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Abstract. Software Defined Network (SDN) is emerging as a novel
network architecture which decouples the control plane from the data
plane. However, SDN is unable to survive when facing failure, in par-
ticular in large scale data-center networks. Due to the programmability
of SDN, mechanism could be designed to achieve fault tolerance. In this
survey, we broadly discuss the fault tolerance issue and systematically
review the existing methods proposed so far for SDN. Our representation
starts from the significant components that OpenFlow and SDN brings –
which are useful for the purpose of failure recovery, and is then further
expanded to the discussion of fault tolerance in data plane and control
plane, in which two phases – detection and recovery – are both needed.
In particular, as the important part of this paper, we have highlighted
the comparison between two main methods – restoration and protec-
tion – for failure recovery. Moreover, future research issues are discussed
as well.
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1 Introduction

When the Internet was stretched even though continuous efforts were made
to upgrade devices or protocols, an innovative network architecture – Software
Defined Network (SDN), has gained much attention in both academia and indus-
try. With the ability to decouple the data plane from the control plane, SDN
brings much benefit to commercial enterprises [13,20]. For instance, Google’s
B4 – a globally-deployed software defined WAN [15], has successfully improved
the utilization of network links up to nearly 100 percent, which is threefold
as before. As for any network systems, including Google’s geo-distributed data-
centers B4, network faults are prevalent, which can inevitably cause catastrophic
effects to user applications. Therefore, to consider and further to solve every pos-
sible malfunction becomes a need for all network systems. Accordingly, one of
the urgent needs for SDN is to provide the ability of failure recovery. For this
issue, we focus ourselves on the breakdown of network components in this article,
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while excluding the discussion of network update [44] such as forwarding loop
and forwarding black hole.

In traditional networks, such as the Internet, routing protocols can help con-
vergence of the whole network automatically. However, as the “brain” of SDN,
a controller does not have the ability of self-healing when initially designed and
introduced, and it must be equipped with the capacity of fault tolerance. In
SDN, the fault tolerance issue covers across two different levels – the data plane
and the control plane.

On one hand, if a link breaks or a switch meets an outage in the forwarding
plane, a controller needs to help to find another valid routing path to contin-
uously deliver packets as there is almost no intelligence on network devices –
which is called the failure recovery of data plane. Chronologically, this proce-
dure consists of two phases – failure detection and failure recovery. Furthermore,
two typical methods – restoration and protection [43] are commonly used in the
recovery process. With restoration, switches must alert the controller to the
fault, then the controller will generate certain commands to direct data plane to
update their forwarding tables. On the contrary, with protection, switches would
establish table entries for two paths – the working path and the backup path
before the fault occurs. If the switch detects the malfunction, it can switch over
to the protection path automatically without the participation of the controller.
At the moment, most papers in this area are focusing on solving a single link
failure. As a result, the solutions for multiple link failures and the outage of a
switch remain a challenge.

On the other hand, the fault tolerance of control plane is of much concern
as well. Controllers need to take charge of the whole network all the time. As
a result, the diagram of multiple controllers have been proposed to ensure the
reliability of the control plane [25]. In addition, the OpenFlow channel between
controllers and switches may also meet fault. If a switch loses connection with
the controller, another path is needed which may walk through other neighbours
to reach the controller [38]. Nearly no papers are focusing on solving the failure
of the OpenFlow channel and it could be regarded as a future research direction.
In summary, both devices and links need to be provided with redundancy to
cope with a variety of failures in the context of SDN.

The rest of this survey is organized as follows. Section 2 presents some prepara-
tory work for fault tolerance in SDN, which is based on the main idea of evolu-
tion from the traditional networks to SDN, including existing strategies (mostly
heuristic) of failure recovery in traditional networks, and essential structures in
OpenFlow [27] protocol which are used for fault tolerance of SDN. The existing
methods as well as comparison, summaries and future research issues are then
discussed in the following three sections. We review the failure detection of data
plane in Sect. 3, and then discuss the failure recovery of data plane and control
plane in Sects. 4 and 5 respectively. Finally, a conclusion is given in Sect. 6.

2 Prerequisites for Fault Tolerance in SDN

There are preparatory works related to the fault tolerance in SDN. In this section,
we first summarize the experience of failure recovery in traditional networks, and
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Fig. 1. Classification of fault tolerance methods in traditional networks

then provide the concepts of flow table and group table which are the bases of
the OpenFlow protocol.

2.1 A Review of Fault Tolerance in Traditional Networks

In general, each network component may face a failure. Here we mainly dis-
cuss fault tolerance on servers and links for traditional networks [35], which are
summarized and classified in Fig. 1.

Based on the difference with respect to the number of nodes (servers), the
fault tolerance on servers can be separated into two parts. When using the
clustering technology, multiple computers cooperate with each other. As long
as at least one of them works correctly, the whole system can provide services to
users. On the other hand, in the situation that only one server is in use, equipping
each component (including CPU, memory, disk, network card and even power
supply, etc.) with a backup is effective.

Traditional routing protocols (such as OSPF [28]) may need tens of seconds
to converge. However, in the carrier grade networks, the recovery time is required
to be within millseconds. Considering the fault tolerance which consists of four
steps – failure detection, failure announcement, route recomputing and routing
table updating, efforts have been made to decrease the running time of each
procedure to reduce the whole recovery time. Firstly, methods such as reducing
the transmit interval of probing packets [8] or combining with other detection
methods (Bidirectional Forwarding Detection [17]) can be used to cut down the
failure detection time. Secondly, when considering the transient failure, a self-
adapting timer [9], for example, can be adopted to avoid announcement of this
fault. Thirdly, routing algorithms can be improved. Finally, the batch update,
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Fig. 2. Architecture of OpenFlow protocol

for instance, can accelerate the update of forwarding tables. This technology is
called the reactive failure recovery.

The reactive failure recovery is initialized after failures happen. In order to
further decrease the recovery time, the proactive technology is proposed. With
this method, resources have been preserved and backup paths have been worked
out [21] before the failure happens, leading to the benefit that protection paths
could come into use immediately once the faults are detected. According to the
difference in the scale of malfunction, the proactive mechanism can be classified
into link-based and topology-based technology, aiming at a single failure or mul-
tiple failures respectively. The former mainly focuses on protecting certain links
or devices, such as Loop-Free Alternates (LFA) algorithm [7] and Not-Via algo-
rithm [11]; while the latter will calculate a few logical backup topologies which
can help to protect the whole network [31,32,45]. In comparison, the proactive
technology performs better on recovery time as a few preparatory works have
been done before failures happen. However, these works will spend extra network
resources which can not be neglected especially in the overloaded networks.

2.2 What Does OpenFlow Bring for Fault Tolerance

The architecture of SDN can be divided into two parts: the control plane and data
plane. The control plane is composed of the controller and the channels between
the controller and network elements; while the data plane contains switches and
hosts [18]. Besides, the OpenFlow protocol (Fig. 2 shows the architecture of this
protocol) is widely used for communicating between the two planes, and most
of the methods mentioned in this paper are based on this de facto southbound
protocol. In SDN, switches can only forward packets according to the forwarding
rules established and updated by the controller.

This paper mainly focuses on how to use the OpenFlow protocol to solve the
fault tolerance problem in SDN. At first a few concepts of this new protocol are
introduced, including the flow table and group table. Each flow table contains a
set of table entries, and each table entry consists of match fields, counters, and
a set of instructions which are deployed for packets matching [4]. Firstly, each
match field is composed of tuples, consisting of ingress port, source/destination
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MAC address, source/destination IP address, port numbers, etc. Moreover, a
flow can be defined according to arbitrary combinations of these elements, unlike
the traditional routing protocols which are based on the destination IP address
only. Secondly, the counters are used to count the number of packets/bytes of
a flow. Finally, the instructions describe how to process these packets such as
forwarding, dropping, redirecting to the group table and so on.

When a flow table entry points to a group, the concept of group table needs
to be described. A group table consists of several group table entries, and each
entry contains: group identifier, group type, counters and action buckets. Firstly,
the group identifier uniquely identifies each group. Secondly, the group type
determines the group semantics, including the following types: “all”, “select”,
“indirect” and “fast fail over”. Thirdly, the counters are used to count the num-
ber of packets/bytes. Finally, the action buckets contain a set of actions and
associated parameters. The principle of the “fast fail over” group type is to exe-
cute the first live bucket every time which can be applied in the fault tolerance.
Multiple paths of an identical flow can be preserved into the same group table
entry with the working path in the first bucket. When the working path fails, the
following buckets of protection paths (if alive) can be used, enabling the switch
to automatically change forwarding route without informing the controller [5].

3 Fault Tolerance on Data Plane: Phase 1-Detecting Link
Failures

To guarantee the availability of the data plane, the source host is required to
communicate with the destination even though link failures happen. When refer-
ring to the fault tolerance on this plane, the two steps – detecting and recovering
from failures, are needed which will be described in the following two sections,
respectively.

3.1 Methods

Loss Of Signal (LOS, as shown in Fig. 3(a)), which is widely used to detect link
failures in carrier-grade networks [39], can be utilized by switches to perceive the
status change of each port. In SDN, this warning message need to be transferred
to the controller for further processing. Similarly, the method proposed in [22]
(as shown in Fig. 3(c)) is also applied to detect link failures. The main idea of
this approach is using a circle which starts and terminates at the controller to
monitor the status of a few links. Under normal circumstances, the control packet
is transmitted along the loop, and finally return to the controller. However, if
there is a failure inside the circle (which means a link breaks), the second stage
initiates where each switch in the loop is required not only to deliver the packet
to the next hop, but also send back to the controller. As the result, the link
failure can be located.

Sometimes detecting path failures is needed where a path is composed of mul-
tiple links. Bidirectional Forwarding Detection (BFD) [17] (as shown in Fig. 3(b))
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Fig. 3. Detection methods (a) LOS through monitoring a link (b) BFD through mon-
itoring a path (c) two methods through monitoring a circle

is designed for this purpose. It is a Hello protocol and the two end nodes of a BFD
session transmit echo packets periodically. If a system stops receiving the packet
from the monitored connection, the path may be assumed to be broken [39].

With the number of devices increases, multiple controllers are needed to
cooperate to control the whole network. In this situation, each controller has its
own control domain. However, considering packets can pass through arbitrary
links, the controller may need to be informed of a failure outside of its region.
[19] (as shown in Fig. 3(c)) suggests using a circle to help locating link failures
which is similar to the approach proposed in [22], but the difference is when a
fault is detected, the binary search is adopted so that the hunting zone decreases
until a single broken link is figured out. Moreover, the two methods by using a
circle need extra flow table entries to return packets to the controller, or change
the walking direction.

3.2 Comparison and Summaries

A comparison is summarized in Table 1 with some extended discussion. As the
methods mentioned before are executed in different experimental environment,
the detection time doesn’t have comparability, but the factors affecting the detec-
tion time can be discussed. It can be concluded that each method is related to the
length of the monitoring path, and the LOS is relatively stable as its granularity
is a link.
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Table 1. Comparison of failure detection methods

Location of failures means finding out the specific broken link or links, more
than just detecting failures in the data plane. Firstly, BFD can only judge
whether the whole path is normal or not. Secondly, the two methods by the
use of a circle can only locate the first failed link near the controller. Finally,
by using LOS, each switch will generate port status message to the controller
independently when its link has broken, then each link can be located separately.
As the result, only the LOS can locate multiple link failures.

Summaries. When choosing an appropriate failure detection method, the recov-
ery technology (restoration or protection) to be used in combination can be
considered. If the restoration mechanism is adopted which means informing the
controller after the link breaks, the LOS which will generate port status message
to the controller is a good choice. If the protection is in use, the BFD can be
applied to protect each path without the involvement of the controller. Specifi-
cally in the situation where a number of hosts want to communicate with each
other, multiple paths must be established and observed for all the pairs when
adopting BFD. In order to reduce the number of BFD sessions as well as the
detection time, establishing BFD sessions for per link can be a choice as the
number of links is relatively less and more stable compared to the number of
paths when BFD sessions are set up for each path.

4 Fault Tolerance on Data Plane: Phase 2-Recovering
from Link Failures

The recovery methods are divided into restoration and protection, respectively.
In this section, these two technologies are introduced firstly, and next open
research issues will be discussed.
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Fig. 4. Restoration technology

4.1 Restoration

Considering the situation where a working path is broken, the restoration tech-
nology is a choice which can be used to recover from link failures. Generally
speaking, This technology can be divided into three steps (shown in Fig. 4):
1. The relevant switches inform the controller about the change of a port’s sta-
tus. 2. The controller can either work out another path after the link failure
[40], or has calculated the protection path along with the working path before
the failure. In the latter situation, the protection path can be saved in switches’
flow tables [29], or stored inside the controller [24]. Regardless of the methods
adopted, the controller must send packets out to update switches’ flow tables.
3. Data flows will go through the protection path.

In detail, the method proposed in [40] uses the shortest path algorithm to
calculate route before the link failure. It can be integrated with the LOS. When
the “port down” event arrived at the controller, the controller can find the flows
affected by the failed link, and recompute paths for these flows. Similar with
the failure detection algorithms described in the previous section, there is a
recovery approach based on cycle structure [29]. This approach firstly computes
a tree for the topology, then assigns a tie-set (in fact a circle) for each remaining
link (which is not contained in the tree). As the result, if a link is broken, the
algorithm can find and use the responding tie-set to repair.

The paper [24] puts forward a method to recover from link failures in the
fat-tree topology where only two switches belonging to different layers can have
a connection. If they have a directly connected link, there will going to be at
least another detour path consisting of three links to connect them as well. This
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Table 2. Comparison of restoration methods

is the main idea of this approach, and the controller records the load of each link
to help decide the protection paths.

At the end of this subsection, a comparison is summarized in Table 2. The
controller’s job before and after the link failure is discussed. For the second
method, as flow table entries for each working path and each tie-set has been
worked out before the fault, few packets are needed to change the path from the
primary one to the appropriate tie-set, which is contrary to other two approaches.

Next, the scalability problem is explained. For the first and the last method,
as long as there is a path available, they can find it for recovering. However, for
the second approach, each link only belongs to limited tie-sets, and each tie-set
can only deal with a single link failure. As the result, the second approach has
drawbacks in expansibility.

4.2 Protection

After the working path is broken, the protection technology can be used which
contains two steps (shown in Fig. 5): 1. The controller has worked out the backup
path along with the working path, and stored the information into switches’
forwarding tables [37], [39] or packet headers [33]. When the failure happens,
the switches can detect this fault, and change the route to the backup path
without the participation of the controller. 2. Data flows will go through the
protection path.

According to the difference in the version of OpenFlow protocol adopted, the
methods based on the protection mechanism can be divided into two categories:
approaches based on OpenFlow 1.0 and OpenFlow 1.1, respectively. When adopt-
ing OpenFlow 1.0, [37] suggests that the working path and backup path can be
preserved into two kinds of flow tables which are different in priorities. When
the working path breaks, only if its corresponding flow table entries are deleted,
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Fig. 5. Protection technology

the protection path which is lower in priority can be used. As the result, this
method will generate OFP FLOW RESTORE packet to inform the controller to
recompute route if the primary one recovers. While [33] proposes the two paths
can be coded into the headers of packets. Moreover, a label is assigned for each
port of each switch to save space. Nevertheless, the length of route is restricted
by the size of the header without doubt.

From OpenFlow 1.1, the concept of group table is proposed, and the method
proposed in [39] uses the “fast fail over” group type to save working path and
protection path in multiple action buckets.

At the end of this subsection, a comparison is summarized in Table 3. The
granularity of protection is discussed which can be divided into two categories:
for each link, or for each path. The first two methods compute a backup path
for each link contained in the working route. By contrast, the approach based
on the group table uses BFD to monitor the whole path periodically. As long as
any link of the working path breaks, the whole route is announced to be failed,
and the protection path can be activated immediately.

Similar with the restoration, the scalability problem needs to be explained
as well. As long as both the working path and the protection path face a failure,
data flows can’t find another route to deliver packets any more even though
there are other routes available.

4.3 Comparisons, Summaries and Open Research Issues

We conducted the simulation experiments on fault tolerance of the data plane.
In detail, we implemented a restoration and protection method both using the
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Table 3. Comparison of protection methods

shortest path algorithm to calculate routes. These two fault tolerance applica-
tions were developed on Ryu – a python-based controller [3]. When referring
to the topologies, the 4-ary and 6-ary fat-trees [6], and two real-world network
scenarios – basic reference topology of the COST 266 action project [26] and a
topology from the Topology Zoo [1] – were used for experiments. Specifically, we
implemented the protection method by calculating a backup path for each link
instead of for each path as the number of links is relatively less and more stable.

When referring to the simulation and emulation tools for SDN, Mininet
adopted in our experiments is the most popular one. Besides, [14,36] are espe-
cially designed for the distributed experimental environments. By using Mininet
[2], we measured three metrics – the number of total table entries, the average
number of hops for backup paths, and the recovery time – on each topology.
Firstly, as for the recovery time, the protection was much less than the restora-
tion. Moreover, the recovery time of the former was stable as backup paths were
calculated in advance and could be activated as soon as links fail. Secondly, the
number of table entries was discussed. The ratio between the protection and the
restoration was in the range of 2.78 to 3.90. Thirdly, the average number of hops
was compared. The backup path calculated by the protection needed 1.23 to 2.53
more hops than the restoration. Specifically, in the fat-tree topology, all the con-
nections have inherent rules. For example, each two hosts have at least two paths
of the same length to reach each other, which is proven by the restoration. As
the result, a few protection paths for an identical flow can be calculated rapidly
according to the inherent rules, and can be stored into the group tables for fail-
ure recovery. The benefit is that the recovery time is less than the restoration,
and the calculation of protection paths is easy to realize than the algorithms to
find disjoint alternative paths (such as Suurballe’s algorithm [41]).

Besides the conclusions inferred from the experiments, the comparisons
between the two mechanisms can be analyzed in theory. In general, the
restoration has the advantage of flexibility. For example, as the size limit of
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the group table, it is hard to exhaust all the backup paths before the failures.
By contrast, provided that at least one path is available, the restoration can be
used for fault tolerance in any case. When considering the metric of length, only
the restoration can always compute a shortest path after the failure. Moreover,
there are other factors (such as the load of each link) need to be considered
except for “the distance of each path” when choosing a backup path. In this
situation, the real-time data of each link’s load is required, and the restoration
can be adopted while the protection cannot satisfy the demand.

As for future research directions, the idea of combination is considered at
first. Routing methods in traditional networks can be combined with SDN. As
described in [47], the method uses routing tables and flow tables to forward
packets before and after link failures, respectively. Another situation is when
the controller functions normally, flow tables are used to route messages. Once
the controller breaks, all the switches can use traditional routing protocols to
calculate paths which looks like a reversion of the former approach. Similarly,
there is an idea combining the restoration with protection which aim to take
advantages of both.

In the second place, the scalability is of concern as well. Most methods intro-
duced in this paper are focusing on the failure of a single link especially for the
protection mechanism, then it can be extended to solve failures of multiple links.
As for multiple links, the problem of failure recovery can be further classified
according to the properties of these broken links. On one hand, if all the failed
links belong to the working path, most existing methods can solve it. In [40],
each link is managed by the controller independently. While in [39], no matter
how many links are broken in the same working path, the protection path can
be active as long as the primary route fails. On the other hand, some failed links
belong to the working path, and others are part of the protection path. In this
situation, the failure recovery may not be achieved if 1:1 protection is adopted.
To solve the limitation, For example, maybe non-intersect paths can be calcu-
lated as many as possible. The scalability problem can be extended further to
solve the failure of a switch. As this is different from the failure of a link, the
difference need to be caught and a more appropriate approach for this situa-
tion can be found out. For example, if a switch fails, the controller can judge
whether this is a normal fault where just several links break or this is a outage
of a switch, then a different solution is given based on different judgment. More
specifically, if a port status message of a switch is transmitted to the controller,
the controller can probe the other end of this failed link (as the controller knows
two switches and their corresponding ports of each link) to confirm whether the
opposite switch goes wrong. If so, the controller needs to update the topology
and recompute relevant flow table entries.

Moreover, if no backup path is available, the controller can inform the rele-
vant switches to stop transmitting messages walking through these broken links.
The problem can be divided into two parts according the types of these links.
On one hand, for the link between switches using in-band connection, only a
few switches directly connect to the controller. If a node discovers the failure
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of a link, it may require a long time to inform the controller. To avoid this
phenomena, [12] proposes the switch can inform the affected nodes, other than
the controller. The switch on the failed link can use the ingress port to help
informing upstream nodes. On the other hand, the link between host and switch
is considered. If such a connection breaks, the relevant host can’t be reached
any more. Therefore the controller need to be informed and relative flow table
entries targeting the destination host can be deleted.

There are some papers discussing the problem of fault tolerance from differ-
ent angles. [34] proposes a declarative language for network administrators to
specify working paths as well as backup paths. Based on the syntax and the nor-
malization rules of this language called FatTire, a program can be generated and
a compiler is used for translating into configurations of switches. [46] discusses
the topic of multicast in SDN, but the fault tolerance problem has been left out
which needs to be considered as well.

5 Fault Tolerance on Control Plane

To guarantee the resiliency of the control plane, there are two aspects need to
be considered. Firstly, the controller must function properly, which means that
the failure of the controller is not allowed. Secondly, switches can communicate
with the controller even though the OpenFlow channel breaks. In this section,
these two aspects are introduced respectively.

On one hand, considering the situation where the controller is down, the
OpenFlow channels are useless, and the underlying switches are out of control.
A general solution (as shown in Fig. 6) is using multiple controllers to provide

Fig. 6. Deal with the failure of controller
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Fig. 7. Deal with the failure of OpenFlow channel

resiliency. When the primary one is wrong, the backup controller can take over
the whole data plane.

The problem mentioned above can be further divided into two parts – whether
one controller or multiple controllers are in use. On one hand, if only one con-
troller is adopted, its failure is catastrophic. As long as the network changes
after the controller fails, there is going to be inconsistency between the data
plane and control plane. To solve this problem, for example, traditional routing
protocols can take over the subsequent duties to manage the network. Moreover,
considering the situation that the data plane seldom goes wrong, the protection
mechanism is more recommended as it can operate without the controller even
though failures happen. On the other hand, if multiple controllers are applied,
the control plane is far more stable than the former. However, in this situation,
consistency need to be guaranteed [23]. For example, when the primary controller
fails, the left controllers can take over the responsibility. [10,30] are focusing on
this problem. The former proposes using a backup controller to avoid a single
point of failure. While the latter suggests that besides multiple controllers being
used at the same time, a data store can be adopted to ensure the consistency
of these managers. As for each switch, it connects to two controllers simultane-
ously – one is the master, and the other is the slave. Instead of using a data store,
[42] suggests adopting a distributed file system to coordinate between controllers.
More than just considering how to recover the controllers’ states, maintaining
switches’ states should be involved as well. [16] has achieved this goal by process-
ing the whole event-processing cycle (including: generation of events by switches,
communication between switches and controllers, and reconfiguration of relevant
switches) as a transaction.
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On the other hand, considering the situation where the OpenFlow channel
breaks with other network elements operating normally. In general, the out-band
and in-band control can be adopted before and after failures, respectively (as
shown in Fig. 7). When the control traffic goes through the same path as the
data flow does, the fault tolerance methods on the data plane mentioned before
can be used for reference [38].

6 Conclusion

SDN is a novel network architecture which decouples the data plane from the
control plane. However, SDN is not able to recover from failures automatically.
Therefore mechanisms need to be designed for fast failover via the coordination
between controller and switches. In this paper, we broadly discuss the fault tol-
erance issue and systematically review the existing methods proposed so far for
SDN. Our representation starts from the significant components that OpenFlow
and SDN brings – which are useful for the purpose of failure recovery, and is then
further expanded to the discussion of fault tolerance in data plane and control
plane, in which two phases – detection and recovery – are both needed. In par-
ticular, as the important part of this paper, we have highlighted the comparison
between two main methods – restoration and protection – for failure recovery. So
far, the recovery for multiple link failure remains an open issue and could be our
future research direction. As one of the first few authors, we have shed a light
in this paper on the issue of fault tolerance for software defined networks. We
expect that our work could attract more researchers’ attention, and encourage
them to deliver more contributions in this issue.
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