Jingwei Zuo

Jingwei Zuo
Université Paris-Saclay · Doctorate

Ph.D. student

About

8
Publications
481
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17
Citations

Publications

Publications (8)
Thesis
Time series is a common data type that has been applied to enormous real-life applications, such as financial analysis, medical diagnosis, environmental monitoring, astronomical discovery, etc. Due to its complex structure, time series raises several challenges in their data processing and mining. The representation of time series plays a key role...
Preprint
Full-text available
Learning from Multivariate Time Series (MTS) has attracted widespread attention in recent years. In particular, label shortage is a real challenge for the classification task on MTS, considering its complex dimensional and sequential data structure. Unlike self-training and positive unlabeled learning that rely on distance-based classifiers, in thi...
Conference Paper
Wide spread use of sensors and mobile devices along with the new paradigm of Mobile Crowd-Sensing (MCS), allows monitoring air pollution in urban areas. Several measurements are collected, such as Particulate Matters, Nitrogen dioxide, and others. Mining the context of MCS data in such domains is a key factor for identifying the individuals’ exposu...
Conference Paper
Full-text available
With the rapid advancements of sensor technologies and mobile computing, Mobile Crowd-Sensing (MCS) has emerged as a new paradigm to collect massive-scale rich trajectory data. Nomadic sensors empower people and objects with the capability of reporting and sharing observations on their state, their behavior and/or their surrounding environments. Pr...
Conference Paper
Over past years, various attempts have been made at analysing Time Series (TS) which has been raising great interest of Data Mining community due to its special data format and broad application scenarios. An important aspect in TS analysis is Time Series Classification (TSC), which has been applied in medical diagnosis, human activity recognition,...
Conference Paper
Full-text available
In recent years, Time Series (TS) analysis has attracted widespread attention in the community of Data Mining due to its special data format and broad application scenarios. An important aspect in TS analysis is Time Series Classification (TSC), which has been applied in medical diagnosis, human activity recognition, industrial troubleshooting, etc...
Conference Paper
Full-text available
Time Series (TS) data are ubiquitous in enormous application fields, such as medicine, multimedia, and finance. In this paper, we present the demonstration with SE4TeC: A Scalable Engine for efficient and expressive Time Series Classification, which is applicable to certain fields in Big Data context, where the TS features and their extraction proc...

Network

Cited By

Projects

Project (1)