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It is well-known that the nonlinear coupling between a mechanical oscillator and a superconducting
oscillator or optical cavity can be used to generate a Kerr-nonlinearity for the cavity mode. We
show that the strength of this Kerr-nonlinearity, as well as the effect of the photon-pressure force
can be enormously increased by modulating the strength of the nonlinear coupling. We present an
electromechanical circuit in which this enhancement can be readily realized.
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Nano-electro-mechanical systems are superconducting
circuits that are coupled to tiny, high-frequency mechan-
ical oscillators, and can now be realized in the labora-
tory [1–8]. The coupling between a single LC oscillator
and a mechanical oscillator is nonlinear because the fre-
quency of the LC oscillator depends on the position of
the latter. This nonlinear coupling is the same as that in
opto-mechanical systems, in which one of the mirrors of
an optical cavity is a mechanical oscillator [9]. Because
of the nonlinear interaction nano-electro-mechanical sys-
tems posses a potentially rich dynamics and provide a
fertile field for the realization of quantum control [10–
13]. The main obstacle to realizing the quantum effects
of the nonlinear interaction is that these effects are much
weaker (slower) than the strength (or rate) of the non-
linear interaction itself. If we denote the latter by g (de-
fined precisely below), then the rate of the induced Kerr
nonlinearity is (g2/Ω), where Ω is the mechanical fre-
quency, and the displacement of the mechanical resonator
induced by the photons is proportional to g/Ω [10, 11].
Since in present systems g � Ω, the nonlinear effects are
negligible.

Here we show that the Kerr nonlinearity and the dis-
placement induced by the photon-pressure force can be
enhanced by a factor of Ω/g ∼ 102-104 by modulating g
at a frequency close to the mechanical frequency. This
enhancement can be understood by viewing the nonlinear
interaction as off-resonant, and the modulation as bring-
ing it onto resonance. We also present evidence from
numerical optimization that the rate g is the maximum
rate that can be achieved for the effective Kerr nonlinear-
ity. This nonlinearity can be used to prepare nonclassical
states of the cavity mode as well as the mechanics, and
the optical force can be used to realize opto-mechanical
entanglement at the single-photon level, as a transducer
for measuring displacement or photon-number, and to
probe foundational questions in quantum theory [14, 15].
We note that a number of works have recently shown
that the optomechanical interaction can induce various
nonlinear effects at the rate g if two optical modes are
coupled together, one of which interacts with the me-

chanics [16–18]. We show that the enhancement induced
by these two-mode techniques can also be viewed as a re-
sult of bringing the optomechanical interaction into res-
onance.

We begin by showing how the modulation of g en-
hances the Kerr nonlinearity and the effect of the photon-
pressure force, and discuss how the enhancement of non-
linearities in two-mode systems is explained by the same
mechanism. We then consider two ways in which the
modulation of g could be realized in electro-mechanical
systems. Using the second of these methods we present a
readily realizable circuit in which the effect of the photon-
pressure force is enhanced by more than three orders of
magnitude.

The electro-mechanical coupling is given by the Hamil-
tonian [19]

H = ~ωa†a+ ~Ωb†b+ ~ga†a(b+ b†), (1)

where a and b are the annihilation operators for the
superconducting and mechanical modes, respectively, ω
and Ω are their respective frequencies, and g is the elecro-
mechanical coupling rate. The unitary evolution opera-
tor generated by this Hamiltonian, U(t) = e−iHt/~ can
be written in the following simple form [10, 11]:

U(t) = exp(−iωa†at) exp
[
iµ(a†a)2

]
× exp[−ia†a

√
2(λxx− λpp)] exp(−iΩb†bt), (2)

with λx = (g/Ω) sin(Ωt), λp = (g/Ω)[1− cos(Ωt)], and

µ = (g2/Ω) [t− sin(Ωt)/Ω] , (3)

and we have defined the dimensionless mechanical posi-
tion and momentum operators by x ≡ (b + b†)/

√
2 and

p ≡ −i(b− b†)/
√

2. Two key effects can be read off from
U . The first is that the electrical mode displaces the
mechanical mode by the (dimensionless) phase-space dis-

tance ∆s ≡
√

∆x2 + ∆p2 =
√

8(g/Ω)n, at time t = π/Ω,
where n is the number of photons in the electrical mode.
The second effect is that at times τ = 2πm/Ω, for integer
m, the electrical mode undergoes the evolution

U(τ) = exp
[
−i
(
ωa†a+ Ωb†b− (g2/Ω)(a†a)2

)
τ
]
, (4)
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where the size of the effective Kerr-nonlinearity is χ =
g2/Ω. Both the displacement of the mechanical mode,
and the Kerr-evolution contain the small factor g/Ω.
If we examine the optomechanical H above, and move
into the interaction picture, then the interaction is HI =
~ga†a(be−iΩt + beiΩt). Both terms oscillate at the me-
chanical frequency Ω, and are therefore off-resonant for
g � Ω. As a result the rotating-wave approximation for
g � Ω eliminates the interaction.

If we modulate the interaction rate g so that g →
g̃(t) = g cos(νt), with ν = Ω − δ, then we can bring
the interaction near to resonance, with the remaining de-
tuning equal to δ. If we then move into the interaction
picture with respect to the Hamiltonian H(ν) = ~νb†b,
and make the rotating-wave approximation (g � ν), the
effective Hamiltonian for the joint system is that given
by H but with Ω replaced by δ and g replaced by g/2.
By choosing δ = g/2, the rate of the Kerr nonlinearity
becomes χ = g2/(4δ) = g/2� g2/Ω, and the mechanical
displacement is similarly ∆s =

√
8n�

√
8(g/Ω)n.

The above magnification of the nonlinear effects is po-
tentially very large, but given the dependence of these
rates on δ we might wonder whether they could be made
arbitrarily large by reducing δ further. This is not true
for the Kerr term, as we now show. We can certainly set
δ = g/(2r) so that the Kerr term in the evolution oper-
ator U has χ = rg/2. The catch is that we must wait
for the two oscillators to decouple, and this takes the
minimum time τ = r4π/g, which increases with r. As
an example, if we want to use the Kerr term to prepare
the superposition |cat(α)〉 ≡ (|α〉 − i| − α〉)/

√
2, where

| ± α〉 denotes a coherent state with complex amplitude
±α, then we need χτ = π/2. If we choose r to minimize
the time taken, then the minimum is at r = 1/2, the
effective value of χ is g/4, and the time taken to prepare
the cat state is τ = 2π/g.

The above analysis does not exclude the possibility
that a shorter time might be obtained by allowing g to
be an arbitrary function of time. To answer this question
we perform a numerical search for time-dependent con-
trol strategies (that is, ways to change g and Ω with time)
to generate the unitary V = exp[iπ(a†a)2/2] in the mini-
mum time. If we can prepare |cat(α)〉 in time τ , then the
realizable Kerr rate is χ = π/(2τ). To do this we divide
the time interval [0, τ ] up into N segments, and allow g
and Ω to take a different value on each segment. We then
perform a gradient search to find an optimal set of val-
ues for g and Ω, given a maximum value for g. Since the
system consists of two oscillators the state space is poten-
tially large. Fortunately, the problem allows a simplifi-
cation: the Hamiltonian commutes with a†a, and so pre-
serves the populations of the number states. This means
that we loose no accuracy in truncating the LC oscillator
in the number basis. The mechanical oscillator on the
other hand requires a much larger state-space, because
the evolution generates coherent states for this oscilla-

tor. To perform the numerical optimization we use just
three number states for the superconducting resonator,
thirty for the mechanics, and set g = π. We choose an
arbitrary initial state for the LC-oscillator, |ψ(0)〉, and
use the gradient search to maximize the fidelity between
|ψ(τ)〉 and the desired final final state V |ψ(0)〉 [20], for a
range of values of τ . We also run the optimization with
two values of N (N = 10 and N = 15) to ensure that N
does not limit the fidelity. We find that for τ ≥ 1 we can
always obtain a fidelity equal to unity, with essentially ar-
bitrary accuracy. As soon as we set τ < 1 this is no longer
possible. If we define our figure of merit as ε = 1 − F ,
where F is the fidelity, then for τ = 0.99, 0.95, 0.9, 0.8 we
obtain ε = 1.1 × 10−4, 2.7 × 10−3, 1 × 10−2, 3.6 × 10−2.
This clear change in behavior around τ = 1 gives us con-
siderable confidence that χ = g/2 is the maximum Kerr
rate that can be generated with this system.

The situation regarding the photon-pressure force is a
little different. In this case, the interaction is linear driv-
ing from the point of view of the mechanics, but by a
force proportional to the photon number n. To make the
most of this force we should drive the mechanical oscil-
lator at its resonance, and we do this by choosing δ = 0.
The resulting evolution of the (dimensionless) mechanical
momentum operator, in the interaction picture, is

p(t) = p(0) +
√

2(g/2)a†at. (5)

The upper limit to the phase-space displacement is now
only that imposed by the damping rate of the mechanics,
γ, and this is

∆smax = max[p(t)− p(0)] =
gn√
2γ
. (6)

where n is the number of photons in the resonator [21].
Note that the photon force generates a coherent state of
the resonator. If the oscillator starts in the vacuum state,
then this coherent state is |β(t)〉, with β(t) = −i(g/2)nt.
The average number of phonons in the coherent state
is then |β|2 = (gnt/2)2, and the steady-state value is
|β|2ss = (gn/γ)2.

Very recently it has been shown that if a mechani-
cal resonator is coupled to two optical (or superconduct-
ing) modes, effective nonlinearities can be realized that
are much stronger than with a single mode [16–18]. In
Refs. [16, 17] the two optical modes are coupled together
via a linear interaction, and their coupling frequency is
chosen to be half the mechanical frequency. One can then
determine the “normal” modes generated by the linear
interaction, being the linear combinations of the optical
modes that are uncoupled. The frequency difference be-
tween these modes is twice the coupling rate, and thus
equal to the mechanical frequency. The result is that
there is now a resonant (three-way) interaction between
the normal modes and the mechanics at rate g, because
the frequency of one normal mode is equal to the sum
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of the mechanical frequency and that of the other nor-
mal mode. Another way to think of this is that the first
normal mode and the mechanics are not resonant, but
the addition of the second normal mode makes up the
frequency (energy) difference and allows them to inter-
act resonantly. In our modulation technique, the second
normal mode is effectively replaced by a classical drive.

In the second two-mode scheme, presented in [18], the
mechanics is coupled to one optical cavity mode and one
superconducting mode. This time it is the mechanical
and superconducting modes that are coupled, and the
resulting normal modes determined. Both of these nor-
mal modes now interact with the optical mode via the
nonlinear optomechanical coupling. The mechanical and
superconducting frequencies are chosen so that one of the
normal modes has a much lower frequency, equal to the
optomechanical coupling rate g, and as a result the non-
linear interaction is close to resonance. While the previ-
ous two-mode scheme essentially upconverts the optome-
chanical coupling to match the mechanical frequency, the
second effectively does the opposite, reducing the me-
chanical frequency to match the rate of the former.

We now turn to the question of how g might be modu-
lated in real electromechanical circuits. Note that to ob-
tain the largest nonlinear enhancement, for a given value
of the interaction rate g, the amplitude of the modulation
would need to be equal to g ≡ gmax. If this amplitude
is instead some fraction η of gmax, so that the modu-
lated interaction rate is g(t) = gmax[(1 − η) + η cos(νt)],
then the resulting Kerr rate and maximum displacement
are simply reduced by the same faction: χ = ηgmax/4,
∆smax =

√
2η(gmax/γ)n.

Consider a superconducting LC oscillator capacitively
coupled to a mechanical resonator, the circuit for which
is shown in Fig. 1. The mechanical oscillator forms
one plate of the capacitor, and thus changes the ca-
pacitance as it moves. The Hamiltonian for the cir-
cuit is given by Eq.(1), where the frequency of the LC
oscillator is ω = 1/

√
LCr with L the inductance and

Cr the capacitance, and the nonlinear coupling rate is
g = ω/(2d)

√
~/(2mΩ), with d the distance between the

capacitor plates, and m the mass of the mechanical oscil-
lator. It is therefore possible to modulate g by modulat-
ing ω or modulating d. In fact, modulating d also mod-
ulates ω because it modulates the capacitance. So long
as the frequency of the modulation is small compared to
the frequency, ω, of the LC oscillator, the populations of
the energy eigenstates of this oscillator (the photons) will
adiabatically follow the change in ω. It is because of this
adiabatic following that the only change to the Hamilto-
nian induced by the modulation is the replacement of ω
and g by their time-dependent values.

One way to modulate the electrical frequency is to add
another capacitor in parallel to Cr, and modulate the dis-
tance between its plates. In fact, this method has very
recently been suggested as a way to modulate a capac-

FIG. 1. (a) A simple LC-circuit capacitively coupled to a
mechanical resonator. The resonator forms one of the plates
of the capacitor. (b) An electromechanical circuit in which the
nonlinear coupling rate between the superconducting (LC)
oscillator and the mechanical oscillator can be modulated.
The circuit loop on the right is effectively an LC oscillator
in which the inductance is determined by φ, the flux applied
between two Josephson junctions. This flux is created by the
circuit loop on the left. The mechanical resonator forms one of
the plates of the capacitor in the usual capacitative coupling
configuration.

itance to provide a linear coupling between the motion
of a trapped ion and an LC-oscillator [22]. There the
authors suggest the use of a bulk-acoustic wave genera-
tor to modulate the second capacitance. Using a 1 GHz
LC-oscillator, they obtain a modulation amplitude corre-
sponding to η ≈ 0.2. If we have a 10 MHz mechanical res-
onator with electro-mechanical coupling rate g = 2π×100
Hz [23], and modulate near 10 MHz, we would achieve a
Kerr nonlinearity with rate χ = ηg/4 = 10π s−1. This
is an increase in the Kerr rate by a factor of 500. Of
course, we can create strong Kerr nonlinearities for su-
perconducting oscillators using Josephson-junctions [24],
but these nonlinear oscillators saturate at a few hundred
photons. If electro-mechanical coupling rates continue to
increase, this technique could be used to produce meso-
scopic superpositions in linear LC-resonators, with much
larger photon numbers.

While the use of an acoustic wave generator to modu-
late the capacitance may well be possible, such a system
has not yet be realized experimentally. We now consider
a circuit in which we can modulate g by using circuit el-
ements that have already been employed and well-tested
in electro-mechanical circuits. Instead of modulating the
capacitance, we replace the inductor with two Josephson-
junctions (JJs) which allows us to modulate the induc-
tance. In this case the purpose is not to generate a Kerr
nonlinearity, since the JJs do this themselves. Rather we
wish to maximize the amount by which the photons can
affect the mechanical motion.

The circuit we propose is shown in Fig. 1(b). The
circuit loop on the right can be thought of as a stan-
dard LC oscillator in which the inductor has been re-
placed by a pair of Josephson junctions in parallel. We
chose the parameters of the JJs so that they are only
weakly nonlinear, and thus effectively provide a linear
inductance. The effective inductance, Ls, produced by
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the pair of JJs depends on the external flux, φ, applied
between them [25], and the sole purpose of the loop
on the left is to apply this flux. The resulting induc-
tance is Ls(φ) = LJ/ cos(πφ) = φ0/[4πI0 cos(πφ)], where
φ0 = h/(2e) is the flux quantum, and I0 is the critical
current of each of the junctions. The frequency of the
LC oscillator is ω = 1/

√
LsCr = ωmax

√
cos(πφ), with

ωmax =
√

4πI0/φ0C.
The coupling between the LC oscillator and the me-

chanical oscillator stems from the fact that the capaci-
tance is inversely proportional to the distance between its
plates. If x is the position of the mechanical oscillator, C
is the value of Cr when x = 0, and the amplitude of the
oscillation is small compared to the distance between the
plates, then Cr ≈ C(1 − x/d). Including this in the ex-
pression for the frequency of the LC oscillator we obtain
ω = ωmax

√
cos(πφ)[1+x/(2d)]. The full Hamiltonian for

the two oscillators is given by substituting this expression
for ω into the Hamiltonian for the non-interacting oscil-
lators, H0 = ~ωa†a + ~Ωb†b. The resulting Hamiltonian
is that given in Eq.(1) with

ω = ωmax

√
cos(πφ), g = gmax

√
cos(πφ), (7)

where gmax = ωmaxxzp/(2d), xzp =
√
~/(2mΩ) is the

“zero-point motion” of the mechanics, and we have used
the fact that x = xzp(b+b†). If we vary φ with time, and
ensure that the rate of change of φ is small compared to ω,
then the adiabatic approximation preserves the state of
the system with respect to the eigenvectors of the chang-
ing mode operators. The result is that the mode operator
a is preserved, and it is merely ω and g that change with
time. By varying φ we can choose g to be any function
of time, within the constraint 0 < g < gmax.

To obtain the modulation g̃ = g cos(νt) we can
choose

√
cos(πφ) = [1 + cos(νt)]/2, and this gives g̃ =

(gmax/2)[1 + cos(νt)], and thus η = 1/2. The rate at
which the optical force increases the momentum of the
mirror is then gmaxn/

√
8, with n the number of photons.

So at what rate could the momentum be changed with
present technology? The largest value of g that has been
achieved to-date is gmax = 2π × 230 Hz = 1445 s−1 [7].
With the same technique we estimate that increasing g
by a factor of 4 is feasible, giving g = 5780 s−1. Using a
single qubit to load photons into the LC resonator, the
preparation of a number-state with n = 10 or even n = 50
is entirely feasible [26]. With n = 10 and the above value
for g, the time taken to displace the mechanical oscillator
by an average of 25 phonons is t = 1/g ∼ 180µs. The av-
erage steady-state displacement, for 10 MHz mechanics
with a quality factor of 105 is ∼ 90 phonons.

To summarize, we have shown that modulating the
electromechanical coupling rate increases the Kerr non-
linearity and the effect of the photon-pressure force by
orders of magnitude, and we have shown how this mod-
ulation can be realized. Potential uses include the gen-
eration of high-amplitude nonclassical states, observing

the mechanical effects of quantum states of light, and
realizing non-demolition measurements of photons. It is
interesting to note that a similar enhancement could be
achieved in opto-mechanical systems if a feasible method
were found to perform the modulation.
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[8] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and
T. J. Kippenberg, Nature 482, 63 (2012).

[9] M. Aspelmeyer, P. Meystre, and K. Schwab, Phys. Today
65, 29 (2012).

[10] S. Mancini, V. I. Manko, and P. Tombesi, Phys. Rev. A
55, 3042 (1997).

[11] S. Bose, K. Jacobs, and P. L. Knight, Phys. Rev. A 56,
4175 (1997).

[12] P. Rabl, Phys. Rev. Lett. 107, 063601 (2011).
[13] A. Nunnenkamp, K. Børkje, and S. M. Girvin, Phys.

Rev. Lett. 107, 063602 (2011).
[14] S. Bose, K. Jacobs, and P. L. Knight, Phys. Rev. A 59,

3204 (1999).
[15] W. Marshall, C. Simon, R. Penrose, and

D. Bouwmeester, Phys. Rev. Lett. 91, 130401 (2003).
[16] K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Ben-

nett, M. D. Lukin, P. Zoller, and P. Rabl, Phys. Rev.
Lett. 109, 013603 (2012).

[17] M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Mar-
quardt, Phys. Rev. Lett. 109, 063601 (2012).
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