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Spectrometric reconstruction of mechanical-motional states in optomechanics
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We propose a spectrometric method to reconstruct the motional states of mechanical modes in
optomechanics. This is achieved by detecting the single-photon emission and scattering spectra
of the optomechanical cavity. Owing to an optomechanical coupling, the a priori phonon-state
distributions contribute to the spectral magnitude, and hence we can infer information on the
phonon states from the measured spectral data. When the single-photon optomechanical-coupling
strength is moderately larger than the mechanical frequency, then our method works well for a wide
range of cavity-field decay rates, irrespective of whether or not the system is in the resolved-sideband
regime.

PACS numbers: 42.50.Wk, 03.65.Wj, 42.50.Pq

I. INTRODUCTION

Quantum states carry complete information of a phys-
ical system. To obtain the statistical properties of the
system, one needs to know its state vector or density op-
erator when it is in a pure or mixed state, respectively [1].
Quantum state tomography (QST) is a procedure for re-
constructing the state of quantum systems by measur-
ing a complete set of observables [2–4]. In the past two
decades, many advances have been made in QST for both
continuous-variable [4] and discrete-variable [5–7] states.
For example, the QST of a harmonic oscillator has been
analyzed in both quadrature and Fock-state representa-
tions. Moreover, quantum state reconstruction has also
been studied on optical [8–12] and microwave [13–19]
photon fields, as well as the motional states of matter
systems, such as atoms [20–22], molecules [23, 24], and
micro- or nanomechanical resonators [25–27].
Generally, it is a difficult task to directly reconstruct

the quantum state of a massive mechanical resonator be-
cause one cannot access the mechanical excitation di-
rectly. Usually, other auxiliary systems, such as opti-
cal modes [28, 29] or atoms [26] are needed to trans-
duce the states of mechanical modes. In this sense, op-
tomechanical systems [30, 31] can provide a natural plat-
form to perform this task because there is an inherent
interface between mechanical and optical modes. Even
though people have noticed the means for controlling me-
chanical motion (e.g., cooling [32–35] and quantum-state
engineering [36–43]) by designing proper driving fields,
the method for monitoring the mechanical motion in the
nonlinear quantum optomechanics via the optical means
remains mostly unexplored. We note that QST in op-
tomechanics has recently been studied in the short-pulse
case [28, 29] and in optically-levitating-dielectrics sys-
tems [44].
In this paper, we propose a reliable method for recon-

structing the mechanical motional state of the moving
mirror in cavity optomechanics. Our approach is based
on spectrometric measurement of the emission or scat-
tering of a single photon interacting with the mechanical

motion. Owing to the optomechanical coupling, the me-
chanical oscillation will modulate the behavior of the sin-
gle photon (which will show in its spectrum), and hence
one can infer the state information of the mechanical
mode from the measured spectral data.

II. THE SYSTEM

We start by considering an open optomechanical cav-
ity, which is formed by a fixed end mirror and a mov-
ing end mirror, as shown in Fig. 1. Assuming that
the moving mirror is perfect and the fixed mirror is
partially transparent, then the cavity fields couple with
the continuous fields outside the cavity through photon-
hopping interactions. In a rotating frame with respect

to H0 = ωca
†a+ ωc

∫∞

0
c†kckdk (~ = 1), the Hamiltonian

of the total system including the cavity and the environ-
ment fields is [45, 46]

Hs = Hopc+

∫ ∞

0

∆kc
†
kck dk+

∫ ∞

0

ξk(a
†ck+c†ka) dk, (1)

with Hopc = ωMb†b − g0a
†a(b† + b). Here, a (a†) and

b (b†) are, respectively, the annihilation (creation) op-
erators of the optical and mechanical modes, with re-
spective frequencies ωc and ωM . The second term in
Hopc describes the radiation-pressure coupling, and g0 is
the single-photon optomechanical coupling strength [47].

The annihilation and creation operators ck and c†k de-
scribe the kth mode of the outside fields with resonant
frequency ωk. The parameter ∆k = ωk−ωc is the detun-
ing between the frequencies of the kth mode and the cav-
ity mode. The coupling between the cavity field and the
outside fields is described by the photon-hopping inter-
action with coupling strength ξk. Under the framework
of the Wigner-Weisskopf theory, the parameter ξk is re-
lated to the photon decay rate by γc = 2πξ2c , where ξc
is the strength at the cavity resonance frequency. We
note that the Hamiltonian of the total system in the
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FIG. 1. (Color online) Schematic diagram of a Fabry-Perot-
type optomechanical cavity formed by a fixed end mirror and
a moving end mirror. The cavity fields couple with the con-
tinuous fields outside the cavity through photon-hopping in-
teractions.

Schrödinger picture can be written as H = H0 +Hs be-
cause of [H0, Hs] = 0.
Because the mechanical decay rate γM is much smaller

than the optical decay rate γc (γM/γc ∼ 10−3 to 10−7

in typical optomechanical systems [31]), in this paper we
will merely take the photon decay into account and ne-
glect the mechanical dissipation. This treatment is justi-
fied because the photon emission and scattering processes
are completed in a time scale 1/γc during which the me-
chanical dissipation is negligible.

III. SINGLE-PHOTON SPECTRA

In this system, the total photon number operator Tp =

a†a+
∫∞

0
c†kck dk is a conserved quantity, due to [Tp, H ] =

0, then we can restrict the system within a subspace with
a definite photon number. In the single-photon subspace,
a general pure state of the total system can be written
as

|ϕ(t)〉 =
∞
∑

l=0

Al(t)|1〉a|l̃〉b|∅〉

+

∞
∑

l=0

∫ ∞

0

Bl,k(t)|0〉a|l〉b|1k〉dk, (2)

where |l̃〉b = exp[β0(b
† − b)]|l〉b are single-photon-

displaced phonon number states [48] with β0 = g0/ωM .

The states |l̃〉b are defined by the eigen-equation

[ωMb†b− g0(b
† + b)]|l̃〉b = (lωM − δ)|l̃〉b (3)

with δ = g20/ωM . Here the Hamiltonian operator at the
left-hand side of Eq. (3) is Hopc when the photon number

is limited to one. In Eq. (2), |1k〉 = c†k|∅〉 is the single-
photon state of mode ck, and |∅〉 is the vacuum state. The
first and second components in |ϕ(t)〉 denote the basis
states for the single photon in the cavity mode and the
kth mode outside the cavity, respectively. The variables
Al(t) and Bl,k(t) are probability amplitudes.

In the long-time limit t ≫ 1/γc, the single photon com-
pletely leaks out of the cavity, regardless of its initial
state, then Al(∞) = 0 and the long-time state becomes

|ϕ(∞)〉 =
∞
∑

l=0

∫ ∞

0

Bl,k(∞)|0〉a|l〉b|1k〉dk. (4)

The form of Bl,k(∞) depends on the initial state of the
system. Here, the single photon could be initially in ei-
ther the cavity or the outside fields. These two cases
correspond to the single-photon emission and scattering
processes.
Below, we derive the single-photon emission and scat-

tering spectra when the mechanical resonator is in an
arbitrary initial state. This is achieved by first calculat-
ing the spectra corresponding to the mirror initially in
a Fock state |n0〉b, and then we obtain the spectra for a
general initial state by superposition. When the mirror
is initially in the number state |n0〉b, the initial state of
the total system is

|ϕn0(0)〉 = |n0〉b|φ〉photon. (5)

In the single-photon emission case, the single photon is
initially in the cavity, and we have |φ〉photon = |1〉a|∅〉.
In the scattering case, the cavity is initially in a vacuum
and the single photon is in a Lorentzian wave packet in
the continuous fields. Then the initial state of the photon
is

|φ〉photon = |0〉a ⊗
√

ǫ

π

∫ ∞

0

1

(∆k −∆0 + iǫ)
|1k〉dk, (6)

where ∆0 and ǫ are the wave-packet center and width,
respectively. At time t, the state of the system can be
expressed as Eq. (2), with the replacements |ϕ(∞)〉 →
|ϕn0(∞)〉, Al(t) → An0,l(t), and Bl,k(t) → Bn0,l,k(t).
Here the subscript n0 in state |ϕn0(t)〉 and probability
amplitudes An0,l(t) and Bn0,l,k(t) refers to the initial
state |n0〉b of the mirror. The expressions of An0,l(t) and
Bn0,l,k(t) for the single-photon emission and scattering
cases have been given in Ref. [45]. In the single-photon
emission and scattering cases, we can check that the state
of the system is normalized, i.e., 〈ϕn0(t)|ϕn0(t)〉 = 1.
Since we treat the optomechanical system and the con-
tinuous fields outside the cavity as a whole closed system,
the evolution of the total system is unitary. We should
point out that, in the derivation of the analytical expres-
sion of these probability amplitudes, we have made the
Wigner-Weisskopf approximation.
Based on the above discussions, we denote the relation

|ϕn0(t)〉 = U(t)|ϕn0(0)〉 = U(t)|n0〉b|φ〉photon, (7)

where U(t) is the unitary evolution operator associated
with the Hamiltonian Hs of the total system. Therefore,
when the mirror is initially in a general density matrix

ρ(b)(0) =

∞
∑

m,n=0

ρ(b)m,n(0)|m〉b b〈n| (8)



3

with ρ
(b)
m,n(0) = b〈m|ρ(b)(0)|n〉b, the state of the total

system at time t would be

ρ(t) = U(t)[ρ(b)(0)⊗ |φ〉photon photon〈φ|]U †(t)

=

∞
∑

m,n=0

ρ(b)m,n(0)U(t)|m〉b|φ〉 photon photon〈φ| b〈n|U †(t)

=

∞
∑

m,n=0

ρ(b)m,n(0)|ϕm(t)〉 〈ϕn(t)|. (9)

Correspondingly, the long-time state of the total system
is

ρ(∞) =
∞
∑

m,n=0

ρ(b)m,n(0)|ϕm(∞)〉〈ϕn(∞)|, (10)

where |ϕm(n)(∞)〉 = ∑∞
l=0

∫∞

0 Bm(n),l,k(∞)|0〉a|l〉b|1k〉dk.
From ρ(∞) we obtain the single-photon spectra

S(∆k) ≡ Tr[Πkρ(∞)] =
∞
∑

m,n=0

ρ(b)m,n(0)Λn,m(∆k), (11)

where Πk = |1k〉〈1k| is the single-photon projective op-
erator and

Λn,m(∆k) =
∞
∑

l=0

B∗
n,l,k(∞)Bm,l,k(∞). (12)

The relation (11) is important in this work and provides
the connection between the spectra and the density ma-
trix elements of the mirror. This result motivates us to
reconstruct the initial state of the mirror by measuring
the spectra of the outgoing photon.

IV. QUANTUM STATE RECONSTRUCTION

A. Diagonal density-matrix case

To better see this procedure, we first consider the di-
agonal density-matrix case, where the density matrix is
diagonal in the basis of number states. In this case, the
initial state of the mirror is assumed to be ρ(b)(0) =
∑∞

n=0 Pn|n〉b b〈n|, with the phonon number distribution
Pn. Then, the single-photon spectra become S(∆k) =
∑∞

n=0 PnS|n〉b(∆k), where S|n〉b(∆k) = Λn,n(∆k) are the
spectra corresponding to the component of the Fock state
|n〉b. Once we know the three parameters: g0, γc, and
ωM , then S|n〉b(∆k) can be obtained. In realistic recon-
structions, we approximately truncate the Hilbert space
of the mirror into the lowest N -dimensional subspace.
Here the dimension parameter N should be chosen to be
sufficiently large such that the probabilities outside this
subspace are negligible. In this case, the spectra can be
approximated by

S(∆k) ≈
N−1
∑

n=0

PnS|n〉b(∆k). (13)
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FIG. 2. (Color online) Reconstructed phonon number dis-
tributions Pn, based on the emission spectrum, for various
values of the dimension parameter N ; the exact distribu-
tion is presented for reference. Here the initial state of the

mirror is: (a) the thermal state ρ
(b)
th =

∑∞

n=0 n̄
n
th/(n̄th +

1)n+1|n〉b b〈n|, with n̄th = 1; (b) the maximally-mixed state

ρ
(b)
mms =

1
√

ns

∑ns−1
l=0 |l〉b b〈l| in a subspace of dimension ns = 5.

Other parameters are γc/ωM = 0.1 and g0/ωM = 2.

Inspired by this relation, we construct a system of lin-
ear equations for the variables Pn by choosing N sample
points (with the coordinates ∆kj

, j = 1, 2, 3, ..., N) from
the spectra. The compact form of these equations is

KP = Q, (14)

where P = (P0, P1, ..., PN−1)
T . The elements of K and

Q are defined by

Kj,j′ = S|j′−1〉b(∆kj
), Qj = S(∆kj

), (15)

for j, j′ = 1, 2, 3, ..., N . The square matrix K can be cal-
culated based on the parameters g0, γc, and ωM , and the
vector Q can be measured in experiments. Therefore, if
the square matrixK is full rank, then the phonon number
distribution can be obtained as

P = K−1Q, (16)

where K−1 is the inverse matrix of K (see the Appendix
for an example).
One crucial factor in our method is to keep the validity

of the truncation approximation in Eq. (13), namely, we
need to choose a proper truncation dimension N . A nat-
ural question arises: for a unknown initial state of the
mirror, how to choose a proper N? In a realistic sim-
ulation, we need to choose tentative values of N many
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times by increasing N step-by-step. For an insufficiently
large N , the reconstructed elements are incorrect, and
hence do not converge. We keep on increasing N step-
by-step, until the reconstructed data converges. Then
this value of N will be good enough to satisfy Eq. (13).
If the N used is larger than the dimension of the exact
space, namely the number of nonzero probabilities, then
the additional phonon probabilities will be zero in the
solution. In this case, K is still a square matrix.
As examples, below we demonstrate our method by

considering two typical mixed states: the thermal state

ρ
(b)
th =

∞
∑

n=0

n̄n
th

(n̄th + 1)n+1
|n〉b b〈n|, (17)

and the maximally-mixed state

ρ(b)mms =
1

ns

ns−1
∑

n=0

|n〉b b〈n| (18)

in a subspace of dimension ns (with Pn = 1/ns for
n = 0, 1, 2, ..., ns − 1, and Pn = 0 for others). The recon-
structed phonon distributions are shown in Fig. 2, which
are compared with the exact phonon distributions. It
can be seen from Fig. 2(a) that the reconstructed dis-
tributions become more stable and eventually converge
with increasing N . The stable data corresponds to a
good truncation approximation in Eq. (13). The fideli-
ties between the reconstructed and exact phonon number
distributions are F = 0.841, 0.980, 0.993 for N = 3, 6, 8
in Fig 2(a). This truncation effect is more obvious for

the state ρ
(b)
mms. As shown in Fig. 2(b), the reconstructed

distributions become stable as long as N ≥ ns. For this
state, when N ≥ ns, the relation (13) is exact because
the Hilbert space is truncated automatically.
Equation (13) indicates that, once the dimension pa-

rameter N is large enough to satisfy the truncation ap-
proximation, the reconstructed distributions should be
independent of the choice of the sample points. Never-
theless, we should choose the sample points such that
the vector Q can capture the spectral feature as much
as possible; mathematically, making sure the matrix K

is full rank. In Fig. 2, the sample points are located at

∆kj
= −δ + jωM , j = ⌊−N/2, ..., N/2⌋, (19)

where δ = g20/ωM . These locations correspond to the
phonon sideband peaks and can hence mostly capture
the spectral feature. In Fig. 3(a), we reconstruct the
phonon distributions using three groups of random sam-
ple points in the region ∆kj

/ωM ∈ [−5, 5]. The results
show that the reconstructed results are well consistent
with the exact results (with fidelities F > 0.994), and
that our approach is almost independent of the choice of
sample points.
Two inherent dimensionless parameters in this system

are the scaled single-photon optomechanical-coupling
strength g0/ωM and the scaled cavity-field decay rate
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0.3

0.4

0.5

P n

n

   /
  /
   /
  exact

(d)

g0 / c /

n

FIG. 3. (Color online) Reconstructed thermal phonon-
number distributions Pn based on (a)-(c) emission and (d)
scattering spectra in various cases. (a) The sample points are
chosen randomly in the region ∆kj

/ωM ∈ [−5, 5]. The re-
constructed distributions for various values of (b) the single-
photon optomechanical-coupling strength g0 or of (c) the
cavity-field decay rate γc. (d) The distributions are recon-
structed based on the scattering spectrum for various values
of the parameters ǫ and ∆0. Here we choose n̄th = 1, and
other parameters are shown in the panels.
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γc/ωM [49–52]. In order to see how our approach de-
pends on these parameters, we show the reconstructed
phonon distributions for various values of the two ratios.
As shown in Fig. 3(b), we can see that our approach
works well for a moderately large coupling strength. Our
numerical results show that the optomechanical-coupling
strength should be on the scale of g0/ωM ∼ 2. A too-
weak optomechanical-coupling cannot capture the infor-
mation regarding the phonon distribution from the spec-
tra, and cannot make sure M becomes full rank. On the
contrary, a large g0 will increase the computational diffi-
culties because the involved Hilbert space for phonons is
large. In addition, for the cavity-field decay rate γc, there
is a wide range to choose. Figure 3(c) proves that our ap-
proach works well in a wide parameter range, irrespective
of whether or not the system is in the resolved-sideband
regime.
Our method can also be realized based on the scat-

tering spectrum. In the scattering case, in addition to
the parameters g0, γc, and ωM , there are two additional
controllable parameters: the wave packet centre ∆0 and
width ǫ of the incident photon. In Fig. 3(d), we plot the
reconstructed phonon distributions for various parame-
ters based on the scattering spectrum. We can see that
our method works well in both the narrow (ǫ/ωM ≪ 1)
and wide (ǫ/ωM > 1) wave packet cases. In addition, it
also works well for a wide range of driving frequencies,
which correspond to different phonon sideband resonant
transitions [45].

B. General density-matrix case

We now consider the general density-matrix case, in
which the density matrix contains nonzero off-diagonal
elements in the number-state representation. By trun-
cating the Hilbert space, the single-photon spectra in
Eq. (11) can be approximated by

S(∆k) ≈
N−1
∑

m,n=0

ρ(b)m,n(0) Λn,m(∆k). (20)

By choosing N2 sample points (with locations ∆kj
, j =

1, 2, 3, ..., N2) in the spectra, we can construct a system
of linear equations of these density matrix elements as

MC = R, (21)

where the coefficient matrix M and the column vector R
are defined by

Mj,j′ = Λn,m(∆kj
), Rj = S(∆kj

), (22)

for j, j′ = 1, 2, 3, ..., N2. The relationship between the
variables m,n and j′ is

m = Floor[(j′ − 1)/N ], n = (j′ − 1)−mN, (23)
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FIG. 4. (Color online) Reconstructed density matrix elements

ρ
(b)
m,n(0) based on the emission spectrum for various states:

(a)-(c) Fock states |0〉b, |1〉b, and |2〉b, (d), (e) superposed
Fock states (|0〉b ± |1〉b)/

√
2, and (f) (|0〉b + |1〉b + |2〉b)/

√
3.

Other parameters are γc/ωM = 0.1 and g0/ωM = 2.

where the function Floor(x) gives the greatest integers
less than or equal to x. The vector C is the variable to
be determined, its elements

Cl = ρ(b)m,n(0), l = 1, 2, 3, ..., N2, (24)

are the density matrix elements for the initial state of
the moving mirror, where the relationship between the
variables m, n, and l is m = Floor[(l − 1)/N ] and n =
(l − 1)−mN .
If the square matrix M is full rank, then the unique

solution of these density matrix elements can be obtained
as

C = M−1R, (25)

where M−1 is the inverse matrix of M. The vector R

can be obtained by experimentally detecting the single-
photon spectra, and the coefficient matrix M can be de-
termined from the expression of Λn,m(∆k) for special val-
ues ∆k = ∆kj

; then we can reconstruct the initial den-
sity matrix of the mechanical mode (see the Appendix
for an example). As additional examples, we consider
the density-matrix reconstruction for Fock states and su-
perposed Fock states based on the emission spectrum.
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The reconstructed density matrix elements are shown in
Fig. 4 for states |0〉b, |1〉b, |2〉b, (|0〉b ± |1〉b)/

√
2, and

(|0〉b + |1〉b + |2〉b)/
√
3. The data obtained is consistent

with the exact result with high fidelities F > 0.999.

V. DISCUSSIONS AND CONCLUSIONS

There are two important factors in the experimental
implementation of our method: (i) The single-photon
optomechanical-coupling strength g0 should be moder-
ately larger than the resonant frequency ωM of the me-
chanical resonator, i.e., g0/ωM ∼ 2. An optomechanical
coupling at this scale can be realized in ultracold atoms.
In Ref. [50], a coupling of g0/ωM > 10 has been realized.
In particular, our method does not require the resolved-
sideband condition g0 > γc, making this proposal ex-
perimentally feasible. However, in most optomechanical
systems [31], the optomechanical-coupling strengths are
much smaller than the mechanical frequencies. Recently,
two theoretical proposals have been proposed to enhance
the optomechanical couplings (the estimated g0 is several
MHz) in electromechanics [53, 54]. Moreover, the ratio
g0/ωM can also be increased by introducing either mod-
ulated optomechanical couplings [55], mechanical normal
modes [56], or collective mechanical modes in a transmis-
sive scatter array [57]. (ii) How to measure the single-
photon emission and scattering spectra is a key step for
the realization of this method. In experiments, to profile
the pattern of single-photon spectra, the single photon
needs to be detected by sweeping the frequency [58].
We note that there is no post-selection in our method.

This is because we do not need to condition a probabil-
ity space. In our system, the total photon number is a
conserved quantity, and hence we can restrict the sys-
tem within the single-photon subspace. Namely, a single
photon is initially prepared in the cavity (emission) or
the continuous field outside the cavity (scattering), after
the interaction with the mechanical motion, the single
photon will leak out of the cavity due to the photon de-
cay channel. Finally, we measure the spectrum of the
single photon, i.e., the reservoir photon occupation dis-
tribution. During these processes, there is one and only
one photon. Hence, the states of the mechanical motions
are completely obtained by measuring the spectrum of
the single photon, without post-selection.
To conclude, we have proposed a spectrometric ap-

proach for reconstructing the mechanical motional state
in optomechanics by detecting single-photon spectra. We
considered two different situations: single-photon emis-
sion and scattering, which correspond to the cases where
the single photon is initially in the cavity field or in a
wave packet in the continuous fields outside the cavity. In
our considerations, the mechanical dissipation was safely
neglected, because the mechanical dissipation is negligi-
ble during the time interval for the single-photon emis-
sion and scattering to be finished. However, our studies
included the photon dissipation by modeling the opti-

cal environment as a harmonic-oscillator bath, under the
framework of the Wigner-Weisskopf approximation. Our
method has a mild constraint in the cavity-field decay
rate: it works well in both the sideband-resolved and un-
resolved regimes. However, the single-photon coupling
strength g0 should satisfy g0/ωM ∼ 2, such that the
single-photon spectra can capture the phonon-state infor-
mation. In the single-photon strong-coupling regime, the
non-Gaussian effects are observable. Much recent atten-
tion has been paid to explore the non-Gaussian physics in
this parameter regime. Nevertheless, quantum state to-
mography in this regime remains mostly unexplored and
here we have proposed a method for tomography in this
regime. Moreover, our method is general and can be po-
tentially realized in various optomechanical systems [31].
And the idea of spectrometric reconstruction of quantum
states can be applied to quadratic optomechanics [59] and
cavity-QED [60].
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Appendix A: Examples for quantum state

reconstruction based on single-photon emission

spectrum

In this Appendix, we present two examples to show
how to simulate quantum state reconstruction of a di-
agonal or a general density matrix in the number-state
representation, based on the single-photon emission spec-
trum.

1. Single-photon emission solution

In the single-photon emission case, the probability am-
plitude Bn0,l,k(∞) has been given in Ref. [45]. In a real-
istic simulation, we need to truncate the summation di-
mension up to a definite value nd, namely, up to a phase
factor exp[−i(lωM +∆k)t],

Bnd

n0,l,k
(∞) =

nd−1
∑

n=0

√

γc

2π b〈l|ñ〉b b〈ñ|n0〉b
[∆k + δ − (n− l)ωM + iγc

2 ]
,(A1)

where we add the superscript nd to mark the summation
dimension nd.

To describe these Franck-Condon factors b〈l|ñ〉b and
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b〈ñ|n0〉b, we introduce a function

F [m,n, β] = b〈m|Db(β)|n〉b

=

√

(min[m,n])!

(max[m,n])!
e−β2/2(sign[m− n− 1/2]β)abs[m−n]

×LaguerreL
[

min[m,n], abs[m− n], β2
]

, (A2)

where max[x, y] and min[x, y] give the larger and smaller
one between x and y, respectively; sign[x] gives −1, 0, or
1 depending on whether x is negative, zero, or positive;
abs[x] gives the absolute value of x, LaguerreL[n, a, x]
gives the generalized Laguerre polynomial La

n(x). In
terms of Eq. (A2), we can express these Franck-Condon
factors as

b〈l|ñ〉b = b〈l|Db(β0)|n〉b = F [l, n, β0], (A3a)

b〈ñ|n0〉b = b〈n|D†
b(β0)|n0〉b = F [n, n0,−β0]. (A3b)

With the emission solution, we can reconstruct the den-
sity matrix of the mechanical mode.

2. Diagonal density-matrix case

In the diagonal density-matrix case, we consider

the thermal state ρ
(b)
th =

∑∞
n=0 Pn|n〉〈n|, with Pn =

n̄n
th/(n̄th + 1)n+1. The matrix K and the vector Q can

be determined by

Kj,j′ =

nd1
−1

∑

l=0

|Bnd1

j′−1,l,kj
(∞)|2, (A4a)

Qj =

nd2
−1

∑

n,l=0

n̄n
th

(n̄th + 1)n+1
|Bnd2

n,l,kj
(∞)|2, (A4b)

for j, j′ = 1, 2, ..., N . The vector Q is determined by
experiments. Hence, in a realistic simulation, we need
to choose a very large summation dimension nd2 , which
should be larger than the summation dimension nd1 used
in obtaining the matrix K. Once we know the three
system parameters: g0, γc, and ωM , so the matrix K can
be obtained.

We randomly generate a group of sample points in the region ∆kj
/ωM ∈ [−5, 5] (eight sample points, the truncation

dimension N = 8). The locations of these points are

∆kj
/ωM = [−0.238903,−4.15271,−2.18112, 4.7646,−4.45749,−3.34587, 4.92128.− 0.361181]. (A5)

Using the parameters nd1 = 48, nd2 = 60, g0/ωM = 2, γc/ωM = 0.1, and n̄th = 1, we numerically obtain the matrix

K ≈ 10−2

ωM























1.47341 1.00608 1.11404 0.68844 1.09823 0.88438 0.68566 0.85648
3.65773 4.03497 2.57462 2.59686 1.30956 2.41597 3.19158 2.85843
3.41250 1.63790 1.47325 1.71805 1.63361 1.60156 1.29623 1.45646
0.06990 0.07098 0.40837 1.06732 1.02115 0.63968 0.65275 0.74980
0.89358 0.83841 0.42001 0.63426 0.46637 0.64601 0.76208 0.63524
1.26672 0.81926 0.54281 0.61829 0.87052 0.58272 0.45410 0.68421
0.09186 0.85753 3.79587 6.18143 4.41536 3.26403 4.17912 4.42602
0.71383 0.72236 0.57617 0.36789 0.74751 0.44229 0.36831 0.56118























, (A6)

and the vector

Q ≈ 10−2

ωM
(1.23094, 3.44540, 2.50507, 0.22298, 0.78367, 0.99037, 1.37427, 0.66994)T . (A7)

By numerically solving the equation KP = Q, we obtain the solution

P ≈ (0.50106, 0.24944, 0.12506, 0.06358, 0.03105, 0.01592, 0.00566, 0.00766)T , (A8)

which has a fidelity F = 0.995 with the exact phonon number distribution

Pexact = (0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.00390625)T. (A9)

3. General density-matrix case

In the general density-matrix case, the elements of M
are defined by

Mj,j′ =

nd1
−1

∑

l=0

[B
nd1

n,l,kj
(∞)]∗B

nd1

m,l,kj
(∞), (A10)

for j, j′ ∈ [1, 2, ..., N2], where m = Floor[(j′ − 1)/N ] and
n = (j′ − 1) − mN . The elements of the vector S are
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defined by

Sj =

nd2
−1

∑

m,n,l=0

ρ(b)m,n(0)[B
nd2

n,l,kj
(∞)]∗B

nd2

m,l,kj
(∞),(A11)

for j ∈ [1, 2, ..., N2]. In Eqs. (A10) and (A11), the

probability amplitudes B
nd1(2)

m(n),l,kj
(∞) have been given in

Eq. (A1).
As an example, we assume that the initial state of the

mirror is (|0〉b + i|1〉b − |2〉b)/
√
3, which has the density

matrix

ρ
(b)
exact(0) =

1

3





1 −i −1
i 1 −i
−1 i 1



 . (A12)

We choose a group of sample points which are located
at the phonon sideband peaks, with the locations ∆kj

=
−δ + nωM for n ∈ [−4, 4]. Here we use the truncation
dimension N = 3, and then choose nine sample points.
Using these parameters nd1 = 48, nd2 = 60, g0/ωM = 2,
and γc/ωM = 0.1, then the locations of these sample
points are

∆kj
/ωM = [−8,−7,−6,−5,−4,−3,−2,−1, 0]. (A13)

Based on Eqs. (A1), (A10) and (A11), we can numerically
obtain the matrix

M ≈ 10−1

ωM



























2.65078 0.72701 + 0.06619i 0.31389 + 0.04904i ⋄ 2.73543 0.92622 + 0.09507i ⋄ ⋄ 3.47639
2.68039 0.78019 + 0.06690i 0.50595 + 0.05111i ⋄ 3.01083 1.1303 + 0.10038i ⋄ ⋄ 2.86101
2.79261 0.84290 + 0.06965i 0.53053 + 0.05412i ⋄ 3.12871 1.48178 + 0.10416i ⋄ ⋄ 3.40431
2.98886 1.00804 + 0.07440i 0.57164 + 0.02008i ⋄ 3.30036 1.37987 + 0.02789i ⋄ ⋄ 3.50278
3.26298 1.15702 + 0.05181i 0.57538− 0.10663i ⋄ 3.49535 1.26968− 0.08778i ⋄ ⋄ 2.89283
3.59519 1.17639− 0.02772i 0.24166− 0.25788i ⋄ 3.33098 0.76202− 0.12633i ⋄ ⋄ 2.43629
3.86136 0.87698− 0.13806i −0.43399− 0.29357i ⋄ 2.78533 −0.16378− 0.10401i ⋄ ⋄ 1.68726
3.85851 0.08117− 0.21613i −1.30234− 0.18395i ⋄ 1.95965 −0.72898− 0.11875i ⋄ ⋄ 1.76493
3.38095 −1.0129− 0.22813i −1.67703− 0.02836i ⋄ 1.51133 −0.61621− 0.17913i ⋄ ⋄ 2.29425



























,

(A14)
and the vector

S ≈ 10−1

ωM

(

2.85246 2.62496 2.87073 2.9511 2.80948 2.85702 2.90594 3.17267 3.24202
)T

. (A15)

In the matrix M, the elements denoted by “⋄” can be
determined by the following rule: In the same row, the
elements, with the column pairs (2 ↔ 4), (3 ↔ 7), and
(6 ↔ 8), are complex conjugate of each other. We can
explain this property based on the relation Λn,m(∆kj

) =
Λ∗
m,n(∆kj

) in Eq. (A10) and the following relations:

Mj,2 = Λ1,0(∆kj
), Mj,4 = Λ0,1(∆kj

);

Mj,3 = Λ2,0(∆kj
), Mj,7 = Λ0,2(∆kj

);

Mj,6 = Λ2,1(∆kj
), Mj,8 = Λ1,2(∆kj

). (A16)

In addition, the elements in the first, fifth, and ninth
columns are real. This is because Mj,1 = Λ0,0(∆kj

),
Mj,5 = Λ1,1(∆kj

), Mj,9 = Λ2,2(∆kj
), and Λn,n(∆kj

) is
real.

By numerically solving the equation MC = S, we ob-
tain the expression of C, which can be expressed in the
density-matrix form as

ρ(b)(0) ≈ 0.333333





1 −i −1
i 1 −i
−1 i 1



 , (A17)

where ρ
(b)
m,n(0) = Cl. The relationship between m,n and

l is m = Floor[(l − 1)/N ] and n = (l − 1) −mN , where
l = 1, 2, 3, ..., 9, and m,n = 0, 1, 2. The fidelity between

the two density matrices ρ
(b)
exact(0) and ρ(b)(0) is almost

unity.
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