Jie Luo

Jie Luo
Hainan University · College of Tropcial Crops

Professor

About

153
Publications
41,735
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,385
Citations
Additional affiliations
March 2009 - present
Huazhong Agricultural University
Position
  • Professor
December 2003 - February 2009
John Innes Centre
Position
  • PostDoc Position

Publications

Publications (153)
Article
Full-text available
Background Plant metabolites reshaped by nature and human beings are crucial for both their lives and human health. However, which metabolites respond most strongly to selection pressure at different evolutionary stages and what roles they undertake on perennial fruit crops such as peach remain unclear. Results Here, we report 18,052 significant l...
Article
Plants produce a large number of diverse metabolites when they grow and develop as well as when they respond to the changing external environment. These are an important source of human nutrition and medicine. In this review we emphasized the major issues of the primary-specialized metabolic interface in plant metabolism, described the metabolic fl...
Article
Full-text available
Powdery mildew (PM) leads to severe yield reduction in qingke (Hordeum vulgare L. var. nudum). Although studies have focused on identifying PM-related resistance genes, mechanistic insights into the metabolic regulation networks of resistance against PM have rarely been explored in qingke. Here, we integrated transcriptomic, proteomic and metabolom...
Article
Full-text available
Rice (Oryza sativa L.) is one of the most globally important crops, nutritionally and economically. Therefore, analyzing the genetic basis of its nutritional quality is a paramount prerequisite for cultivating new varieties with increased nutritional health. To systematically compare the nutritional quality differences between landraces and cultiva...
Article
Full-text available
Serotonin (5-hydroxytryptamine) plays an important role in many developmental processes and biotic/abiotic stress responses in plants. Although serotonin biosynthetic pathways in plants have been uncovered, knowledge of the mechanisms of serotonin accumulation is still limited, and no regulators have been identified to date. Here, we identified the...
Article
Various aspects of the organisms adapt to cyclically changing environmental conditions via transcriptional regulation. However, the role of rhythmicity in altering the global aspects of metabolism is poorly characterized. Here, we subjected four rice (Oryza sativa) varieties to a range of metabolic profiles and RNA-seq to investigate the temporal r...
Article
Full-text available
Secondary metabolism in plants gives rise to a vast array of small-molecule natural products. The discovery of operon-like gene clusters in plants has provided a new perspective on the evolution of specialized metabolism and the opportunity to rapidly advance the metabolic engineering of natural product production. Here, we review historical aspect...
Article
Full-text available
More than 2 billion people worldwide are under threat of nutritional deficiency. Thus, an in-depth comprehension of the nutritional composition of staple crops and popular fruits is essential for health. Herein, we performed LC-MS-based non-targeted and targeted metabolome analyses with crops (including wheat, rice, and corn) and fruits (including...
Article
Phenolamide (PA) metabolites play important roles in the interaction between plants and pathogens. The putrescine hydroxycinnamoyl transferase genes OsPHT3 and OsPHT4 positively regulate rice cell death and resistance to Magnaporthe oryzae. The bZIP transcription factor APIP5, a negative regulator of cell death and rice immunity, directly binds to...
Article
Full-text available
Plants produce specialized metabolites to adapt to the ever-changing environments. Flavonoids are antioxidants essential for growth, development, and breeding with increased stress resistance in crops. However, the mechanism of the involvement of flavonoids in ultraviolet-B (UV-B) stress in rice (Oryza sativa) is largely unknown. In this study, we...
Article
Full-text available
Miracle fruit ( Synsepalum dulcificum ) is a rare valuable tropical plant famous for a miraculous sweetening glycoprotein, miraculin, which can modify sour flavors to sweet flavors tasted by humans. Here, we present a chromosome-level high-quality genome of S. dulcificum with an assembly genome size of ∼550 Mb, contig N50 of ∼14.14 Mb, and 37,911 a...
Article
Full-text available
The process of seed germination is crucial not only for the completion of the plant life cycle but also for agricultural production and food chemistry; however, the underlying metabolic regulation mechanism involved in this process is still far from being clearly revealed. In this study, one indica variety (Zhenshan 97, with rapid germination) and...
Article
Full-text available
Solenostemma argel (Delile) Hayne is a desert plant that survives harsh environmental conditions with several vital medicinal properties. Salt stress is a major constraint limiting agricultural production around the globe. However, response mechanisms behind the adaptation of S. argel plants to salt stress are still poorly understood. In the curren...
Article
Full-text available
Background Black pepper ( Piper nigrum L.), an important and long-cultivated spice crop, is native to South India and grown in the tropics. Piperine is the main pungent and bioactive alkaloid in the berries of black pepper, but the molecular mechanism for piperine biosynthesis has not been determined. MicroRNAs (miRNAs), which are classical endogen...
Article
Full-text available
Background: Coconut is an important tropical oil and fruit crop whose evolutionary position renders it a fantastic species for the investigation of the evolution of monocot chromosomes and the subsequent differentiation of ancient plants. Results: Here, we report the assembly and annotation of reference-grade genomes of Cn. tall and Cn. dwarf, who...
Article
As one of the most important crops in the world, rice (Oryza sativa L.) is a model plant for metabolome research. Although many studies have focused on the analysis of specific tissues, the dynamics of metabolite abundances across the entire life cycle has not yet been realized. Combining both targeted and nontargeted metabolite profiling methods,...
Article
Volatile organic compounds play essential roles in plant-environment interactions as well as determining the fragrance of plants. Although gas chromatography-mass spectrometry based untargeted metabolomics is commonly used to assess plant volatiles, it suffers from high spectral convolution, low detection sensitivity, limited annotated metabolites...
Article
Full-text available
Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites wi...
Article
Phenolamides (PAs), a diverse group of specialized metabolites, including hydroxycinnamoylputrescine (HP), hydroxycinnamoylagmatine, and hydroxycinnamoyltryptamine, are important in plant resistance to biotic stress. However, the genes involved in the biosynthesis and modulation of PAs have not been fully elucidated. This study identified an HP bio...
Article
Full-text available
Tibetan hulless barley (qingke) is an important food crop in the Tibetan plateau. However, it often suffers from drought stress resulting in reduction of food production because of the extreme plateau environment. To elucidate the molecular mechanisms underlying the drought resistance of qingke, the transcriptomic and metabolomic responses of droug...
Article
Full-text available
Fruits provide humans with multiple kinds of nutrients and protect humans against worldwide nutritional deficiency. Therefore, it is essential to understand the nutrient composition of various fruits in depth. In this study, we performed LC-MS-based non-targeted metabolomic analyses with ten kinds of fruit, including passion fruit, mango, starfruit...
Article
Full-text available
Genomic clustering of non-homologous genes for the biosynthesis of plant defensive compounds is an emerging theme, but insights into their formation and physiological function remain limited. Here we report the identification of a newly discovered hydroxycinnamoyl tyramine (HT) gene cluster in rice. This cluster contains a pyridoxamine 5′-phosphate...
Article
Full-text available
The majority of the crops and vegetables of today were domesticated from their wild progenitors within the past 12 000 years. Considerable research effort has been expended on characterizing the genes undergoing positive and negative selection during the processes of crop domestication and improvement. Many studies have also documented how the cont...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1038/s41477-020-00838-1.
Article
Full-text available
Vitamins maintain growth and development in humans, animals, and plants. Because plants serve as essential producers of vitamins, increasing the vitamin contents in plants has become a goal of crop breeding worldwide. Here, we begin with a summary of the functions of vitamins. We then review the achievements to date in elucidating the molecular mec...
Article
Full-text available
Diterpenoids are the major group of antimicrobial phytoalexins in rice1,2. Here, we report the discovery of a rice diterpenoid gene cluster on chromosome 7 (DGC7) encoding the entire biosynthetic pathway to 5,10-diketo-casbene, a member of the monocyclic casbene-derived diterpenoids. We revealed that DGC7 is regulated directly by JMJ705 through met...
Article
Full-text available
Plants have evolved many metabolites to meet the demands of growth and adaptation. Although strigolactones (SLs) play vital roles in controlling plant architecture, their function in regulating plant metabolism remains elusive. Here we report the integrative metabolomic and transcriptomic analyses of two rice SL mutants, d10 (a biosynthesis mutant)...
Article
Full-text available
Branched‐chain amino acids (BCAAs) are essential amino acids that must be obtained from the diet for humans and animals, and they play important roles in various aspects of plant growth and development. Although BCAA biosynthetic pathways in higher plants have been uncovered, knowledge of their genetic control is still limited, and no positive regu...
Article
Whilst the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. Here, we investigate polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic an...
Article
Full-text available
Although natural variations in rice flavonoids exist, and biochemical characterization of a few flavonoid glycosyltransferases has been reported, few studies focused on natural variations in tricin-lignan-glycosides and their underlying genetic basis. In this study, we carried out metabolic profiling of tricin-lignan-glycosides and identified a maj...
Preprint
Full-text available
Rapidly growing genetics and bioinformatics studies provide us with an opportunity to obtain a global view of the genetic basis of traits, but also give a challenge to the function validation of candidate genes. CRISPR/Cas9 is an emerging and efficient tool for genome editing. To construct expression clones for the CRISPR/Cas9, most current methods...
Article
Full-text available
The marriage of metabolomic approaches with genetic design has proven a powerful tool in dissecting diversity in the metabolome and has additionally enhanced our understanding of complex traits. That said, such studies have rarely been carried out in wheat. In this study, we detected 805 metabolites from wheat kernels and profiled their relative co...
Article
Full-text available
Qingke (Tibetan hulless barley) has long been cultivated and exposed to long-term and strong UV-B radiation on the Tibetan Plateau, which renders it an ideal target for elucidating novel UV-B responsive mechanisms. Here we report a comprehensive metabolite profiling and metabolite-based genome-wide association study using 196 diverse qingke and bar...
Article
Full-text available
The chemical diversity of plants is very high, and plant-based foods provide almost all the nutrients necessary for human health, either directly or indirectly. With advancements in plant metabolomics studies, the concept of nutritional metabolites has been expanded and updated. Because the concentration of many nutrients is usually low in plant-ba...
Article
Full-text available
Plants are considered an important food and nutrition source for humans. Despite advances in plant seed metabolomics, knowledge about the genetic and molecular bases of rice seed metabolomes at different developmental stages is still limited. Here, using Zhenshan 97 (ZS97) and Minghui 63 (MH63), we performed a widely targeted metabolic profiling in...
Article
Plants produce a myriad of structurally and functionally diverse metabolites that play many different roles in plant growth and development and in plant response to continually changing environmental conditions as well as abiotic and biotic stresses. This metabolic diversity is, to a large extent, due to chemical modification of the basic skeletons...
Article
Full-text available
Trichomes are storage compartments for specialized metabolites in many plant species. In trichome, plant primary metabolism is significantly changed, providing substrates for downstream secondary metabolism. However, little is known of how plants coordinate trichome formation and primary metabolism regulation. In this report, tomato (Solanum lycope...
Article
Full-text available
Salt stress is a major environmental threat to meeting the food demands of an increasing global population. The identification and exploitation of salt adaption mechanisms in plants is therefore vital for crop breeding. We here define the rice mutant (sstm1) whose salt‐sensitivity was unambiguously assigned to a single T‐DNA insertion through segre...
Article
Plants produce a huge array of metabolites, far more than those produced by most other organisms. Unraveling this diversity and its underlying genetic variation has attracted increasing research attention. Post-genomic profiling platforms have enabled the marriage and mining of the enormous amount of phenotypic and genetic diversity. We review here...
Article
Metabolomic analysis coupled with advanced genetic populations represents a powerful tool to investigate the plant metabolome. However, genetic analyses of the rice (Oryza sativa) metabolome have been conducted mainly using natural accessions or a single biparental population. Here, the flag leaves from three inter-connected chromosome segment subs...
Article
Copper (Cu) is an essential micronutrient for plant growth. However, the molecular mechanisms underlying Cu trafficking and distribution to different organs in rice are poorly understood. Here, we report the function and role of Antioxidant Protein1 (OsATX1), a Cu chaperone in rice (Oryza sativa). Knocking out OsATX1 resulted in increased Cu concen...
Article
Full-text available
Plants respond to UV-B irradiation (280-315 nm wavelength) via elaborate metabolic regulatory mechanisms that help them adapt to this stress. To investigate the metabolic response of the medicinal herb Chinese liquorice (Glycyrrhiza uralensis) to UV-B irradiation, we performed liquid chromatography tandem mass spectrometry (LC-MS/MS)-based metabolo...
Article
Full-text available
Selenium (Se) is an essential mineral element for animals and humans. Cardamine hupingshanensis (Brassicaceae), found in the Wuling mountain area of China, has been identified as a novel Se hyperaccumulator plant. However, the mechanism for selenium tolerance in Cardamine plants remains unknown. In this study, two cDNA libraries were constructed fr...
Article
Humans heavily rely on dozens of domesticated plant species that have been further improved through intensive breeding. To evaluate how breeding changed the tomato fruit metabolome, we have generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes from hundreds of tomato genotypes. The combined results illustrate how br...
Article
Full-text available
Arsenic (As) is toxic to organisms, and elevated As accumulation in rice (Oryza sativa) grain may pose a significant health risk to humans. The predominant form of As in soil under aerobic conditions is As(V), which has a chemical structure similar to that of PO43-. Rice roots take up As(V) by phosphate (Pi) transporters, such as OsPT1 and OsPT8. I...
Data
The As concentration in OsPT4-overexpressing plants and the expression pattern of OsPT4 in Nipponbare. (A) The As concentration of wild-type and OsPT4-overexpressing plants grown to heading stage in flooded soil. Data are means ± SD of three biological replicates. Values are significantly different from those of wild-type: ∗P < 0.05, ∗∗P < 0.01 (on...
Data
The characteristics of OsPT2- and OsPT4-overexpressing plants. The expression levels and As contents of OsPT2 and OsPT4 were determined with real-time polymerase chain reaction and inductively coupled plasma mass spectrometry (ICP-MS), respectively. (A) Total RNA of wild type, OsPT2- and OsPT4-overexpressing plants. (B) Relative expression levels o...
Data
Phenotypes of OsPT4 RNA interference plants. (A–C) The growth phenotype of OsPT4-Ri plants and wild type. Plants were grown in nutrient solution to which 0, 25, and 50 μM arsenate were added for 7 days. (D) As concentrations of roots in wild-type and OsPT4-Ri plants. Data are means ± SD of five biological replicates. Values are significantly differ...
Article
Full-text available
Decoration of phytochemicals contributes to the majority of metabolic diversity in nature, whereas how this process alters the biological functions of their precursor molecules remains to be investigated. Flavones, an important yet overlooked subclass of flavonoids, are most commonly conjugated with sugar moieties by UDP-dependent glycosyltransfera...