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Abstract

This paper demonstrates a new cloud-based
research platform called ELIT (Evolution
of Language and Information Technology)
that enables researchers to build their mod-
els for large scale computing using rich re-
sources in the cloud. This platform makes
three major contributions to the community.
First, it allows researchers to request NLP
output for a large amount of raw text using
a web API, which can be called by any pro-
gramming languages. Second, it provides
an open space for developers to deploy their
models so the entire community can be ben-
efited from the most up-to-date techniques.
Third, it integrates NLP components devel-
oped in different programming languages
into one united framework, which provides
a seamless experience of combining these
components into one pipeline. The ELIT
framework is currently up and running and
provides SDK for Python and Java to sup-
port both the end users and the developers.

1 Introduction

The Evolution of Language and Information Tech-
nology (ELIT) project presents a cloud-based re-
search platform for anyone to develop their models
using rich resources in the cloud. We realize that
out of all great models produced by many dedicated
researchers, only few of them are used by people
outside of their communities, by no means that less
popular models are of a low quality, but because of
several other reasons.

First, it is difficult for independent researchers or
ones from not so famous organizations to advertise
the greatness of their models, despite the fact that
several conferences are designed for this purpose.
Most prestige conferences do not value as much of

practical ideas but of novel ideas, which sometimes
are confused by complicated ideas. Evidence has
been found that models based on simple ideas can
perform as well as ones based on complicated ideas
in practice; nonetheless, these models tend not to
get enough credits in academic research.

Second, it is unwieldy for a single researcher to
develop an end-to-end system that takes raw data
and produces the requested output while the end-to-
end system is often the only kind that users want.
Let us say, you have developed a parser faster and
more accurate than any. Even with its greatness, the
chance of others using your parser is slim because
people would expect your tool to take plain text and
produce the parsing output, whereas you model is
trained on annotated text that needs to be processed
by several other NLP tools. As a result, your model
does not gain as much attention as it should. Third,
most state-of-the-art models using deep learning
these days tend to consume much more resources
than models traditionally used in NLP. This makes
researchers with no access to power machines not
being able to develop state-of-the-art models such
that alternative solutions such as cloud computing
need to be consulted for developing those models.

The objective of the ELIT project is to support
both end users and developers with this platform
independent framework so that the developers have
a central place to deploy their latest models yet are
not restricted by certain programming languages to
develop those models, whereas the end users have
access to all these models through a web API using
any programming environments of their choices.
We believe that this framework will greatly enhance
the integration of all the state-of-the-art models and
will facilitate the development of more advanced
models by taking advantage of the models already
integrated into the ELIT framework.1

1ELIT: https://elit.cloud

https://elit.cloud
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Figure 1: The stepwise overview of the ELIT framework.

2 ELIT Framework

Figure 1 describes a stepwise overview of the ELIT
framework. ELIT supports two types of users, un-
registered and registered, to prevent malicious use.
1� An unregistered user can make a task request to
the ELIT server using an HTTP request where the
body of the request contains input text comprising
up to 105 characters (roughly 100KB in disk space).
Given the requested task, 4� the ELIT server dis-
patches jobs to one or more compute servers that
process appropriate NLP components for this task.
When the task is completed, 6� it stores all relevant
information to the database server and 7� responses
to the user with the expected output.

A registered user can request a task using a file
containing input text up to 109 characters (roughly
1GB in disk space). When a file task is requested,
2� the ELIT server guides the user to upload the file

to its internal file system and monitors the progress.
Once the file is uploaded, 3� the ELIT server backs
up the input file to public storage so the user can
have access to the file later. While the file is being
transferred, 4� the ELIT server dispatches jobs to
the compute servers. 5� The compute server then
saves the expected output to the public storage, and
6� all relevant information is stored to the database
server. Finally, 7� the user is notified by an email
that includes a remote path to the output file.

The intranet includes the ELIT server (Section 2.1),
the compute servers (Section 2.2), and the database
server (Section 2.4), where the ELIT server and the
compute servers share the file system (Section 2.3).
Users can connect to this framework only through
the ELIT server via HTTP. The public storage gives
a read access to the users for all the input and output
files generated for their tasks. The ELIT framework
is developed on the Amazon Web Services (AWS),
but can be easily imported to any other cloud com-
puting environment.

2.1 ELIT Server

The ELIT server is the entry point to this frame-
work and the central hub that connects all the other
servers together. It is currently running on a t2.large
EC2 instance with 2 CPUs and 8GB of RAM. The
primary role is to keep connections between users
and the framework using the HTTP. It adapts the
web-application framework called Ruby on Rails,2

widely used to build web servers. It is also responsi-
ble for dispatching jobs for the task, where each job
is handled by an ordered list of NLP components
in a compute server, managing data transfer to the
public storage and the database server, load balanc-
ing to handle a large number of tasks, and securing
all connections via encryption and authentication.
2Ruby on Rails: http://rubyonrails.org

http://rubyonrails.org


2.2 Compute Server

Every compute server takes an ordered list of jobs
from the ELIT server, runs the appropriate NLP
component for each job, and generates the output.
Two types of compute servers are developed, one
for Java- and the other for Python-based NLP com-
ponents, where each server adapts the Spring and
the Flask framework, respectively.3 Currently, both
compute servers are running on r4.xlarge instances
with 4 CPUs and 32GB of RAM, which will be ex-
ported to more powerful machines upon the launch.

PythonJava

[J1, J2, P3, P4, P5, J6]

1

2

3

5
4

Figure 2: An example of job dispatching.

Figure 2 illustrates how NLP jobs are dispatched.
1� When a task is requested, 2� the ELIT server

figures out the pipeline of jobs required to complete
the task, e.g., [J1, J2, P3, P4, P5, J6]. It then groups
those jobs with respect to the compute servers such
that 3� [J1, J2] are dispatched to the Java compute
server and the output of those jobs are sent to the
ELIT server. Then, 4� [P3, J4, J5] are dispatched to
the Python compute server along with the output of
the first two jobs, and the output of these three jobs
is sent back to the ELIT server. Finally, 5� [J6] is
dispatched again to the Java compute server along
with the output of the first four jobs, then the output
of the last job is sent to the ELIT server and merged
with the other outputs. The network between these
servers uses 25 Gbps of bandwidth. Dispatching
jobs in groups minimizes the network traffic, which
significantly enhances the overall speed of the task.

2.3 File System

The ELIT server and all the compute servers share
the same file system from the Amazon Elastic File
System (EFS), which allows them to transfer multi-
ple GBs of data per second for an unlimited amount.
This file system is used to temporarily store input
files for the compute servers to process locally.
3Spring: spring.io, Flask: flask.pocoo.org

2.4 Database Server

For each task, the database server stores relevant
information such as the remote paths to the input
and output files in the storage, timestamps and logs
from each job, user profile information, etc. It uses
the Amazon Relational Database Service (RDS)
and adapts the PostgreSQL.4

3 Components

3.1 NLP Pipeline

What distinguishes ELIT from other frameworks
the most is its seamless connections between NLP
components developed in different programming
environments so that it provides a true platform in-
dependent experience to developers and end users.
For a demonstration, we integrate components from
two of popular NLP tools, NLP4J and spaCy, which
are developed in the Java and Python environments,
respectively.5 Additionally, two more components
developed by the ELIT team are integrated to test
out the scalability of this framework. Table 1 shows
the NLP pipelines provided by these tools.

Tool Lang. Pipeline

nlp4j Java tok! pos! lem! {ner,dep}
spacy Python tok! pos! dep! ner

elit Python tok! sent

Table 1: The NLP pipelines provided by three tools.
tok/pos/lem/ner/dep/sent: tokenization, part-of-
speech tagging, lemmatization, named entity recog-
nition, dependency parsing, and sentiment analysis.

NLP4J and spaCy are chosen because they provide
similar pipelines covering several tasks in NLP, as
well as APIs that make it easy to modulate those
components from their pipelines. As benchmarked
by Choi et al. (2015), these tools implement two
of the fastest dependency parsers, which often are
the bottlenecks in NLP pipelines; comparisons be-
tween their individual and combined performance
using ELIT highlights the strength of this frame-
work that makes this integration possible.

3.2 Benchmarks

Figure 3 shows comparisons between NLP4J and
spaCy with respect to four NLP tasks, tokenization,
part-of-speech tagging, named entity recognition,
and dependency parsing. The input data of sizes
1K, 10K, 100K, and 1M are used, where each data
4PostgreSQL: https://www.postgresql.org
5NLP4J: emorynlp.github.io/nlp4j, spaCy: spacy.io

spring.io
flask.pocoo.org
https://www.postgresql.org
emorynlp.github.io/nlp4j
spacy.io
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(a) Tokenization.
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(b) Part-of-speech Tagging.
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(c) Named Entity Recognition.
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(d) Dependency Parsing.

Figure 3: Speed comparisons between NLP4J and spaCy for different sizes of input data.

All

NNNN NNNS NNSS NSSS SSSS SSSN SSNN SNNN
1K 0.09246611595 0.2047121525 0.1188590527 0.2011978626 0.2626259327 0.2011978626 0.1497070789 0.189535141
10K 0.3770132065 0.4416687489 0.4457440376 0.4848132133 0.5256991386 0.4848132133 0.713835001 0.411108017
D+R+O+N 3.357217073 4.167498827 3.591311216 3.747181177 4.022495985 3.747181177 3.608504057 3.509492874
D+R+O+N 35.679317 44.96993327 41.62571096 41.62571096 48.24348402 45.52642679 44.72464705 43.60454297

Sytem + Pre + Post

NNNN NNNS NNSS NSSS SSSS SSSN SSNN SNNN
1K 0.038995 0.042581084 0.045657639 0.053235707 0.059486 0.053235707 0.042761978 0.036911253
10K 0.3423 0.378789113 0.38225551 0.400078809 0.453649 0.400078809 0.360210033 0.327806586
D+R+O 3.35096 3.951705662 3.388581002 3.588450452 3.936385 3.588450452 3.24333932 3.345483694
D+R+O 35.425542 43.16335719 39.88443847 39.88443847 47.557418 43.86374066 43.5439519 40.74187706

Pr
oc

es
si

ng
 T

im
e

3

3.2

3.4

3.6

3.8

4

NNNN NNNS NNSS NSSS SSSS SSSN SSNN SNNN

D+R+O D+R+O+N

Pr
oc

es
si

ng
 T

im
e

30

35

40

45

50

NNNN NNNS NNSS NSSS SSSS SSSN SSNN SNNN

Decoding + Pre-processing + Post-processing
Decoding + Pre-processing + Post-processing + Network Latency

�1

Figure 4: The overall times for decoding, pre-processing, post-processing, and network latency, taken by
various combinations of components in NLP4J (N) and spaCy (S) to process input data of size 1M. The
network latency implies the time it takes to transfer data between the ELIT and compute servers.

contains raw text from random Wikipedia articles.
The processing time is measured in seconds, which
includes the decoding time as well as pre- and post-
processing times to handle I/O for each tool. Given
the input data  100K, both tools show competitive
speeds for all tasks. However, NLP4J outperforms
spaCy to handle large data for the first three tasks,
and shows similar speeds for dependency parsing.

Figure 4 shows the total time that each pipeline
takes to process the input data of size 1M, where the
pipeline includes components from either NLP4J

or spaCy, and performs all four tasks in Figure 3 se-
quentially, which is represented by four characters.
For instance, NNSS implies a pipeline consisting of
the first two components, a tokenizer, and a part-of-
speech tagger, from NLP4J and the last two compo-
nents, a named entity recognizer, and a dependency
parser, from spaCy. The fastest pipeline is achieved
when all components are from NLP4J, NNNN, which
shows almost no network latency. The slowest is
when all components are from spaCy (SSSS). It is
possible to achieve a relatively fast speed by replac-



ing its tokenizer with the one from NLP4J, NSSS,
which makes the second fastest pipeline. It is worth
mentioning that marginal differences are observed
between the processing times with and without the
network latencies, which implies that it is possible
to achieve a pipeline almost as fast as (or even faster
than) the one comprising all components from the
same tool. This brings out complete freedom for
researchers to develop tools in any languages, and
integrate them into this framework so they can take
advantage of all the other components in ELIT in
order to create their own pipelines.

4 Software Development Kit

4.1 Input Request

ELIT provides a Software Development Kit (SDK)
that allows users to send raw text and receive the re-
quested output from various combinations of NLP
components in the framework using web-API. The
following shows a request containing the input text
(input), the end task (dep), and the tool of the
component specified that the user wants (spacy):

request = {
"input": "Hello World! Welcome to ELIT.",
"task": "dep",
"tool": "spacy"

}

When only the end task is specified, ELIT figures
out the most optimized pipeline to get the requested
output, in this case, the tokenizer (tok) and the part-
of-speech tagger (pos) from spacy. It is possible
to specify custom components for the earlier stages
in the pipeline. The following shows an example
specifying tok from elit and pos from nlp4j:

request = {
"input": "Hello world! Welcome to ELIT.",
"task": "dep",
"model": "spacy",
"dependencies": [
{

"task": "tok",
"tool": "elit"

},
{

"task": "pos",
"tool": "nlp4j"

}]}

All the tools and components described in Table 1
are supported in ELIT. Additionally, a special task
called all can be specified, in which case, all com-
ponents within the same tool will be used to gener-
ate the output. In the following example, both the

tokenizer (tok) and the sentiment analyzer (sent)
from elit are used for the requested pipeline:

request = {
"input": "Hello world! Welcome to ELIT.",
"task": "all",
"tool": "elit"

}

4.2 Python

The following Python code requests the pipeline
using all components in nlp4j for the input data
through HTTP, and prints the output:

import requests

request = {
"input": "Hello world! Welcome to ELIT.",
"task": "all",
"tool": "nlp4j"

}

url = "https://elit.cloud/api/public/decode"
r = requests.post(url, json=request)
print(r.text)

No external library is needed to make this API call.
The following shows the output from the request:

{
"output": [

{
"sen_id": 0,
"tok" : ["Hello", "world", "!"],
"lem" : ["hello", "world", "!"],
"pos" : ["UH", "NN", "."],
"ner" : [],
"dep" : [(1,"intj"),(-1,"root"),...],

},
{
"sen_id": 1,
"tok" : ["Welcome, "to, "ELIT", "."],
"lem" : ["welcome, "to, "elit", "."],
"pos" : ["VBP", "IN", "NNP", "."],
"ner" : [(2, 3, ORG)],
"dep" : [(-1,"root"),(2,"case"),...],

}],
"pipeline": {

"tok":"nlp4j","lem":"nlp4j","pos":"nlp4j",
"ner":"nlp4j","dep":"nlp4j","dep":"nlp4j"

}}

The output is formated in JSON so it can be com-
prehensible for most researchers. The same output
can be retrieve by using the API provided in our
SDK, which can be installed via the standard pack-
age manager for Python (pip):

!pip install elitsdk

from elit.sdk.api import Client
c = Client()
print(c.decode(request))



4.3 Java

Since ELIT uses the generic HTTP protocols, the
web API can be called by any language. ELIT also
provides the SDK for Java, which can be installed
via the standard package manager (maven):

<dependency>
<groupId>cloud.elit</groupId>
<artifactId>elit</artifactId>
<version>0.0.1-SNAPSHOT</version>

</dependency>

Given the Java SDK, the following code retrieves
the same output in Section 4.2:

import cloud.elit.sdk.api.Client;
import cloud.elit.sdk.api.TaskRequest;

Client c = new Client();
String input = "Hello world! Welcome to ELIT.";
TaskRequest request

= new TaskRequest(input, "all", "nlp4j");
System.out.println(c.decode(request));

4.4 Deployment

Not only for end users, the Python and Java SDKs
provide templates for developers as well, allowing
them to create components compatible to the ELIT
framework. Both the Python and Java SDKs give
the abstract class called Component that guides the
developers to implement the following two meth-
ods, which are used to decode input data and load
any pre-trained model for the component:

@abc.abstractmethod
def decode(self, input_data, *args, **kwargs):

pass

@abc.abstractmethod
def load(self, model_path, *args, **kwargs):

pass

Note that since this is an early stage of the project,
our SDK is still getting actively developed. Please
visit the project website to check the status of the
latest updates in the SDK.6

5 User Interface

ELIT also provides a web interface that allows reg-
istered users to access the web API. Once registered
users are logged into the ELIT website, they can
make a task request using either through HTTP or a
file, and retrieve the NLP output using this interface.
This is convenient for those who need a quick ac-
cess to the ELIT framework.
6ELIT SDK: https://elit.cloud/sdk

6 Future Development

In the ELIT framework, each instance communi-
cates with the others through HTTP. Transferring
data inside the ELIT intranet is about 500-600MBs
per second. However, when a compute server pro-
ceeds with large data, the ELIT server cannot keep
the HTTP connection and wait for the result from
the server because it times out before the process
finishes. To resolve this problem, we are currently
developing an asynchronous job queue system, also
called delayed job, for each of the compute servers.
This delayed job queue is already implemented on
the ELIT server, but not on the compute servers.

We will also create a callback API endpoint on
the ELIT server to receive the callback from the
computer servers. This callback API will wait for
the message from the compute server after the job
is done. In this case, when the task dispatcher from
the ELIT server sends jobs to the compute server,
the connection can be closed once the compute
server receives the message from the ELIT server.
Based on this mechanism, we can avoid the timeout
happens in the HTTP protocol.
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