Jiefeng Li

Jiefeng Li
Shanghai Jiao Tong University | SJTU · Department of Computer Science and Engineering

Ph.D. student

About

34
Publications
4,428
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,547
Citations
Introduction
Skills and Expertise

Publications

Publications (34)
Conference Paper
Multi-person pose estimation is fundamental to many computer vision tasks and has made significant progress in recent years. However, few previous methods explored the problem of pose estimation in crowded scenes while it remains challenging and inevitable in many scenarios. Moreover, current benchmarks cannot provide an appropriate evaluation for...
Conference Paper
Full-text available
Multi-person articulated pose tracking in complex unconstrained videos is an important and challenging problem. In this paper, going along the road of top-down approaches, we propose a decent and efficient pose tracker based on pose flows. First, we design an online optimization framework to build association of cross-frame poses and form pose flow...
Preprint
With the progress of 3D human pose and shape estimation, state-of-the-art methods can either be robust to occlusions or obtain pixel-aligned accuracy in non-occlusion cases. However, they cannot obtain robustness and mesh-image alignment at the same time. In this work, we present NIKI (Neural Inverse Kinematics with Invertible Neural Network), whic...
Preprint
Recovering whole-body mesh by inferring the abstract pose and shape parameters from visual content can obtain 3D bodies with realistic structures. However, the inferring process is highly non-linear and suffers from image-mesh misalignment, resulting in inaccurate reconstruction. In contrast, 3D keypoint estimation methods utilize the volumetric re...
Preprint
Full-text available
Accurate whole-body multi-person pose estimation and tracking is an important yet challenging topic in computer vision. To capture the subtle actions of humans for complex behavior analysis, whole-body pose estimation including the face, body, hand and foot is essential over conventional body-only pose estimation. In this paper, we present AlphaPos...
Chapter
3D human pose estimation from a monocular video has recently seen significant improvements. However, most state-of-the-art methods are kinematics-based, which are prone to physically implausible motions with pronounced artifacts. Current dynamics-based methods can predict physically plausible motion but are restricted to simple scenarios with stati...
Chapter
When analyzing human motion videos, the output jitters from existing pose estimators are highly-unbalanced with varied estimation errors across frames. Most frames in a video are relatively easy to estimate and only suffer from slight jitters. In contrast, for rarely seen or occluded actions, the estimated positions of multiple joints largely devia...
Chapter
Full-text available
Long-tailed image recognition presents massive challenges to deep learning systems since the imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks. Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design, etc. In this wo...
Preprint
3D human pose estimation from a monocular video has recently seen significant improvements. However, most state-of-the-art methods are kinematics-based, which are prone to physically implausible motions with pronounced artifacts. Current dynamics-based methods can predict physically plausible motion but are restricted to simple scenarios with stati...
Preprint
Long-tailed image recognition presents massive challenges to deep learning systems since the imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks. Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design, etc.In this wor...
Article
We study the unsupervised representation learning for the semantic segmentation task. Different from previous works that aim at providing unsupervised pre-trained backbones for segmentation models which need further supervised fine-tune, here, we focus on providing representation that is only trained by unsupervised methods. This means models need...
Article
Data augmentation is an efficient way to elevate 3D object detection performance. In this paper, we propose a simple but effective online crop-and-paste data augmentation pipeline for structured 3D point cloud scenes, named CorrelaBoost. Observing that 3D objects should have reasonable relative positions in a structured scene because of the objects...
Article
Full-text available
Accurate whole-body multi-person pose estimation and tracking is an important yet challenging topic in computer vision. To capture the subtle actions of humans for complex behavior analysis, whole-body pose estimation including the face, body, hand and foot is essential over conventional body-only pose estimation. In this paper, we present AlphaPos...
Preprint
Full-text available
When analyzing human motion videos, the output jitters from existing pose estimators are highly-unbalanced. Most frames only suffer from slight jitters, while significant jitters occur in those frames with occlusion or poor image quality. Such complex poses often persist in videos, leading to consecutive frames with poor estimation results and larg...
Preprint
Full-text available
Soft-argmax operation is commonly adopted in detection-based methods to localize the target position in a differentiable manner. However, training the neural network with soft-argmax makes the shape of the probability map unconstrained. Consequently, the model lacks pixel-wise supervision through the map during training, leading to performance degr...
Preprint
Estimating the articulated 3D hand-object pose from a single RGB image is a highly ambiguous and challenging problem requiring large-scale datasets that contain diverse hand poses, object poses, and camera viewpoints. Most real-world datasets lack this diversity. In contrast, synthetic datasets can easily ensure vast diversity, but learning from th...
Preprint
Full-text available
Heatmap-based methods dominate in the field of human pose estimation by modelling the output distribution through likelihood heatmaps. In contrast, regression-based methods are more efficient but suffer from inferior performance. In this work, we explore maximum likelihood estimation (MLE) to develop an efficient and effective regression-based meth...
Article
Human attention mechanisms often work in a top-down manner, yet it is not well explored in vision research. Here, we propose the Top-Down Attention Framework (TDAF) to capture top-down attentions, which can be easily adopted in most existing models. The designed Recursive Dual-Directional Nested Structure in it forms two sets of orthogonal paths, r...
Article
This work studies the problem of estimating human pose and shape from monocular RGB-D images. Depth information in the RGB-D input allows accurate 3D human reconstruction. However, the limited sizes of the RGB-D datasets restrict the generalization ability of the existing RGB-D based methods. In this letter, we propose a novel architecture, View Re...
Article
Human trajectory prediction is crucial for service robots, autonomous driving and advanced driver assistant systems. Current top-performing methods mainly rely on intractable generative models to learn a distribution of future trajectories, and sample multiple plausible ones as prediction results. In this letter, we propose a novel perspective for...
Preprint
Full-text available
Human attention mechanisms often work in a top-down manner, yet it is not well explored in vision research. Here, we propose the Top-Down Attention Framework (TDAF) to capture top-down attentions, which can be easily adopted in most existing models. The designed Recursive Dual-Directional Nested Structure in it forms two sets of orthogonal paths, r...
Chapter
Remarkable progress has been made in 3D human pose estimation from a monocular RGB camera. However, only a few studies explored 3D multi-person cases. In this paper, we attempt to address the lack of a global perspective of the top-down approaches by introducing a novel form of supervision - Hierarchical Multi-person Ordinal Relations (HMOR). The H...
Preprint
Estimating hand-object (HO) pose during interaction has been brought remarkable growth in virtue of deep learning methods. Modeling the contact between the hand and object properly is the key to construct a plausible grasp. Yet, previous works usually focus on jointly estimating HO pose but not fully explore the physical contact preserved in graspi...
Preprint
Full-text available
Model-based 3D pose and shape estimation methods reconstruct a full 3D mesh for the human body by estimating several parameters. However, learning the abstract parameters is a highly non-linear process and suffers from image-model misalignment, leading to mediocre model performance. In contrast, 3D keypoint estimation methods combine deep CNN netwo...
Preprint
Full-text available
Remarkable progress has been made in 3D human pose estimation from a monocular RGB camera. However, only a few studies explored 3D multi-person cases. In this paper, we attempt to address the lack of a global perspective of the top-down approaches by introducing a novel form of supervision - Hierarchical Multi-person Ordinal Relations (HMOR). The H...
Preprint
Full-text available
Human-Object Interaction (HOI) detection lies at the core of action understanding. Besides 2D information such as human/object appearance and locations, 3D pose is also usually utilized in HOI learning since its view-independence. However, rough 3D body joints just carry sparse body information and are not sufficient to understand complex interacti...
Preprint
Full-text available
Multi-person pose estimation is fundamental to many computer vision tasks and has made significant progress in recent years. However, few previous methods explored the problem of pose estimation in crowded scenes while it remains challenging and inevitable in many scenarios. Moreover, current benchmarks cannot provide an appropriate evaluation for...

Network

Cited By