation 

The intelligent integrated optimisation and control system was implemented on  
an industrial control computer. The system consists of the application software,  
a Programmable-Logic-Controller (PLC)-based Windows Control Center (WinCC) 
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configuration, and object linking and embedding for process control (OPC). WinCC is a 
communication interface between the application software and the PLC. The application 
software performs operating-state-based intelligent control with a two-stage decision 
method to determine the operating state. Once the operating state has been determined, 
appropriate inner- and outer-loop fuzzy controllers, for which the parameters are 
optimised off-line, are chosen to control the combustion process. Then, the controllers 
make the gas flow rate and the air suction power track the reference values by regulating 
the valve openings, thereby ensuring that the oven temperature is stabilised at a given 
value. The values of the valve openings are sent to the PLC using OPC communication 
technology to drive the actuators of the valves. The gas flow rate, the air suction power, 
and the valve openings are measured and sent to the intelligent integrated optimisation 
and control system. Figure 10 shows the flow of information and data in the system. 

All the application programs are written in Visual C++. The configuration software  
uses PLC-based Siemens WinCC configuration software, which includes an OPC  
server, OPC configuration software, and PLC modules. The OPC server carries out data 
communication between an OPC client and the WinCC configuration software. The 
WinCC configuration software monitors and controls the combustion process, analyses 
and records data in real time, produces a report, and draws historical curves.  
The Siemens PLC system collects the parameters of the coking process and the states of 
the equipment in a real-time fashion for the WinCC and controls the equipment on the 
production line. 

Figure 10 Flow of information and data in intelligent integrated optimisation and control system 

6.2 Industrial application 

In the iron and steel company that is the subject of this study, the temperature of the coke 
oven was controlled manually before the intelligent integrated optimisation and control 
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system was installed in 2005. The results of actual runs are shown in Figure 11. It is clear 
that the control system reduced the variation in oven temperature from ±25°C to ±10°C.

Some statistics on actual runs are shown in Table 3. The two variables KS and KA in 
the table are defined to be 

machine coke( ) ( )
2A

M A M A
K

M
− + −

=

machine coke2 ( )
2S

N A A
K

M
′ ′− +

=

where M is the number of combustion chambers in the coke oven; Amachine and Acoke are 
the numbers of combustion chambers on the machine and coke sides, respectively,  
with flue temperatures outside the error range (±7°C); N is the number of measurements 
of the oven temperature; machineA′  is the number of times that the oven temperature error  
(which is the difference between the reference value and the average oven temperature) 
on the machine side is outside the range ±7oC; and cokeA′  is the number of times that the 
oven temperature error on the coke side is outside the range ±7°C.

Figure 11 Actual run results of coke oven temperature: (a) manual control and (b) intelligent 
integrated control 

 (a) 

 (b) 

KS indicates the stability of the oven temperature, and KA indicates the uniformity of the 
oven temperature. Two more evaluation parameters–the crushing strength, M40, and the 
wear resistance, M10 – are also employed in the evaluation. M40 is the percentage  
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by weight of coke balls with a diameter greater then 40 mm in 100 kg of coke balls,  
and M10 is the percentage by weight of coke balls with a diameter less then 10 mm in 
100 kg of coke balls. A larger M40 and a smaller M10 mean better air permeability in iron 
making, which is desirable. It is clear from Table 3 that the intelligent integrated control 
method improves both KS and KA. Compared with manual control, M40 is 1.3% greater, 
M10 is 1.1% smaller, and the average energy consumption is 2.0% less. These numbers 
show that the intelligent integrated control method improves the quality of the coke and 
reduces the consumption of gas. 

Table 3 Statistics on control results 

Manual control (Average)
Intelligent integrated

control (Average)
KS 0.48 0.76 
KA 0.32 0.78 
M40 81.77% 83.10% 
M10 7.48% 6.34% 
Avg. energy consumption 2.316 GJ/t 2.269 GJ/t

7 Conclusions 

An intelligent integrated hybrid optimisation and control system for the temperature  
of a coke oven has been developed based on the features of the combustion process.  
The framework of the control system consists of a decision layer, an optimisation  
and control layer, and a process control layer. For the decision layer, the operating  
states of the combustion process were classified into several types to enable the  
control problem to be solved simply; and a two-stage decision method was devised to 
determine the operating state in real time. In the optimisation and control layer, an online 
switching control strategy was employed to select a suitable controller for the current 
operating state. 

The temperature control system contains one control loop for temperature and one for 
gas flow rate and air suction power. In the temperature control loop, a multiple-objective 
optimisation method employs an adaptive genetic algorithm to optimise the controller 
parameters. In the other control loop, controllers for valve openings were designed to 
stabilise the gas and air fluxes. The intelligent integrated optimisation and control system 
was implemented in the coking plant of an iron are steel company. The results of actual 
runs show that the system stabilises the oven temperature, improves the quality of coke, 
and reduces energy consumption. 
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