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Abstract
In this paper, we propose an optical scheme to almost completely teleport
a two-mode four-component entangled coherent state in terms of optical
devices such as nonlinear Kerr media, beam splitters, phase shifters and photon
detectors. Different from those previous schemes in which exact photon number
discrimination is needed, in our scheme one only needs to make ‘yes’ and ‘no’
measurements upon the photon numbers in related modes. This scheme can
also be understood as an entanglement swapping protocol.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum teleportation, first proposed by Bennett and coworkers [1], has attracted much
attention of both theorists and experimenters in the last decade. It is a disembodied transport
of quantum states from a sender (Alice) to a receiver (Bob) through a classical communication
channel requiring a prepared quantum entangled channel. The original proposals for quantum
teleportation [1, 2] focused on teleporting quantum states of a system with a finite-dimensional
(discrete variable) state space, such as the two polarizations of a photon or the discrete levels
of an atom. Discrete-variable teleportation has been demonstrated experimentally in optical
systems [3, 4], ion trap systems [5] and liquid-state nuclear magnetic resonance systems [6].

In recent years, quantum teleportation has been extended to continuous-variable (CV)
cases corresponding to quantum states of infinite-dimensional systems [7–20] such as optical
fields or the motion of massive particles like trapped ions. Particularly due to the great
progress achieved in the last two decades for CV quantum optical systems, CV quantum states
can be well generated, manipulated and detected [21]. And comparing to discrete-variable
states coded on the degrees of freedom of single photon polarization or photon number, CV
states are robust against the loss of photons. Following the theoretical proposal of [8], CV
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teleportation has been realized for coherent states of a light field [9] by using entangled two-
mode squeezed optical beams produced by parametric down-conversion in a sub-threshold
optical parametric oscillator. Although coherent states are continuous and nonorthogonal
states, they are very close to classical states. A real challenge for quantum teleportation is
to teleport truly nonclassical states like quantum superposition states, squeezed states and
entangled states.

Quantum teleportation of entangled coherent states have been widely studied in the
past few years [22–26]. Wang [22] proposed a teleportation scheme of two-component
entangled coherent states x|α, α〉 ± y|−α,−α〉 in terms of only linear optical elements. In a
previous paper [23], we presented a near perfect teleportation protocol of the same quantum
states. In our scheme we need only to make ‘yes’ and ‘no’ measurements upon the photon
numbers in related modes. Consequently, it can increase the experimental feasibility. In fact,
the teleportation of two-mode entangled coherent states of type of x|α, α〉 ± y|−α,−α〉
essentially can be realized through teleporting a single-mode superposed coherent state.
This is because x|α, α〉 ± y|−α,−α〉 can be disentangled by a equipped beam splitter as
B̂(x|α, α〉 ± y|−α,−α〉) = (x|√2α〉 ± y|−√

2α〉)|0〉. Using this disentangling property,
teleportation of the two-mode entangled coherent states can be achieved by the following
three steps. Firstly, we disentangle the entangled coherent states to superposed coherent states
as shown above. Secondly, we implement teleportation of the superposed coherent states.
Finally, we recover the entangled coherent states from the superposed coherent states through
mixing them with a vacuum state in an equipped beam splitter. In this paper, we want to
propose a teleportation scheme of another type of two-mode entangled coherent states, i.e.,
four-component entangled states, which cannot be disentangled into direct product states of
two single-mode quantum states. Our scheme below cannot be completed through teleporting
a single-mode superposed coherent state. The rest of this paper is organized as follows. In
section 2, we present the scheme for quantum teleportation of two-mode four-component
entangled coherent states. We conclude the paper with some remarks and discussions in
section 3.

2. Teleportation of an entangled coherent state

We now consider quantum teleportation of the following two-mode four-component entangled
coherent state,

|φ〉12 = N (a1|α, α〉 + a2|α,−α〉 + a3|−α, α〉 + a4|−α,−α〉)12, (1)

where the normalization constant N is given by

N−2 = [|a1|2 + |a2|2 + |a3|2 + |a4|2 + 2e−2α2
Re[a∗

1a3 + a∗
2a4 + a∗

1a2 + a∗
3a4]

+ 2e−4α2
Re[a∗

1a4 + a∗
2a3]]. (2)

And |α〉 is the usual Glauber coherent state defined by

|α〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉. (3)

Throughout this paper, for simplicity, we assume that the coherent amplitude α is real.
We present a schematic diagram for teleportation of the two-mode four-component state

given by equation (1) in figure 1. From figure 1, it can be seen that, for realizing this
teleportation, we need ten modes of light, four of them are ancillary modes. In addition, two
cross Kerr media, four beam splitters and eight photon detectors are needed to realize the
present scheme.
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Figure 1. The schematic diagram for teleportation of the arbitrary two-mode quantum state given
in equation (1).

We want to teleport the state from modes 1 and 2 on Alice’s side to modes y1 and y2 on
Bob’s side. We assume that there are two prepared entangled channel states |λ〉x1y1 and |λ〉x2y2

between Alice and Bob. The forms of the two channel states are given by

|λ〉xiyi
= 1

2 [|α〉(|α〉 + |−α〉) + |−α〉(|α〉 − |−α〉)]xiyi
, (4)

for i = 1, 2. Note that modes x1 and x2 belong to Alice.
The above entangled channel states are very interesting since the two states |±α〉 of mode

xi are non-orthogonal while the two states |α〉 ± |−α〉 of the other mode yi are orthogonal. It
is well known that coherent states are nonorthogonal, and the fidelity between two coherent
states is minus exponential to the square of the distance between the positions of the two states
in phase space. So two coherent states having large distance in phase space can be considered
approximately as orthogonal. Then we can consider states |±α〉 as a pair of logic basis of
a quasi-qubit. From this viewpoint, the states given by equation (4) are similar to two-qubit
cluster states [27]. It should be pointed out that these channel states can be generated using
cross Kerr interaction.

In what follows, we shall describe the present scheme in detail. First of all, Alice mixes
modes 1 and x1 in cross Kerr medium K̂1x1 . The Hamiltonian of a cross-Kerr interaction
involving modes a and b can be written as [28]

Ĥ = −χâ†âb̂†b̂, (5)

which leads to the following unitary evolution operator

K̂ab(τ ) = eiτ â†âb̂†b̂, (6)

where τ = χt with t is the evolution time, â†(b̂†) and â(b̂) are the creation and annihilation
operators for modes a(b), respectively. It is easy to see that when χt = π the action of the
cross Kerr unitary evolution operator on two modes with the coherent-state input |α〉a|β〉b is
given by

K̂ab(π)|α〉a|β〉b = 1
2 [|α〉a(|β〉b + |−β〉b) + |−α〉a(|β〉b − |−β〉b)]. (7)

From the above equation, it is straightforward to see that the channel states (4) is just the above
state with β = α.



1186 J-Q Liao and L-M Kuang

After passing the cross-Kerr interaction K̂1x1(π), the initial state |φ〉12|λ〉x1y1 of modes
1, 2, x1 and y1 becomes

|�〉12x1y1 = K̂1x1 |φ〉12|λ〉x1y1

= 1
2N

{|α〉1|α〉x1

[
(a1|α〉 + a2|−α〉)2|α〉y1 + (a3|α〉 + a4|−α〉)2|−α〉y1

]
+ |α〉1|−α〉x1

[
(a1|α〉 + a2|−α〉)2|α〉y1 − (a3|α〉 + a4|−α〉)2|−α〉y1

]
+ |−α〉1|α〉x1

[
(a3|α〉 + a4|−α〉)2|α〉y1 + (a1|α〉 + a2|−α〉)2|−α〉y1

]
+ |−α〉1|−α〉x1

[
(a3|α〉 + a4|−α〉)2|α〉y1 − (a1|α〉 + a2|−α〉)2|−α〉y1

]}
. (8)

From the above equation, we can see that, if we measure the states of modes 1 and x1,
the information coded in the coefficients before the four basis states |α〉1|α〉2, |α〉1|−α〉2,
|−α〉1|α〉2 and |−α〉1|−α〉2 of modes 1 and 2 can be transferred to modes y1 and 2, and the
states of modes y1 and 2 will depend on the states of modes 1 and x1 which will be measured
by Alice. For realizing this measurement, Alice introduces two ancillary modes 3 and 4 which
are initially prepared in state |α, α〉34, and then mixes modes x1 and 4 in beam splitter B̂1,
modes 1 and 3 in beam splitter B̂2, respectively. Note that the beam splitters we used are
equipped by a usual 50/50 one and a pair of π/2 phase shifters. The usual 50/50 beam splitter
transform on modes i and j is described by B̂ij = exp

[
i(π/4)

(
â
†
i âj + â

†
j âi

)]
. When a usual

beam splitter is equipped together with a pair of π/2 phase shifters described by the unitary
operator P̂ j = exp

(−iπâ
†
j âj

/
2
)

with j being mode label, then the total unitary operator of
the equipped beam splitter can be written as

B̂ij = P̂ j B̂ij P̂ j , (9)

which transforms the state |α, β〉ij as

B̂i,j |α〉i |β〉j = |(α + β)/
√

2〉i |(α − β)/
√

2〉j . (10)

After passing the two equipped beam splitters B̂1 and B̂2, the output state becomes

|� ′〉12x1y134 = B̂1B̂2K̂1x1 |φ〉12|λ〉x1y1 |α〉3|α〉4

= 1
2N

{|√2α〉1|0〉3|
√

2α〉x1 |0〉4
[
(a1|α〉 + a2|−α〉)2|α〉y1

+ (a3|α〉 + a4|−α〉)2|−α〉y1

]
+ |

√
2α〉1|0〉3|0〉x1 |−

√
2α〉4

[
(a1|α〉

+ a2|−α〉)2|α〉y1 − (a3|α〉 + a4|−α〉)2|−α〉y1

]
+ |0〉1|−

√
2α〉3|

√
2α〉x1 |0〉4

[
(a3|α〉 + a4|−α〉)2|α〉y1

+ (a1|α〉 + a2|−α〉)2|−α〉y1

]
+ |0〉1|−

√
2α〉3|0〉x1 |−

√
2α〉4

[
(a3|α〉

+ a4|−α〉)2|α〉y1 − (a1|α〉 + a2|−α〉)2|−α〉y1

]}
. (11)

It is well known that coherent states are superposition of number states. From the above
state (11), it is easy to see that we can discriminate the four states |α〉1|α〉x1 , |α〉1|−α〉x1 ,
|−α〉1|α〉x1 and |−α〉1|−α〉x1 from the following responses of the detectors D1,D3,D4 and
Dx1 whose photon number detected denoted by n1, n3, n4 and nx1 ,

n1 > 0, nx1 > 0, n3 = n4 = 0, (12)

n1 > 0, n4 > 0, n3 = nx1 = 0, (13)

n3 > 0, nx1 > 0, n1 = n4 = 0, (14)

n1 > 0, nx1 > 0, n3 = n4 = 0. (15)

Here we have neglected other groups of responses of the detectors D1,D3,D4 and Dx1 ,
because we cannot discriminate the four states shown above for these cases. Alice records



Near-complete teleportation of two-mode four-component entangled coherent states 1187

the above measurement outcomes and then tell them to Bob via a classical communication
channel.

For the case of equation (12), modes 2 and y1 collapse to state

|ϕ〉2y1 = N
[
(a1|α〉 + a2|−α〉)2|α〉y1 + (a3|α〉 + a4|−α〉)2|−α〉y1

]
, (16)

with the probability being given by

P1 =
∞∑

n,m=1

∣∣
1〈n|3〈0|x1〈m|4〈0|� ′〉12x1y134

∣∣2

= 1

4

(
1 − e−2α2)2

(17)

Corresponding to the case of equation (13), the state of modes 2 and y1 is

|ϕ′〉2y1 = M
[
(a1|α〉 + a2|−α〉)2|α〉y1 − (a3|α〉 + a4|−α〉)2|−α〉y1

]
, (18)

with the normalization constant

M−2 = [|a1|2 + |a2|2 + |a3|2 + |a4|2 + 2e−2α2
Re[a∗

1a2 + a∗
3a4 − a∗

1a3 − a∗
2a4]

− 2e−4α2
Re[a∗

4a1 + a∗
3a2]]. (19)

It is easy to obtain the corresponding probability as follows:

P2 =
∞∑

n,m=1

∣∣
1〈n|3〈0|x1〈0|4〈m|� ′〉12x1y134

∣∣2

= N 2

4M2

(
1 − e−2α2)2

. (20)

For the above two cases (12) and (13), Bob needs to do nothing. However, corresponding
to the outcomes of cases (14) and (15), what Bob should do is to transform respectively the
states of modes 2 and y1 to states (16) and (18) by a phase shifter P̂ y1 = exp(iπâ†â) whose
action on coherent states is P̂ y1 |±α〉y1 = |∓α〉y1 . And the probabilities corresponding to cases
of equations (14) and (15) can be obtained as P3 = P1 and P4 = P2 in that P̂ y1 is a unitary
operator. Note that the above phase shifter with parameter π acts effectively as σx operator
on coherent inputs of the form |±α〉 a two-dimensional quasi-qubit space.

After finishing the above operation, the states of modes 2 and y1 are either of the states
(16) and (18). And then Alice mixes modes 2 and x2 in the cross-Kerr interaction K̂2x2 . First
of all, we consider the case of state (16) of modes 2 and y1. After passing the cross-Kerr
interaction K̂2x2 , the initial state |ϕ〉2y1 |λ〉x2y2 of modes 2, y1, x2 and y2 becomes

|�〉2y1x2y2 = K̂2x2 |ϕ〉2y1 |λ〉x2y2

= 1
2N

{|α〉2|α〉x2

[
(a1|α〉 + a3|−α〉)y1 |α〉y2 + (a2|α〉 + a4|−α〉)y1 |−α〉y2

]
+ |α〉2|−α〉x2

[
(a1|α〉 + a3|−α〉)y1 |α〉y2 − (a2|α〉 + a4|−α〉)y1 |−α〉y2

]
+ |−α〉2|α〉x2

[
(a2|α〉 + a4|−α〉)y1 |α〉y2 + (a1|α〉 + a3|−α〉)y1 |−α〉y2

]
+ |−α〉2|−α〉x2

[
(a2|α〉 + a4|−α〉)y1 |α〉y2 − (a1|α〉 + a3|−α〉)y1 |−α〉y2

]}
. (21)

From the above equation we can see that, depending on both the discrimination of the states
of modes 2 and x2 and the appropriate operations on mode y2, we can realize near perfect
quantum teleportation of quantum states given by equation (1). Using the same method shown
above, we introduce another two modes 5 and 6 which initially prepared in state |α, α〉56 and



1188 J-Q Liao and L-M Kuang

mix modes 2 and 5, x2 and 6 in the two equipped beam splitters B3 and B4, respectively. And
then we obtain the following state:

|�′〉2y1x2y256 = B̂3B̂4K̂2x2 |ϕ〉2y1 |λ〉x2y2 |α〉5|α〉6

= 1
2N

{|√2α〉2|0〉5|
√

2α〉x2 |0〉6
[
(a1|α〉 + a3|−α〉)y1 |α〉y2

+ (a2|α〉 + a4|−α〉)y1 |−α〉y2

]
+ |

√
2α〉2|0〉5|0〉x2 |−

√
2α〉6

[
(a1|α〉

+ a3|−α〉)y1 |α〉y2 − (a2|α〉 + a4|−α〉)y1 |−α〉y2

]
+ |0〉2|−

√
2α〉5|

√
2α〉x2 |0〉6

[
(a2|α〉 + a4|−α〉)y1 |α〉y2 + (a1|α〉

+ a3|−α〉)y1 |−α〉y2

]
+ |0〉2|−

√
2α〉5|0〉x2 |−

√
2α〉6

[
(a2|α〉

+ a4|−α〉)y1 |α〉y2 − (a1|α〉 + a3|−α〉)y1 |−α〉y2

]}
. (22)

It is straightforward to see that the following records of the photon detectors correspond to
perfect or near perfect teleportation via appropriate transform,

n2 > 0, nx2 > 0, n5 = n6 = 0, (23)

n2 > 0, n6 > 0, n5 = nx2 = 0, (24)

n5 > 0, nx2 > 0, n2 = n6 = 0, (25)

n5 > 0, n6 > 0, n2 = nx2 = 0, (26)

where we have denoted the detected photon number of detectors D2,Dx2 ,D5 and D6 as n2, nx2 ,
n5 and n6, respectively. For the case of outcome given by equation (23), the state given by
equation (1) is teleported perfectly from modes 1 and 2 to modes y1 and y2. It happens with
the following probability:

P5 =
∞∑

n,m=1

∣∣
2〈n|5〈0|x2〈m|6〈0|�′〉2y1x2y256

∣∣2

= 1

4

(
1 − e−2α2)2

. (27)

If the response of detectors D2,D5,D6 and Dx2 is given by case (24), however, we can
see that in order to realize a near-perfect teleportation of the entangled coherent states one has
to require the following state transform:

|µ〉y1y2 = K
[
(a1|α〉 + a3|−α〉)y1 |α〉y2 − (a2|α〉 + a4|−α〉)y1 |−α〉y2

]
,

⇒ |φ〉y1y2 = N
[
(a1|α〉 + a3|−α〉)y1 |α〉y2 + (a2|α〉 + a4|−α〉)y1 |−α〉y2

]
. (28)

Here the normalization constant K is introduced,

K−2 = [|a1|2 + |a2|2 + |a3|2 + |a4|2 + 2e−2α2
Re[a∗

1a3 + a∗
2a4 − a∗

1a2 − a∗
3a4]

− 2e−4α2
Re[a∗

1a4 + a∗
2a3]] (29)

and we can calculate the corresponding probability of case (24) as

P6 =
∞∑

n,m=1

∣∣
2〈n|5〈0|x2〈0|6〈m|�′〉2y1x2y256

∣∣2

= N 2

4K2

(
1 − e−2α2)2

. (30)

We can further see that equation (28) implies the following transform between coherent
states of mode y2,

|−α〉 → −|−α〉, |α〉 → |α〉, (31)
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Figure 2. The fidelity of the displacement transform as a function of parameters θ and φ with
respect to different values of α as shown.

which is generally not a unitary transform except for the limit case of |α| → ∞. In order to
do this, we use the displacement operator with the parameter value iπ/(4α) to approximately
realize the transform given by equation (31).

|η〉y1y2 = D̂y2

( iπ

4α

)
K

[
(a1|α〉 + a3|−α〉)y1 |α〉y2 − (a2|α〉 + a4|−α〉)y1 |−α〉y2

]
= ei π

4 K
[
(a1|α〉 + a3|−α〉)y1

∣∣∣ iπ

4α
+ α

〉
y2

+ i(a2|α〉 + a4|−α〉)y1

∣∣∣ iπ

4α
− α

〉
y2

]
. (32)

where the displacement operator D̂(iπ/4α) can be effectively performed using a beam splitter
with the transmission coefficient T close to unity and a high-intensity coherent field [29].

For seeing the quality of this transform, we calculate the fidelity of the state (32) with
respect to the target state (1) as follows:

F = |〈φ|η〉|2

= |N |2|K|2 exp

(
− π2

16α2

) ∣∣|a1|2 + |a2|2 + |a3|2 + |a4|2

+ 2e−2α2
(Re[a∗

1a3 + a∗
2a4] + Im[a1a

∗
2 + a3a

∗
4 ]) + 2e−4α2

Im[a∗
2a3 + a∗

4a1]
∣∣2

(33)

Without loss of generality, we let a1 = cos θ , a2 = sin θ, a3 = cos φ and a4 = sin φ, and in
figure 2 we plot the fidelity of the above displacement transform as a function of parameters
θ and φ with respect to α = 0.5, 1, 2 and 5, respectively. Note that for a two-mode four-
component quantum state, two introduced parameters θ and ϕ are not enough to describe it;
however our motivation is only to investigate the fidelity of the displacement transform given
above and the average fidelity which will be given later, hence from this standpoint the above
suggestion is reasonable.
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From figure 2 we can see that this fidelity increases with the increase of coherent amplitude
α. We find that the fidelity approaches to 1 for α � 5. And the fidelity has some dependence
of the superposed coefficients in the small α regime, it becomes stable with the increase of the
coherent amplitude α.

Moreover, corresponding to cases (25) and (26), the states of modes y1 and y2 can be
transformed to modes corresponding to cases (23) and (24) by acting a π phase shifter on
mode y2, respectively. And the probabilities of cases (25) and (26) are also the same as the
probabilities of cases (23) and (24).

Now, we return to equation (18) again. Using the same method we can obtain the following
state corresponding to equation (21):

|�〉2y1x2y2 = K̂2x2 |ϕ′〉2y1 |λ〉x2y2

= 1
2M

{|α〉2|α〉x2

[
(a1|α〉 + a3|−α〉)y1 |α〉y2 − (a2|α〉 + a4|−α〉)y1 |−α〉y2

]
+ |α〉2|−α〉x2

[
(a1|α〉 + a3|−α〉)y1 |α〉y2 + (a2|α〉 + a4|−α〉)y1 |−α〉y2

]
− |−α〉2|α〉x2

[
(a2|α〉 + a4|−α〉)y1 |α〉y2 − (a1|α〉 + a3|−α〉)y1 |−α〉y2

]
− |−α〉2|−α〉x2

[
(a2|α〉 + a4|−α〉)y1 |α〉y2 + (a1|α〉 + a3|−α〉)y1 |−α〉y2

]}
, (34)

which indicates that by acting a π phase shifter on mode x2, we can transform the above
equation to a new one which is different from equation (21) only at the sign before the last two
terms. From the point of view of performing the teleportation protocol, this sign difference
shown above will make no difference. So the following process is the same as what we used
for equation (16) previously.

Based on the above discussions, we can summarize the process for teleportation of the
two-mode four-component entangled coherent state by dividing it into two steps. The first
step implements teleportation of the state (1) from modes 1 and 2 to modes y1 and 2, this
process has four possible outcomes corresponding to cases given by equations (12), (13), (14)
and (15). On one hand, for the cases given by equations (12) and (14), the state of modes
1 and 2 is perfectly teleported to modes 1 and y1 with the probability P1. Then the second
step realizes teleportation of the state from modes y1 and 2 to modes y1 and y2. This process
has also four cases given by equations (23), (24), (25) and (26). Cases given by equations
(23) and (25) correspond to perfect teleportation with the probability P5. However, cases
given by equations (24) and (26) correspond to approximate teleportation with the probability
P6, and the fidelity between the approximate state (32) and the state (1) is given by equation
(33). On the other hand, for the cases given by equations (13) and (15), the state (18) of
modes 2 and y1 is recovered. Though the state (18) is different from state (16), the second
step realizing teleportation of the state from modes y1 and 2 to modes y1 and y2 has the
same effect as that corresponding to cases given by equations (12) and (14). In short, for the
given teleported state (1) held by the sender Alice, the receiver Bob may have several output
states corresponding to different projective measurements, different states may have different
fidelities. In order to evaluate the quality of the whole process, we introduce the average
fidelity which is defined through summating the product of the fidelity of each output state
and corresponding probability.

Fav = 4(P1 + P2)(P5 + P6F)

= 1

4

(
1 +

N 2

M2

) (
1 − e−2α2)4

(
1 +

N 2

K2
F

)
. (35)

Here KM and N are normalization constants given by equations (29), (19) and (2),
respectively. And F is the fidelity given by equation (33). We plot the average fidelity
Fav as a function of parameters θ and φ with respect to α = 0.5, 1, 2 and 5 in figure 3.
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Figure 3. The average fidelity of the whole teleportation process as a function of parameters θ and
φ with respect to different values of α as shown.

From figure 3 we can see that the average fidelity increases with the increase of coherent
amplitude α, it approaches to unity for α � 5. And for small coherent amplitude α, the fidelity
is dependent on the superposed coefficients, with the increase of α, the fidelity becomes
independent of the superposed coefficients. So our scheme has well stability in the large α

regime. This is because states |±α〉 with large α are approximately orthogonal, and then we
can discriminate them with a probability approaching 1. In addition, with the increase of α,
the displacement transform D̂y2 corresponds approximately to an effective σz operation in the
quasi-qubit space with basis states |±α〉.

On the other hand, because the main motivation of this scheme is to teleport entanglement,
we should also discuss the quality of entanglement transfer in this teleportation protocol.
For the cases of perfect teleportation, the state is perfectly teleported, consequently, the
entanglement is completely transferred. For the cases of approximate teleportation, however,
the state (32) is only approximately recovered by Bob, so the entanglement transfer
corresponding to approximate teleportation is not complete. In fact, we can evaluate the
quality of entanglement transfer for this approximate teleportation process by calculating the
ratio of the degree of entanglement of output state (32) to that of the input state (1). In what
follows, we will firstly calculate the degree of entanglement of the states (1) and (32) in terms
of concurrence [30].

For investigating the concurrence of the state (1), we introduce the Schrödinger cat states
as follows:

|α+〉 = N+(|α〉 + |−α〉), N−2
+ = 2

(
1 + e−2|α|2);

(36)
|α−〉 = N−(|α〉 − |−α〉), N−2

− = 2
(
1 − e−2|α|2).

It is well known that the above two Schrödinger cat states are orthogonal to each other. Hence,
we can use them to express the state (1) as follows:

|φ〉 = N
4

[
(a1 + a2 + a3 + a4)

N2
+

|α+〉|α+〉 +
(a1 − a2 + a3 − a4)

N+N−
|α+〉|α−〉

+
(a1 + a2 − a3 − a4)

N−N+
|α−〉|α+〉 +

(a1 − a2 − a3 + a4)

N2−
|α−〉|α−〉

]
. (37)
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Similarly, for the state (32), we use the Schrödinger cat states defined in equation (36) for
mode y1 and introduce the following orthogonal basis for mode y2,

|0〉 =
∣∣∣ iπ

4α
+ α

〉
, |1〉 = 1√

1 − |p|2
(∣∣∣ iπ

4α
− α

〉
− p

∣∣∣ iπ

4α
+ α

〉)
,

(38)
p =

〈 iπ

4α
+ α

∣∣∣ iπ

4α
− α

〉
= i e−2α2

.

So the state (32) can be written as

|η〉 = K
2

{
[a1 + a3 + i(a2 + a4)p]

N+
|α+〉|0〉 +

[a1 − a3 + i(a2 − a4)p]

N−
|α−〉|0〉

+
i(a2 + a4)

√
1 − |p|2

N+
|α+〉|1〉 +

i(a2 − a4)
√

1 − |p|2
N−

|α−〉|1〉
}

. (39)

It is clear that both states (37) and (39) are two-qubit pure states. It has been shown that
for a pure state

|ψ〉 = α|00〉 + β|01〉 + γ |10〉 + δ|11〉, (40)

the degree of entanglement can be measured by the concurrence with the following expression
[31],

C = 2|αδ − βγ |. (41)

Using the above formula, we obtain the concurrence of states (37) and (39),

C1 = N 2

2N2
+N2−

|a1a4 − a2a3|,
(42)

C2 = K2

N 2
C1,

where N ,K, N+ and N− have been given before. Equation (42) indicates that for the cases of
approximate teleportation, the ratio of the concurrence of the input state to that of the output
state is K2/N 2. And similar to the arguments given for defining the average fidelity before,
we can also define the quality of entanglement transfer for the whole process by substituting
the ratio of concurrence C2/C1 for the fidelity F in equation (35),

Qet = 4(P1 + P2)

(
P5 + P6

C2

C1

)

= 1

2

(
1 +

N 2

M2

) (
1 − e−2α2)4

. (43)

It is clear to see that the quality of entanglement transfer Qet is better than the average fidelity.
In figure 4, we plot the quality of entanglement transfer Qet as a function of parameters θ and
φ with respect to different coherent amplitude α as shown in figure 4.

From figure 4, we can see that the quality of entanglement transfer of the present protocol
increases with the coherent amplitude α. The quality of entanglement transfer Qet 
 1 for
α > 2.

Depending on the above discussions, we can see that the whole teleportation process can
also be understood as a protocol of entanglement swapping. We assume that the entangled
state |λ〉x1y1 of modes x1 and y1 is held respectively by Alice and Bob while the entangled
state |λ〉x2y2 of modes x2 and y2 belongs respectively to Alice and Claire. And the mission of
entanglement swapping is to entangle the two modes y1 and y2 which maybe never interact
each other by doing joint measurement on modes x1 and x2. Based on the above discussions,
we can see that entanglement swapping protocol can also be implemented.
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Figure 4. The quality of entanglement transfer Qet as a function of parameters θ and φ with
respect to the coherent amplitude α = 0.5, 1 and 2.

3. Concluding remarks

In conclusion, we have proposed an optical scheme for the quantum teleportation of a two-
mode four-component entangled coherent state by using optical elements such as nonlinear
Kerr media, beam splitters, phase shifters and photon detectors. We have calculated the average
fidelity of our protocol. It has been shown that the average fidelity is generally dependent on
the coherent amplitude and the superposed coefficients of the teleported states. Although for
small coherent amplitude α, the average fidelity for the whole teleportation process is low and
depends on the transposed coefficients, with the increase of α, the average fidelity increases
and becomes independent of the superposed coefficients. This average fidelity approaches to
unity when α � 5. On the other hand, we have also investigated the quality of entanglement
transfer of the present scheme, we found that the quality of entanglement transfer increased
with the increase of the coherent amplitude α, and it approached to unity for α � 2. Hence,
this is a near-complete scheme. In addition, different from some previous optical schemes
of teleportation of entangled coherent states which is only superposition of two logic basis
{|α, α〉, |−α,−α〉} of two modes of light, our scheme considered the teleportation of two-mode
four-component entangled coherent states. In addition, in those previous schemes, one has to
make the exact photon-number measurements to distinguish between even and odd photons.
However, in our protocol what we need is only the yes or no measurements of the photon
numbers of the related modes. We also have suggested this scheme can be understood as an
entanglement swapping processing.

Finally, we discuss the feasibility of the present scheme. In our teleportation protocol,
except linear optical elements, we need the nonlinear one, the cross-Kerr medium. It is a
greater challenge to experimentally produce large Kerr nonlinearities. Although sufficiently
large Kerr nonlinearities have been difficult to produce, significant progress is being made in
this area. In particular, recent progress on atomic quantum coherence [32–36] indicates that
it is possible to prepare the Kerr medium with the giant Kerr nonlinearities through using the
electromagnetically induced transparency (EIT) technology. Paternostro and coworkers [32]
proposed a EIT scheme which can enhance the cross-Kerr effect in a dense atomic medium
in the EIT regime. In particular, it has been proved that the interaction of two travelling
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fields of light in an atomic medium is able to show giant Kerr nonlinearities by means of the
so-called cross-phase-modulation. Measured values of the χ3 parameter are up to six orders
of magnitude larger than usual [33]. Recently, Wang et al [34] have shown that it is possible
to obtain large cross-phase modulation between slow copropagating weak pulse in 87Rb via
double EIT. Therefore, our protocol is at the reach of current experiment. We would emphasize
that our proposed protocol can potentially be applied to quantum information processing based
on CV. Actually, there have appeared tendencies to encode information in quantum states with
CV, since such an encoding allows the information to be manipulated much more efficiently
than with traditional discrete variable states.
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[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Davidovich L, Zagury N, Brune M, Raimond J M and Haroche S 1994 Phys. Rev. A 50 R895
[3] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[4] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[5] Riebe M et al 2004 Nature 429 734
[6] Nielsen M A, Knill E and Laflamme R 1998 Nature 396 52
[7] Vaidman L 1994 Phys. Rev. A 49 1473
[8] Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869
[9] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706

[10] van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
[11] Jeong H, Kim M S and Lee J 2001 Phys. Rev. A 64 052308
[12] Zheng Y, Gu Y J and Guo G C 2003 J. Opt. B: Quantum Semiclass. Opt. 5 29
[13] Kim H, Cheong Y W and Lee H W 2004 Phys. Rev. A 70 012309
[14] An N B 2003 Phys. Rev. A 68 022321
[15] An N B 2004 Phys. Rev. A 69 022315
[16] Cheong Y W, Kim H and Lee H W 2004 Phys. Rev. A 70 032327
[17] Cai X H and Kuang L M 2000 Phys. Lett. A 300 103
[18] Zhou L and Kuang L M 2004 Chin. Phys. Lett. 21 2101
[19] Liao J Q and Kuang L M 2006 Phys. Lett. A 358 115
[20] van Enk S J 2003 Phys. Rev. Lett. 91 017902
[21] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[22] Wang X 2001 Phys. Rev. A 64 022302
[23] Liao J Q and Kuang L M 2006 Chin. Phys. 15 2246
[24] Zhou L 2005 PhD Thesis Hunan Normal University
[25] Song K H and Zhang W J 2001 Phys. Lett. A 214 218
[26] Johnson T J, Bartlett S D and Sanders B C 2002 Phys. Rev. A 66 042326
[27] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[28] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge

University Press)
[29] Jeong H and Kim M S 2002 Phys. Rev. A 65 042305
[30] Kuang L M and Zhou L 2003 Phys. Rev. A 68 043606
[31] Gunlycke D, Kendon V M, Vedral V and Bose S 2004 Phys. Rev. A 64 042302
[32] Paternostro M, Kim M S and Ham B S 2003 Phys. Rev. A 67 023811
[33] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594
[34] Wang Z B, Marzlin K P and Sanders B C 2006 Phys. Rev. Lett. 97 063901
[35] Kuang L M, Chen G H and Wu Y S 2003 J. Opt. B: Quantum Semiclass. Opt. 5 341
[36] Kang H and Zhu Y 2003 Phys. Rev. Lett. 91 093601

http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevA.50.R895
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1103/PhysRevLett.80.1121
http://dx.doi.org/10.1038/nature02570
http://dx.doi.org/10.1038/23891
http://dx.doi.org/10.1103/PhysRevA.49.1473
http://dx.doi.org/10.1103/PhysRevLett.80.869
http://dx.doi.org/10.1126/science.282.5389.706
http://dx.doi.org/10.1103/PhysRevA.64.022313
http://dx.doi.org/10.1103/PhysRevA.64.052308
http://dx.doi.org/10.1088/1464-4266/5/1/303
http://dx.doi.org/10.1103/PhysRevA.70.012309
http://dx.doi.org/10.1103/PhysRevA.68.022321
http://dx.doi.org/10.1103/PhysRevA.69.022315
http://dx.doi.org/10.1103/PhysRevA.70.032327
http://dx.doi.org/10.1016/S0375-9601(02)00809-5
http://dx.doi.org/10.1088/0256-307X/21/11/008
http://dx.doi.org/10.1016/j.physleta.2006.05.009
http://dx.doi.org/10.1103/PhysRevLett.91.017902
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/PhysRevA.64.022302
http://dx.doi.org/10.1088/1009-1963/15/10/010
http://dx.doi.org/10.1103/PhysRevA.66.042326
http://dx.doi.org/10.1103/PhysRevLett.86.910
http://dx.doi.org/10.1103/PhysRevA.65.042305
http://dx.doi.org/10.1103/PhysRevA.68.043606
http://dx.doi.org/10.1103/PhysRevA.64.042302
http://dx.doi.org/10.1103/PhysRevA.67.023811
http://dx.doi.org/10.1038/17561
http://dx.doi.org/10.1103/PhysRevLett.97.063901
http://dx.doi.org/10.1088/1464-4266/5/4/303
http://dx.doi.org/10.1103/PhysRevLett.91.093601

	1. Introduction
	2. Teleportation of an entangled coherent state
	3. Concluding remarks
	References

