Jing Yuan

Jing Yuan
  • PhD
  • Research group leader at Max Planck Institute for Terrestrial Microbiology

About

27
Publications
3,220
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
939
Citations
Introduction
I lead and supervise scientific studies on the regulation of bacterial virulence with a special focus on small proteins. We use innovative approaches to elucidate the mechanism of regulation and apply this knowledge to develop the next generation of antimicrobial agents.
Skills and Expertise
Current institution
Max Planck Institute for Terrestrial Microbiology
Current position
  • Research group leader

Publications

Publications (27)
Article
Full-text available
Numerous small proteins have been discovered across all domains of life, among which many are hydrophobic and predicted to localize to the cell membrane. Based on a few that are well-studied, small membrane proteins are regulators involved in various biological processes, such as cell signaling, nutrient transport, drug resistance, and stress respo...
Article
Full-text available
Bacteria rely on two-component systems to sense environmental cues and regulate gene expression for adaptation. The PhoQ/PhoP system exemplifies this crucial role, playing a key part in sensing magnesium (Mg²⁺) levels, antimicrobial peptides, mild acidic pH, osmotic upshift, and long-chain unsaturated fatty acids, promoting virulence in certain bac...
Preprint
Full-text available
Bacteria rely on two-component systems to sense environmental cues and regulate gene expression for adaptation. The PhoQ/PhoP system exemplifies this crucial role, playing a key part in sensing magnesium (Mg2+) levels, antimicrobial peptides, mild acidic pH, osmotic upshift, and long-chain unsaturated fatty acids, promoting virulence in certain bac...
Preprint
Full-text available
Bacteria rely on two-component systems to sense environmental cues and regulate gene expression for adaptation. The PhoQ/PhoP system exemplifies this crucial role, playing a key part in sensing magnesium (Mg ²⁺ ) levels, antimicrobial peptides, mild acidic pH, osmotic upshift, and long-chain unsaturated fatty acids, promoting virulence in certain b...
Preprint
Full-text available
Numerous small proteins have been discovered across all domains of life, among which many are hydrophobic and predicted to localize to the cell membrane. Based on a few that are well-studied, small membrane proteins are regulators involved in various biological processes, such as cell signaling, nutrient transport, drug resistance, and stress respo...
Article
Full-text available
A large number of small membrane proteins have been uncovered in bacteria, but their mechanism of action has remained mostly elusive. Here, we investigate the mechanism of a physiologically important small protein, MgrB, which represses the activity of the sensor kinase PhoQ and is widely distributed among enterobacteria. The PhoQ/PhoP two-componen...
Article
Full-text available
Nudix hydrolases comprise a large and ubiquitous protein superfamily that catalyzes the hydrolysis of a nucleoside diphosphate linked to another moiety X (Nudix). Sulfolobus acidocaldarius possesses four Nudix domain-containing proteins (SACI_RS00730/Saci_0153, SACI_RS02625/Saci_0550, SACI_RS00060/Saci_0013/Saci_NudT5, and SACI_RS00575/Saci_0121)....
Preprint
Full-text available
A large number of small membrane proteins have been discovered in bacteria, but their mechanism of action has remained mostly elusive. Here, we investigate the mechanism of a physiologically important small protein, MgrB, which represses the activity of the sensor kinase PhoQ and is widely distributed among enterobacteria. The PhoQ/PhoP two-compone...
Article
Full-text available
Small membrane proteins represent a subset of recently discovered small proteins (≤100 amino acids), which are a ubiquitous class of emerging regulators underlying bacterial adaptation to environmental stressors. Until relatively recently, small open reading frames encoding these proteins were not designated as genes in genome annotations. Therefor...
Article
Full-text available
The PhoQ/PhoP two-component system plays a vital role in the regulation of Mg ²⁺ homeostasis, resistance to acid and hyperosmotic stress, cationic antimicrobial peptides, and virulence in Escherichia coli , Salmonella and related bacteria. Previous studies have shown that MgrB, a 47 amino acid membrane protein that is part of the PhoQ/PhoP regulon,...
Article
Full-text available
Significance Whether residing in or invading the host, enterobacteria have to deal with host-related stress conditions. These stress factors also serve as sensory cues, informing bacteria that they are present inside the host. Here, we report that the PhoQ/PhoP two-component system, which was known to sense several host-related environmental change...
Article
Full-text available
Sep-tRNA:Cys-tRNA synthase (SepCysS) catalyzes the sulfhydrylation of tRNA-bound O-phosphoserine (Sep) to form cysteinyl-tRNACys (Cys-tRNACys) in methanogens that lack the canonical cysteinyl-tRNA synthetase (CysRS). A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides information on the binding of the pyridoxal phosphate co...
Article
In Archaea selenocysteine (Sec) is synthesized in three steps. First seryl-tRNA synthetase acylates tRNA(Sec) with serine to generate Ser-tRNA(Sec). Then phosphoseryl-tRNA(Sec) kinase (PSTK) forms Sep-tRNA(Sec) , which is converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase (SepSecS) in the presence of selenophosphate produced by selenophosphat...
Article
Full-text available
Mature tRNAHis has at its 5′-terminus an extra guanylate, designated as G−1. This is the major recognition element for histidyl-tRNA synthetase (HisRS) to permit acylation of tRNAHis with histidine. However, it was reported that tRNAHis of a subgroup of α-proteobacteria, including Caulobacter crescentus, lacks the critical G−1 residue. Here we show...
Article
The essential methanogen enzyme Sep-tRNA:Cys-tRNA synthase (SepCysS) converts O-phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)) into Cys-tRNA(Cys) in the presence of a sulfur donor. Likewise, Sep-tRNA:Sec-tRNA synthase converts O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) to selenocysteinyl-tRNA(Sec) (Sec-tRNA(Sec)) using a selenium donor. While the Sep moiety...
Article
Full-text available
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA-dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyr...
Article
Selenocysteine (Sec) is the 21st genetically encoded amino acid found in organisms from all three domains of life. Sec biosynthesis is unique in that it always proceeds from an aminoacyl-tRNA precursor. Even though Sec biosynthesis in bacteria was established almost two decades ago, only recently the pathway was elucidated in archaea and eukaryotes...
Article
The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation. Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa-tRNA synthetases. However, in the case of four amino acids (Gln, Asn, Cys and Sec), aminoacyl-tRNAs are made through indirect pathways in many organism...
Article
Full-text available
Aminoacyl-tRNAs (aa-tRNAs) are the essential substrates for translation. Most aa-tRNAs are formed by direct aminoacylation of tRNA catalyzed by aminoacyl-tRNA synthetases. However, a smaller number of aa-tRNAs (Asn-tRNA, Gln-tRNA, Cys-tRNA and Sec-tRNA) are made by synthesizing the amino acid on the tRNA by first attaching a non-cognate amino acid...
Article
Full-text available
The micronutrient selenium is present in proteins as selenocysteine (Sec). In eukaryotes and archaea, Sec is formed in a tRNA-dependent conversion of O-phosphoserine (Sep) by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS). Here, we present the crystal structure of Methanococcus maripaludis SepSecS complexed with PLP at 2.5 Å resolution...
Article
Full-text available
The trace element selenium is found in proteins as selenocysteine (Sec), the 21st amino acid to participate in ribosome-mediated translation. The substrate for ribosomal protein synthesis is selenocysteinyl-tRNASec. Its biosynthesis from seryl-tRNASec has been established for bacteria, but the mechanism of conversion from Ser-tRNASec remained unres...
Article
Full-text available
Among the tRNA population of the archaeal parasite Nanoarchaeum equitans are five species assembled from separate 5′ and 3′ tRNA halves and four species derived from tRNA precursors containing introns. In both groups an intervening sequence element must be removed during tRNA maturation. A bulge–helix–bulge (BHB) motif is the hallmark structure req...
Article
Full-text available
Most prokaryotes require Asp-tRNA(Asn) for the synthesis of Asn-tRNA(Asn). This misacylated tRNA species is synthesized by a non-discriminating aspartyl-tRNA synthetase (AspRS) that acylates both tRNA(Asp) and tRNA(Asn) with aspartate. In contrast, a discriminating AspRS forms only Asp-tRNA(Asp). Here we show that a conserved proline (position 77)...

Network

Cited By