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Deep Reinforcement Learning-Based
Mobility-Aware Robust Proactive Resource

Allocation in Heterogeneous Networks
Jing Li , Xing Zhang , Jiaxin Zhang, Jie Wu, Qi Sun, and Yuxuan Xie

Abstract—Proactive resource allocation (PRA) is an essential1

technology boosting intelligent communication, as it can make full2

use of prediction and significantly improve network performance.3

However, most promising gains base on perfect prediction which4

is unrealistic. How to make PRA robust against prediction uncer-5

tainty and maximize benefits brought by prediction becomes an6

important issue. In this paper, we tackle this problem and propose7

a mobility-aware robust PRA approach (MRPRA) in heteroge-8

neous networks. MRPRA pre-allocates resources in both time9

and frequency domains among mobile users with users’ tra-10

jectories predicted by hidden Markov model. The objective is11

to minimize service delay under constraints of different levels12

of quality-of-service (QoS) requirement and mobility intensity.13

MRPRA is robust against prediction uncertainty by exploiting14

probabilistic constraint programming to model QoS requirements15

in a probabilistic sense. To this end, the probabilistic distribu-16

tion of achievable rate is derived. To flexibly coordinate resource17

allocation among multiple mobile users over time horizon, a18

deep reinforcement learning based multi-actor deep deterministic19

policy gradient algorithm is designed. It learns robust PRA poli-20

cies by distributed acting and centralized criticizing. Extensive21

numerical simulations are performed to analyze performances of22

the proposed approach.23

Index Terms—Heterogeneous networks, proactive resource24

allocation, mobility prediction, deep reinforcement learning,25

robustness.26

I. INTRODUCTION27

B IG DATA prediction makes the traditional heterogeneous28

networks (HetNets) learning and knowledgeable. It’s an29

efficient way towards network intellectualization which is a30

dominant trend at present. 3GPP has introduced module of31

network data analytics into 5G systems to explore implicit32
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intelligence from network data and guide the network towards 33

efficient operation [1]. Promising technologies, e.g., mobile 34

edge computing [2], caching [3], have incorporated big data 35

prediction into performance enhancing as well. 36

Proactive resource allocation (PRA) is also an efficient 37

approach boosting intelligent communication, as it can make 38

full use of prediction and hence significantly improve network 39

performance in terms of throughput, energy efficiency, quality- 40

of-service (QoS) etc. PRA means to utilize some kinds of 41

predicted information to make resource allocation planning 42

beforehand for non-real-time (NRT) service [4]. This makes 43

resource allocation process more flexible in large time scale. 44

For example, if information of future wireless channel con- 45

ditions and users’ mobility is known, power and bandwidth 46

allocation can be pre-designed to transmit more data when 47

channel condition is good and available bandwidth is suffi- 48

cient. This way helps to save energy consumption [5]. On 49

the other hand, we can plan to first schedule those who are to 50

leave the network’s coverage to adapt to various levels of delay 51

requirements in long term [6]. However, in traditional reactive 52

schemes like fair scheduling (FS) in which users accessed to 53

the same base station (BS) are scheduled with equal frequency 54

bandwidth, the network reacts to arriving requests in a rigid 55

way and hence lacks these functionalities. Thus, how to effi- 56

ciently exploit predicted information for PRA optimization 57

should be given comprehensive and deep exploration. 58

Besides, the promising gains mentioned above mostly base 59

on perfect prediction. However, there always exist random 60

prediction errors which bring randomness to the predicted 61

information. Therefore, we say prediction is uncertain. Our 62

previous work [6] has demonstrated that network performance 63

is largely degraded by prediction uncertainty. The imper- 64

fectly predicted information will mislead PRA. It costs 65

extra resources to complete service for the under-served 66

users, which causes large service delay and low through- 67

put. How to make PRA robust against prediction uncertainty 68

to maximize benefits of prediction has not been thoroughly 69

settled. And it poses challenges on modeling prediction 70

uncertainty [7]. 71

Inspired by the fact that human mobility and channel 72

conditions are proven to be predictable [8], [9], this work 73

exploits these two kinds of predicted information for PRA 74

optimization. We also focus on effective processing prediction 75

uncertainty to make PRA robust. A mobility-aware robust PRA 76

(MRPRA) approach for NRT service is proposed. MRPRA 77
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aims to minimize service delay under constraints of differ-78

ent QoS requirements and mobility intensities by optimally79

coordinating allocation of time slots and frequency bandwidth.80

Solving the robust PRA optimization problem is challeng-81

ing. First, the problem is mixed integer and non-convex.82

Second, the problem complexity sharply increases with the83

size of prediction window. Third, robust PRA is performed84

across multiple BSs and mobile users over time horizon under85

coexistence of different levels of QoS requirement and mobil-86

ity intensity, which reflects complexity of the environment.87

Deep reinforcement learning (DRL) is an efficient tool to over-88

come those challenges [10]. The agent is trained to make89

decisions sequentially by learning from the environment to90

maximize its reward in long term. Taking advantage of this91

feature, we can decompose the original problem space into92

much smaller subspaces and train the agent to make optimal93

decisions in these subspaces sequentially. The agent gets an94

approximately optimal solution in the original problem space95

by maximizing the long term reward.96

The major contributions of this work include:97

• By assuming that perfectly predicted users’ mobility and98

channel gains are known, we model the PRA optimization99

problem to provide a performance upper bound. A weight100

is designed for each user to adapt to their QoS require-101

ments and mobility intensities. As the running time of102

directly solving the optimization problem largely grows103

with the size of prediction window, we decompose the104

problem in a prediction window into sub-optimization105

problem in each frame and iteratively update solutions106

until convergence.107

• Each user’s mobility trace is predicted by hidden108

Markov model (HMM). In order to maximize benefits of109

prediction, probabilistic constrained programming (PCP)110

is utilized to make PRA robust against prediction uncer-111

tainty by modeling QoS requirement constraints in a112

probabilistic sense. To this end, prediction uncertainty113

of users’ mobility traces and channel gains is translated114

into rate uncertainty of which probabilistic density func-115

tion (PDF) is derived. Since rate distribution is utilized,116

it doesn’t need to predict exact realizations of channel117

gains.118

• Robust PRA optimization is further modeled as a Markov119

decision process (MDP). We solve the problem for each120

time slot sequentially instead of simultaneously determin-121

ing all variables in the whole prediction window. In this122

way, the complexity is significantly reduced. An actor–123

critic based DRL algorithm — deep deterministic policy124

gradient (DDPG) is introduced. In order to flexibly coor-125

dinate resource allocation among multiple users over time126

horizon, we extend DDPG to multi-actor DDPG to make127

robust PRA decision in a way of distributed acting and128

centralized criticizing. A reward function that prompts129

actors to complete their transmissions is designed to help130

the critic evaluate each actor’s policy.131

The rest of this paper is organized as follows. Section II132

reviews the related work. Section III gives the system133

model. Section IV models PRA with and without perfect134

prediction, and elaborates how to use PCP to handle prediction135

uncertainty. In Section V, robust PRA optimization is mod- 136

eled as MDP and solved by our designed multi-actor DDPG 137

algorithm. Section VI explores benefits of utilizing predicted 138

information and evaluates the performance of the proposed 139

approach by simulations. Comprehensive conclusion is given 140

in Section VII. 141

II. RELATED WORK 142

A. Resource Allocation Planning With Prediction 143

On condition that the network has perfectly predicted the 144

arrival time and contents of users’ requests ahead of time, 145

works in [11], [12] proposed to activate the BS to pre- 146

download files from the core network before users’ requests 147

actually arriving. Performance gains of the proactive policy 148

come from extending the transmission deadline and hence 149

shrinking the queue length. 150

Works in [4], [6], [13]–[15] pre-allocated resources in a 151

prediction window. They assumed that perfectly predicted 152

information on user mobility, channel conditions and traf- 153

fic demands was available at the beginning of the prediction 154

window. Work in [4] studied how to translate the predicted 155

information to available knowledge for planning power and 156

time slots allocation, BS sleeping. Work in [13] proposed two 157

approaches for tradeoff between power consumption and ser- 158

vice delay. The approach with future information can optimize 159

resource allocation for multiple frames but the one without can 160

work for only one frame. This indicates that proactive schemes 161

help optimize resource management in large time scale. Work 162

in [14] minimized the maximal service delay for time slots 163

allocation planning with a heuristic algorithm. Work in [15] 164

minimized energy consumption by optimizing power alloca- 165

tion according to predicted channel conditions. Our previous 166

work [6] studied how and when to utilize perfect prediction for 167

PRA with convex optimization. This work fully developed our 168

early ideas in [6]. The differences between them include, a) the 169

previous work solved PRA optimization problem directly, 170

while this work decomposed the problem space and utilized an 171

iterative solver for computational complexity reduction, b) the 172

previous work assumed perfect prediction, while this work pre- 173

dicted user mobility and further utilized PCP to make PRA 174

robust against prediction uncertainty, c) this work addition- 175

ally designed a DRL algorithm to tackle challenges in solving 176

robust PRA optimization problem. 177

The above researches are based on perfect prediction. But 178

prediction is always uncertain practically. One of our major 179

contribution compared to the above works is that we dealt 180

with prediction uncertainty. PCP is one of the main tech- 181

nologies in stochastic programming to tackle uncertainty and 182

provide robust information. The predicted uncertain values 183

are represented as stochastic variables [16]. And the con- 184

straints accommodating the predicted uncertain values are 185

presented in a probabilistic form with a maximum viola- 186

tion probability. Works in [7] and [17] proposed to use PCP 187

to model resource allocation in predictive video streaming. 188

These works only considered rate uncertainty and assumed 189

perfectly known mobility traces. However, the bias in mobil- 190

ity prediction brings wrong knowledge of user association and 191
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causes a waste of resources, which is ineligible. In contrast,192

our work incorporated mobility prediction uncertainty.193

There are other PRA researches based on mobility194

prediction models. Work in [5] designed four deep neutral195

networks (DNN) to predict user mobility, thresholds of aver-196

age channel gain and average residual frequency bandwidth197

to guide data transmission. Work in [18] proposed a resource198

reservation method by predicting users’ next locations based199

on decision tree and Markov model. Work in [19] proposed a200

proactive BS sleep cycle scheduling scheme with help of the201

designed next location estimation algorithm. Performance of202

these works largely depend on prediction accuracy. In contrast,203

our work achieved robustness against inaccurate prediction.204

Moreover, we considered adaptiveness to mobility intensities.205

B. User Mobility and Channel Gain Prediction206

In order to get future knowledge of user mobility, effort207

in [20] proposed a mobility prediction framework based on208

hidden Markov model (HMM). The spatio-temporal predic-209

tor derived the future travel sequence given a future time210

sequence. The probabilistic distribution of users’ future posi-211

tions can be obtained with HMM as well. Work in [21] used212

recurrent neural network to predict the next visited cell. A long213

short-term memory based human path predictor was proposed214

in [22]. As our work focused on exploring the value of users’215

future moving traces, and we only needed coarse future posi-216

tions together with their probabilistic distribution, we adopted217

the framework in [20] for mobility prediction. Work in [23]218

provided various ways to predict channel gains with the help of219

a coverage map which can be constructed with [9]. However,220

as we utilized PCP to model rate uncertainty in a probabilis-221

tic sense, there is no need to directly predict future channel222

conditions.223

C. Reinforcement Learning for Resource Allocation224

Uncertain dynamic wireless environment, demand of adap-225

tion to diverse users’ behaviors have posed challenges on226

resource allocation. More and more studies utilized RL to227

tackle those challenges recently. An MDP based online learn-228

ing method was proposed in [24] for MEC offloading. The229

state transition probability it used is often hard to obtain.230

Other works focused on model-free algorithms. Work in [25]231

proposed a user association approach with deep Q-network232

(DQN). However, handling continuous action space is beyond233

the capability of DQN. Work in [26] proposed a user asso-234

ciation and power allocation scheme based on actor–critic235

learning framework. The linear feature-based function it used236

may not provide good estimation of the action-value func-237

tion when the environment is complex. DDPG algorithm [27]238

combined DQN and the actor–critic framework to handle con-239

tinuous state and action spaces. It utilizes DNN to approximate240

the action-value function and policy function, which has good241

adaptiveness to complex environment. In this work, we bor-242

rowed the idea from [29] to extend DDPG to multi-actor243

DDPG. Work in [29] proposed a novel multi-actor framework244

and made each actor execute a distinct task. While in our work,245

all actors cooperated to complete the same task.246

TABLE I
SUMMARY OF MAIN NOTATIONS

III. SYSTEM MODEL 247

We consider a two-tier time-slotted downlink orthogonal 248

frequency division access (OFDMA) HetNet consisting of 249

macro BSs (MBS) N 1 and small BSs (SBS) N2 collocated. 250

We assume that different BSs use different frequency bands. 251

Therefore, there is no interference. Locations of MBSs and 252

SBSs are drawn from homogeneous spatial Poisson point pro- 253

cess (SPPP) with density of λ1 and λ2, respectively. Let 254

Φ = {ϕ|ϕ ∈ N1 ∪N2} denote the set of all BSs. Mobile 255

users U = {u|u = 1, 2, . . . ,U } with NRT service request a 256

file of B bits. They associate with the BS providing maximum 257

signal to noise ratio (SNR). Considering data rate is a key fac- 258

tor for determining QoS, the minimum data rate requirement 259

cmin
u is taken as the QoS requirement. To make it clear, we 260

summarize main notations in Table I. 261

Users’ mobility traces are first predicted. As we utilize PCP 262

to model rate uncertainty in a probabilistic sense, only rate 263

distribution is needed but not the exact realizations. Namely, 264

there is no need to predict the exact values of future chan- 265

nel conditions. A central controller is connected with all BSs 266

to gather historical data for mobility prediction and perform 267

resource allocation. 268

Frequency bandwidth is reserved at each BS for real-time 269

(RT) service which is non-delay-tolerant and must be served 270

immediately. Only residual frequency bandwidth is avail- 271

able for NRT service which is delay-tolerant and will be 272

queued if there is no sufficient frequency bandwidth. Given 273

users’ movements, NRT users may move out of the network’s 274
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Fig. 1. Overview of mobility model.

coverage before they are scheduled. Hence in time domain,275

users with higher levels of mobility intensity should be276

scheduled before those with lower levels. Moreover, resource277

allocation should fit different QoS requirements. For example,278

BSs should allocate more frequency bandwidth to those with279

higher capacity requirements under same channel condition.280

With the predicted information of user mobility and channel281

conditions, BSs know when, under what channel conditions282

and who will compete for resources. Then we can coordinate283

resource allocation in both time and frequency domains to284

meet each user’s mobility intensity and QoS requirement in285

large time scale. To further maximize benefits of prediction,286

robust PRA is designed against prediction uncertainty.287

A. Resource Model288

Time is divided into slots indexed by t and each with289

duration of ∆. A set of K time slots is referred to290

as a frame. The j-th frame is defined as a set Fj =291

{(j − 1)K + 1, (j − 1)K + 2, . . . , jK} of time slots. And the292

prediction window H = {j , j = 1, 2, . . . ,H } consists of H293

frames. In frequency domain, we explicitly assume that BS ϕ294

has pre-reserved certain amount of frequency bandwidth for295

RT users in time slot t based on a certain resource reserva-296

tion scheme like [18]. And we denote the residual frequency297

bandwidth for NRT users as R′
t ,ϕ.298

B. Mobility Model299

An overview of the mobility model is given in Fig. 1.300

Position of user u at time slot t is represented by the index of301

its serving BS denoted by ϕt ,u . Thus within a prediction win-302

dow, the mobility trace (ϕt ,u , t = 1, 2, . . . ,HK ) of user u is a303

sequence of time-stamped serving BSs of user u. Mobility of304

user u can be denoted as a matrix Lu = (liu , i = 1, 2, . . . , lu ),305

where liu = (ϕiu , I (ϕ
i
u ), τ(ϕ

i
u )) is a triple with ϕiu being the306

i-th serving BS of user u, which starts to serve the user at307

time slot I (ϕiu ), and τ(ϕiu ) being the residence time slots308

under BS ϕiu , lu is the number of BSs that user u associates309

with along its trajectory. In this work, we utilize HMM based310

spatio-temporal travel sequence prediction in [20] to predict311

mobility trace for user u with historical data record Lu .312

HMM characterized by λ = (A ,B,Γ) is composed of hid-313

den states and observable states. We define hidden states as314

the user’s positions in its mobility trace, and the observ- 315

able states as the HK time slots in the prediction window. 316

States transition matrix A consists of state transition probabil- 317

ities p(ϕt+1,u |ϕt ,u) among hidden states. Confusion matrix 318

B consists of emission probabilities p(t |ϕt ,u) that denotes the 319

distribution of observed states that are emitted from each hid- 320

den state. Γ is consisted of the initial distribution p(ϕ) of 321

hidden states. 322

Mobility trace prediction is a HMM decoding problem that 323

can be efficiently solved by Viterbi algorithm with obtained λ. 324

More details can be found in work [20]. The predicted value 325

of ϕt ,u is denoted by ϕ̂t ,u . 326

C. Channel Model 327

In time slot t and t ∈ Fj , with large scale channel gain 328

d−αϕt,u
between the user and its serving BS ϕt ,u , and small 329

scale channel fading factor |ht ,u |2 ∼ exp(1), the achievable 330

spectral efficiency of user u can be estimated by 331

γt ,u = log 2

(
1 +

Pϕt,ud
−α
ϕt,u

∣∣ht ,u
∣∣2

σ2

)
, (1) 332

where Pϕt,u is the transmit power of BS ϕt ,u , dϕt,u is the 333

distance between user u and BS ϕt ,u , α is the path loss 334

exponent, and σ2 is the variance of random Gaussian noise. 335

Assume that users change locations over frames. Thus, we 336

have ϕt ,u = ϕ(j−1)K+1,u . 337

IV. MOBILITY-AWARE ROBUST PRA 338

This work coordinates time slots and frequency band- 339

width allocation among multiple mobile NRT users within a 340

prediction window. The goal is to minimize service delay with 341

adaptation to different QoS requirements and mobility intensi- 342

ties. PRA optimization with perfect prediction is first modeled 343

to evaluate the fundamental benefits of proactive algorithm 344

design and provide a performance upper bound. Then PCP is 345

utilized to handle prediction uncertainty and make PRA robust. 346

A. Problem Formulation for Mobility-Aware PRA with 347

Perfect Prediction (MPRA-Perfect) 348

In this subsection, we assume that the precisely predicted 349

users’ mobility traces and channel gains are known at the 350

beginning of the first time slot. 351

Let xu = (x
ϕt,u
t ,u , t = 1, 2, . . . ,HK ) denote the resource 352

allocation vector of user u. xϕt,u
t ,u ∈ (0, 1] indicates that user u 353

is scheduled in time slot t and occupies x
ϕt,u
t ,u Rt ,u amount of 354

frequency bandwidth, where Rt ,u = R′
t ,ϕt,u

is the total avail- 355

able frequency bandwidth for user u in time slot t. Otherwise 356

x
ϕt,u
t ,u = 0. For power allocation, we assume that the fraction 357

of power allocated to user u equals to x
ϕt,u
t ,u . The achievable 358

rate of user u in time slot t at BS ϕt ,u is 359

ct ,u = Rt ,uγt ,u . (2) 360

In order to model PRA optimization as a con- 361

vex problem, we introduce a binary vector Tu = 362

(Tt ,u ,Tt ,u ∈ {0, 1}, t = 1, . . . ,HK ) to account for ser- 363

vice delay. Tt ,u = 1 indicates that at time slot t, there are 364
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still bits remaining to be transmitted for user u. Otherwise365

Tt ,u = 0. Thus, the service delay of user u is ∥Tu∥1. To366

this end, constraint Tt ,u ≥
ITt xu
HK must be satisfied, where367

It = [ 0, . . . , 0︸ ︷︷ ︸
t−1

, 1, . . . , 1]T .368

Define an association indicator sϕt ,u ∈ {0, 1}. sϕt ,u=1369

indicates that at time slot t, user u is associated with370

BS ϕ. Otherwise sϕt ,u = 0. With the knowledge of371

user mobility and channel conditions, ct ,u and sϕt ,u are372

known.373

For the sake of adaptation to different users’ QoS require-374

ments and mobility intensities indicated by the average cell375

residence time τ̄u , we design a weight for user u376

ηu =
ec

min
u

τ̄u
. (3)377

Then we have the PRA optimization problem in (4). The378

objective is to minimize weighted sum of all users’ service379

delay. Constraint C3 is the frequency bandwidth restrict at380

each BS. Constraint C4 ensures the completion of B bits data381

transmission. Constraint C5 indicates that the QoS requirement382

of user u must be guaranteed when it is scheduled, where383

Jt ,u = 1{xt ,u > 0} with 1{} being an indicator function. We384

ignore the mobility constraint ∥Tu∥1 ≤
∑
i
τ(ϕiu ). It indicates385

that data transmission should be completed before the user386

leaving the network’s coverage. Actually, if constraints C4 and387

C5 are satisfied, the mobility constraint will be guaranteed.388

This is because, the user terminates its transmission at time389

slot ∥Tu∥1 if C4 is satisfied, which means that at time slot390

∥Tu∥1 C5 must also be satisfied and the user must be within391

the network’s coverage.392

arg min
xu ,Tu ,Ju

∑

u∈U
ηu∥Tu∥1393

s .t . C1 : t = 1, 2, . . . ,HK , u ∈ U ,ϕ ∈ Φ,394

C2 : x
ϕt,u
t ,u ∈ [0, 1],Tt ,u ∈ {0, 1}, Jt ,u ∈ {0, 1},395

C3 :
∑

u∈U
x
ϕt,u
t ,u sϕt ,u ≤ 1,396

C4 : ∆
HK∑

t=1

x
ϕt,u
t ,u ct ,u ≥ B ,397

C5 : x
ϕt,u
t ,u ct ,u ≥ Jt ,uc

min
u ,398

C6 : Tt ,u ≥
ITt xu
HK

,399

C7 : Jt ,u ≥ xt ,u . (4)400

Problem (4) is a mixed integer convex problem that can401

be solved by convex optimization tools, such as CVX. The402

difficulty of directly solving problem (4) highly increases403

with the size of the prediction window. To reduce com-404

plexity, we decompose problem (4) in the whole prediction405

window into sub-optimization problem in each frame and406

then solve the sub-optimization problems in an iterative407

manner [30]. The procedure is presented in Algorithm 1.408

Define Y = [X,T, J]. Let Y(j ) denote variables in409

frame j, namely Y(j ) = [X(j ),T(j ), J(j )], where X(j ) =410

Algorithm 1 Iterative Decision for MPRA-Perfect
Initialize: Y

1: while i< maximum iteration number do
2: j = H
3: while j > 0 do
4: Fix Y

(
j ′
)
, j ′ ∈ H\j and minimize the objective function

in problem (4) over frame j by CVX
5: Update Y(j ) with the optimal solution obtained in line 4
6: j ← j −1
7: end while
8: end while

Output: Y

[x
ϕt,u
t ,u , t ∈ Fj , u ∈ U ], T(j ) = [Tt ,u , t ∈ Fj , u ∈ U ] and 411

J(j ) = [Jt ,u , t ∈ Fj , u ∈ U ]. 412

As the objective is to minimize service delay, we start with 413

j = H (line 2) and update Y(j) in inverted time order (line 6). 414

Variables in all frames except frame j are fixed when updating 415

Y(j) (line 4). 416

B. Problem Formulation for MRPRA With PCP 417

We use PCP to tackle prediction uncertainty. In problem (4), 418

the predicted uncertain information includes sϕt ,u , γt ,u , ϕt ,u 419

and Rt ,u . They are represented by stochastic variables s̃ϕt ,u , 420

γ̃t ,u , ϕ̃t ,u and R̃t ,u , respectively. The meaning of problem (4) 421

is not clearly defined without knowing a realization of the 422

stochastic variables. Thus problem (4) is revised to a determin- 423

istic equivalent form with PCP. The stochastic achievable rate 424

is represented by a random variable c̃t ,u = R̃t ,u γ̃t ,u . It trans- 425

lates prediction uncertainty of mobility and channel conditions 426

to rate uncertainty. The randomness may cause violations in 427

constraints C3−C5. By rewriting C3−C5 in a probabilistic 428

form, problem (4) is equivalently transferred to (5), where C8, 429

C9 and C10 are transferred from C3, C4 and C5, respectively. 430

C8 means that
∑

u∈U x
ϕ̂t,u
t ,u s̃ϕt ,u ≤ 1 must be satisfied for any 431

given s̃ϕt ,u . C9 guarantees that the probability of user u failing 432

to receive B bits data doesn’t exceed ε1 ∈ [0, 1]. Similarly, C10 433

guarantees that the probability of QoS requirement violation 434

is no greater than ε2 ∈ [0, 1]. 435

arg min
xu ,Ju ,Tu

∑

u∈U
ηu∥Tu∥1 436

s .t . C1,C2,C6,C7, 437

C8 : P
{
∑

u∈U
x
ϕ̂t,u
t ,u s̃ϕt ,u ≤ 1

}
= 1, 438

C9 : P
{

HK∑

t=1

∆x
ϕ̂t,u
t ,u c̃t ,u < B

}
≤ ε1, 439

C10 : P
{
x
ϕ̂t,u
t ,u c̃t ,u < Jt ,uc

min
u

}
≤ ε2, (5) 440

Proposition 1: The necessary and sufficient condition of 441

constraint C4 is constraints C11 : ∆x
ϕ̂t,u
t ,u ct ,u ≥ bt ,uB and 442

C12 :
∑HK

t=1 bt ,u = 1, where bt ,u ∈ [0, 1] represents the 443

fraction of data at least to be transmitted to user u in time 444

slot t. 445

Proof: See Appendix A. 446
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The probability in C9 is hard to derive as it involves cumu-447

lative sum of multiple i.i.d. random variables. Proposition1448

shows that C4 can be decomposed into C11 and C12. Then449

C9 is replaced by C13 : P{∆x
ϕ̂t,u
t ,u c̃t ,u < bt ,uB} ≤ ε1.450

Define bu = (bt ,u , t = 1, 2, . . . ,HK ). Then problem (5) is451

modified as452

arg min
xu ,Ju ,Tu ,bu

∑
u∈U

ηu∥Tu∥1453

s .t . C1,C2,C6− C8,C10,C12,C13. (6)454

Lemma 1: The PDF fγ(ξ) of the achievable spectral effi-455

ciency γ̃t ,u is456

fγ(ξ) =
2∑

k =1

2σ2πλk 2ξ ln 2

αPk

∫ ∞

0
y2/αe

−y
(
2ξ−1

)
σ2/Pk −Bk y

2/α

dy,457

(7)458

where Bk = π
∑2

j=1 λj (
Pj
Pk

)
2/α

, Pj and Pk are transmit459

power of BSs in tier j and tier k, respectively.460

Proof: See Appendix B.461

Lemma 2: The probability mass function (PMF) pϕt ,u of the462

total available frequency bandwidth R̃t ,u of user u in time slot463

t is464

pϕt ,u =
P
{
t |ϕ̃t ,u = ϕ,R′

t ,ϕ = rt ,ϕ
}
p(ϕ)

∑

ϕ′∈Φ
p(ϕ′)P

{
t |ϕ̃t ,u = ϕ′,R′

t ,ϕ′ = rt ,ϕ′

} . (8)465

Proof: See Appendix C.466

Theorem 1: The PDF fCt,u (c) of the achievable rate Ct ,u467

of user u in time slot t is468

fCt,u (c) =
2σ2π ln 2

α

∫ ∞

0
y2/α

∑

rt,ϕ>0

2c/rt,ϕpϕt ,u
rt ,ϕ

469

×
2∑

k =1

λk
Pk

e
−y

(
2c/rt,ϕ−1

)
σ2/Pk −Bk y2/α

dy , (9)470

where ϕ is the BS that has rt ,ϕ residual frequency bandwidth471

in time slot t.472

Proof: See Appendix D.473

With Theorem 1, probabilities in C10 and C13 are deduced474

as (10) and (11), as shown at the bottom of the next page,475

respectively.476

V. DEEP REINFORCEMENT LEARNING FOR477

MOBILITY-AWARE ROBUST PRA478

It can be found that problem (6) is mixed integer and non-479

convex by substituting (10) and (11) into (6). The problem480

space sharply increases with size of the prediction window.481

Furthermore, robust PRA is performed under complex environ-482

ment. DRL is utilized to handle the above difficulties. Taking483

advantage of the feature of sequential decision making in DRL,484

problem of robust PRA can be solved slot by slot. Namely,485

it only needs to determine x
ϕ̂t,u
t ,u instead of xu for each user486

at each decision epoch t. The agent learns to complete data487

transmission as soon as possible by maximizing the long term488

reward with the properly designed reward function.489

A. Deep Deterministic Policy Gradient Algorithm 490

Problem (6) can be modeled as a discrete time MDP with 491

continuous state space S and action space A. Since the state 492

transition probability and the expected rewards for all states 493

are often unknown, a model-free DRL algorithm DDPG [27] 494

which can tackle continuous actions and states is introduced. 495

Let the central controller be the agent performing DDPG 496

and each time slot t in the prediction window be a decision 497

epoch. At decision epoch t, the agent takes an action at ∈ A 498

according to the deterministic policy µ : S → A that maps 499

state st to a specific action at after observing current state 500

st ∈ S . Then it receives a reward r(st , at ) and experiences 501

state transition to st+1. The agent aims to learn a policy that 502

maximizes the expected long term discounted reward J = 503

Est [
∑∞

t=0 φ
tr(st , at )], where φ is a discount factor. 504

DDPG is composed of an actor and a critic. Role of the 505

actor is to maintain a policy function µ that outputs continuous 506

action given the observed state. Role of the critic is to maintain 507

an action-value function that describes the long term expected 508

feedback after taking action at in state st following policy µ. 509

It is used to criticize the current policy and defined by 510

Qµ(st , at ) = Est+1 [r(st , at ) + φQµ(st+1, µ(st+1))], (12) 511

where Qµ(st+1, µ(st+1)) and µ(st+1) are target values of the 512

action-value function and policy function, respectively. 513

1) Critic: The critic utilizes a DNN with parameter θQ , 514

called online critic network (OCN) Qµ(st , µ(st |θµ)|θQ ), to 515

estimate the action-value function. OCN is trained to make 516

correct criticism on the current policy by minimizing the loss 517

L
(
θQ
)
= Est

[(
Qµ
(
st , µ(st |θµ)|θQ

)
− yt

)2]
, (13) 518

with gradient descent algorithm (GDA), where yt = 519

r(st , at ) + φQµ′
(st+1, µ

′(st+1|θµ
′
)|θQ ′

). The loss function 520

tells how bad the action-value function is estimated com- 521

pared to the expected. To calculate yt , the critic uses a 522

separate DNN with parameter θQ
′
, called target critic network 523

(TCN) Qµ′
(st+1, µ

′(st+1|θµ
′
)|θQ ′

) to get the target value 524

Qµ(st+1, µ(st+1)) in (12). TCN has the same structure as 525

OCN and is updated by 526

θQ
′
← wθQ + (1− w)θQ

′
, (14) 527

with updating rate w≪ 1. 528

2) Actor: The policy function µ is estimated by a DNN 529

with parameter θµ called online actor network (OAN) 530

µ(st |θµ). OAN is trained with gradient ascent algorithm 531

(GAA). And the critic guides the training by providing its 532

criticism ∇µQµ(st , µ(st |θµ)|θQ ) on the current policy to the 533

policy gradient 534

∇θµJ = Est

[
∇µQ

µ
(
st , µ(st |θµ)|θQ

)
∇θµµ(st |θµ)

]
. (15) 535

By applying ∇θµJ as the gradient to GAA, parameter θµ 536

is updated in a direction that would maximize J. 537

The actor also maintains a target actor network (TAN) 538

µ′(st+1|θµ
′
) with parameter θµ

′
to calculate the target value 539

µ(st+1) in (12). TAN is a copy of OAN and is updated with 540

the same rule in (14). 541
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3) Training Process: The agent stores transition542

(st , at , r(st , at ), st+1) notated by m in a replay memory543

(RM) M. In this work we adopt the prioritized sampling544

strategy in [28] to improve performance of DDPG. Each545

transition has a sampling probability defined by546

qm =
1/rank (m)∑

m ′∈M
1/rank (m)

, (16)547

where function rank(m) gives the rank of transition m in M548

based on the loss value Lm (θQ ) calculated by (13) with549

transition m.550

In each training episode, a mini-batch of transitions D are551

sampled from M based on their sampling probabilities. OCN552

is first trained by minimizing the loss 1
|D|

∑

m ′∈D
Wm ′Lm ′(θQ ),553

where Wm ′ = [1/(|M|qm ′)]β is the importance sampling554

weight with parameter β ∈ [0, 1].555

Then OCN calculates the action-value function with sam-556

pled transitions to get the criticism ∇µQµ(st , µ(st |θµ)|θQ ).557

After that, OAN is updated using the sampled policy gradient558

1
|D|

∑

m ′∈D
∇m ′
θµ J , where ∇m ′

θµ J is the policy gradient calcu-559

lated with sample m′. Finally, parameters of TAN and TCN are560

updated with (14). The whole process repeats till convergence.561

B. Multi-Actor DDPG Based MRPRA Decision Making562

In order to flexibly coordinate resource allocation among563

multiple users over time horizon, we extend DDPG with only564

one actor to multi-actor DDPG which works in a way of565

distributed acting and centralized criticizing. It uses multiple566

actors and each stands for a user to learn its own policy. This567

is motivated by the idea of multi-task DDPG proposed in [29].568

Here and after, terms ‘user’ and ‘actor’ are used interchange-569

ably. Users who complete their data transmission earlier won’t570

take actions any more but wait for the others. It is difficult to571

control one single actor to perform such process. Thus it’s572

necessary to use multiple actors that can flexibly control their573

own actions.574

The framework of multi-actor DDPG is show in Fig. 2.575

At decision epoch t, each actor takes an action at ,u after576

observing the global state st . Then each actor receives577

an individual reward ru(st , at ) under action profile at =578

(at ,1, at ,2, . . . , at ,U ). After processing all actors’ individual579

rewards, the global reward r(st , at ) is obtained and stored in580

a RM together with st , at and new global state st+1. Then581

the critic takes a batch of samples from the RM to evaluate582

each actor’s policy. And actors update their policies based on583

the critic’s evaluation.584

Fig. 2. Multi-actor DDPG based MRPRA decision making framework.

The global state space S is composed of all users’ state 585

spaces S = S1 × S2 × · · · SU . Define the state of user u 586

at decision epoch t as st ,u = (b′t ,u , ϕ̂t ,u , p
ϕ
t ,u , rt ,ϕ,ϕ ∈ Φ), 587

where b′t ,u ∈ [0, 1] is the fraction of data transmitted to user 588

u till decision epoch t. We can assume that each user has a 589

buffer of size 1, and the buffer state is b′t ,u indicating the 590

data amount in the buffer. The corresponding global state at 591

decision epoch t is st = (st ,u , u ∈ U). 592

We define action taken by user u at decision epoch t as 593

at ,u = x
ϕ̂t,u
t ,u

′
. SoftMax function is applied to compute x

ϕ̂t,u
t ,u , 594

that is x
ϕ̂t,u
t ,u =

x
ϕ̂t,u
t,u

′

∑

u′∈U
1{ϕ̂t,u′=ϕ̂t,u}x

ϕ̂t,u′
t,u′

′ , which catches con- 595

straint C8. The actions profile of all users at decision epoch t 596

is at = (at ,u , u ∈ U). 597

Theorem 2: The agent only needs to determine X. And the 598

optimal solution of bt ,u is b∗t ,u =
ψ̄t,u∆x

ϕ̂t,u
t,u

B when x
ϕ̂t,u
t ,u is 599

fixed, where
∫ ψ̄t,u
0 fCt,u (c)dc= ε1. 600

Proof: See Appendix E. 601

After user u takes an action at ,u under global state st it 602

receives an individual reward ru(st , at ) and a global reward 603

r(st , at ) that the agent aims to maximize. The reward func- 604

tion should be designed carefully otherwise the agent hardly 605

learns anything. The agent aims to learn policies that mini- 606

mizes weighted sum of service delay under constraint C10. So 607

the reward function should be characterized by, a) it can cap- 608

ture violation of C10, b) it can coordinate resource allocation 609

among users according to the weight ηu , c) it can stimulate 610

the agent to reduce service delay. To this end, the individ- 611

ual reward function and global reward function are defined 612

P
{
x
ϕ̂t,u
t,u c̃t,u < Jt,uc

min
u

}
=

2σ2π ln 2
α

∫ Jt,ucmin
u

x
ϕ̂t,u
t,u

0

∫ ∞

0
y2/α

∑

rt,ϕ>0

2c/rt,ϕpϕt,u
rt,ϕ

2∑

j=1

λj
Pj

e
−y

(
2c/rt,ϕ−1

)
σ2/Pj−Bj y

2/α

dydc (10)

P
{
∆x

ϕ̂t,u
t,u c̃t,u < bt,uB

}
=

2σ2π ln 2
α

∫ bt,uB

∆x
ϕ̂t,u
t,u

0

∫ ∞

0
y2/α

∑

rt,ϕ>0

2c/rt,ϕpϕt,u
rt,ϕ

2∑

j=1

λj
Pj

e
−y

(
2c/rt,ϕ−1

)
σ2/Pj−Bj y

2/α

dydc (11)
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in (17) and (18), respectively.613

ru(st , at ) = ηu
(
b′t+1,u − 1

)
+ p1, (17)614

r(st , at ) =
∑

u∈U
ru (st , at ) + ρW . (18)615

Define function g −(x ) =

{
0, x ≥ 0
x , x < 0

. In (17), p1 =616

g −(ε2 − P{xϕt,u
t ,u c̃t ,u < Jt ,ucmin

u }) is the penalty of violating617

C10. The term ηu(b′t+1,u − 1) in (17) indicates the weighted618

data amount remaining to download. The agent tends to pref-619

erentially serve users with large ηu to maximize (18). In order620

to stimulate the agent to shorten service delay, we award bonus621

ρW to it, where ρ = 1{∀b′t+1,u = 1, u ∈ U} is a terminal622

indicator.623

After receiving a reward, each user’s state transits to624

st+1,u =

{
(s1,u , u ∈ U), if ρ = 1
(b′t+1,u , ϕ̂t+1,u , p

ϕ
t+1,u , rt+1,ϕ,ϕ ∈ Φ), else ,625

where b′t+1,u =

{
min(b′t ,u + b∗t ,u , 1), if C10 is satisfied
b′t ,u , otherwise

.626

Namely, user u fails to download any bits at decision epoch627

t if C10 is violated. It’s noteworthy that when all users finish628

data transmission, we set the new global state as the initial629

one for stable state transition.630

Define policies profile µ = (µu (st |θµu ), u ∈ U).631

Correspondingly, the action-value function is Qµ(st ,µ|θQ ),632

and yt is633

yt = r(st , at ) + φQµ′(
st+1,µ

′|θQ
′)
, (19)634

where µ′ = (µ′u(st+1|θµ
′
u ), u ∈ U).635

For actor u, the policy gradient is636

∇θµu J = Est [∇µuQ
µ
(
st ,µ|θQ

)
∇θµu µu(st |θµu )]. (20)637

The process of multi-actor DDPG based MRPRA decision638

making is given in Algorithm 2.639

Line 5–line 11: Whether data transmission is finished is640

checked for each user at each decision epoch. If user u641

finishes transmission, it does nothing but waits for other642

users. Otherwise, it outputs current action. Line 12–line 17:643

The agent observes global reward and new global state644

after all users take actions. Then it saves transition645

(st , at , r(st , at ), st+1) in RM M. Line 18–line 26: The agent646

trains its OCN, TCN, OANs and TANs based on the training647

process in Section V-A3.648

After all users finish data transmission, the current training649

episode terminates and the next training episode starts.650

C. Resource Allocation651

The output action profile (at , t = 1, 2, . . . ,HK ) of652

Algorithm 2 gives the resource allocation plan in a given653

prediction window. When time slot t comes, the central con-654

troller already knows {ϕt ,u , u ∈ U}, it informs BS ϕt ,u to655

schedule user u with
x
ϕt,u
t,u

′

∑

u′∈U
1{ϕt,u′=ϕt,u}x

ϕt,u′
t,u′

′Rt ,u amount of656

frequency bandwidth. It’s noteworthy that user u gets resources657

from its actual serving BS ϕt ,u instead of the predicted one.658

Algorithm 2 Multi-Actor DDPG Based MRPRA Decision
Making

Initialize: s1,u =
(
0 , ϕ̂1,u , p

ϕ
1,u , r1,ϕ,ϕ = 1 , 2 , .., |Φ|

)
, θQ , θµu ,

θµ
′
u ← θµu , θQ

′
← θQ , u ∈ U ,replay memory M

Input: maximum training episode Emax, size of prediction window
HK, mini-batch size D

1: while episode < Emax do
2: Initialize a random process Z for action exploration
3: ρ← 0 , t ← 1
4: while ρ = 0 and t≤HK do
5: for u = 1 : U do
6: if actor u finishes data transmission then
7: Set at ,u = 0 , ru (st , at ) = 0 , b′t ,u = 1
8: else
9: Select action at ,u = µu

(
st |θµu

)
+ Zt

10: end if
11: end for
12: for u = 1 : U do
13: Observe reward ru (st , at ) and new state st+1,u
14: end for
15: ρ← 1

{
∀b′t+1,u = 1 , u ∈ U

}

16: Observe global reward r(st , at ) and new global state st+1

17: Store transition
(
st , at , r(st , at ), st+1

)
in M

18: Sample transitions D from M according to qm
19: Compute yt according to (19)
20: Update parameter θQ by minimizing the loss

1
D

∑

m ′∈D
Wm ′Lm ′

(
θQ
)

21: Update Lm ′
(
θQ
)

and rank
(
m ′
)

, m ′ ∈ D

22: Update parameter θQ
′

according to (14)
23: for u = 1 : U do
24: Update parameter θµu with 1

D
∑

m ′∈D
∇m ′
θµu J

25: Update parameter θµ
′
u according to (14)

26: end for
27: t ← t + 1
28: end while
29: end while
Output: X

This avoids wasting resources if user u is scheduled at BS 659

ϕ̂t ,u but ϕ̂t ,u ̸= ϕt ,u . If the actually transmitted data amount 660

of user u is less than B bits, it will be scheduled with FS after 661

time slot max
u
∥Tu∥1 to transmit the rest data. 662

VI. SIMULATIONS AND ANALYSIS 663

We evaluate performance of the proposed mobility-aware 664

robust PRA method via extensive simulations. All simula- 665

tion parameters, unless stated otherwise, are listed in Table II. 666

The reactive resource allocation scheme FS is introduced for 667

performance comparison to observe the benefit of proactive 668

algorithm design. MPRA-perfect serves as the performance 669

upper bound. We also simulate mobility-aware non-robust 670

PRA (MPRA-non-robust) method to validate the robustness 671

of MRPRA. The only difference between MPRA-non-robust 672

and MPRA-perfect is that the former applies the imperfectly 673

predicted mobility traces to problem (4). Successful scheduling 674

probability (SSP) and average service delay (ASD) are taken 675

as the performance metrics. SSP is the probability that the 676
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TABLE II
SIMULATION PARAMETER SETTING

user completes B bits data transmission within the prediction677

window.678

Consider a circle simulation region. Residual frequency679

bandwidth at each BS is Poisson distributed with parameter680

λR . The initial locations of users are uniformly distributed.681

The moving direction at each frame is uniformly drawn682

from [−π,π]. The velocity is updated according to Gauss–683

Markov mobility (GMM) model vj+1 = θvj + (1− θ)v̄ +684

δ
√
1− θ2φ [32], where vj is the velocity at frame j, vj+1 is685

the velocity at the next frame j + 1, θ ∈ [0, 1] indicates the686

memory level, v̄ and δ are mean and standard variation of687

velocity, φ is Gaussian process with zero mean and unit vari-688

ance. For mobility prediction, we generate 100 trajectories for689

each user as historical data. And the 101-th trajectory as the690

real mobility trace. Mobility prediction accuracy is defined as691

the ratio between the numbers of correctly predicted locations692

over the total number of locations. HMM achieves 72.72%693

prediction accuracy.694

For TANs and OANs, we use sigmoid (i.e., y = 1
1+e−x )695

as the activation function in the output layers to limit output696

actions to [0, 1]. For TCN and OCN, no activation function697

is used in the output layers.698

We set B = 500Mbit, λR = 8MHz and study convergence699

properties of Algorithm 1 and Algorithm 2. Fig. 3 shows that700

Algorithm 1 converges to an optimal solution after iteration701

70. Fig. 4 gives the convergence property of Algorithm 2 under702

different learning rates of actors with the critic’s learning rate703

being fixed to 10−3. It can be found that Algorithm 2 con-704

verges under all the learning rate settings. The agent learns705

the best policy with the learning rate being 10−3. And the706

performance cannot be improved either with the learning rate707

increasing to 10−2 or decreasing to 10−4. So the actors’ learn-708

ing rate should be chosen properly, neither too large nor too709

small. Otherwise the agent cannot learn an optimal policy.710

The purpose of Fig. 5 is to validate rate distribution derived711

in Theorem 1. In this simulation, a typical user moves from the712

Fig. 3. Convergence property of Algorithm 1.

Fig. 4. Convergence property of Algorithm 2 under different learning rate
of actors.

Fig. 5. Comparison of rate distribution obtained from Theorem 1 and
simulation.

origin. Radius of the simulation region is set to 1000 m. Rate 713

CDF is computed for each time slot and the results are aver- 714

aged over the prediction window. We run simulation 105 times. 715

It’s shown that the analytic curve obtained from Theorem 1 716

is in quite good agreement with the simulated one and thus 717

Theorem 1 is validated. 718

Under different average residual frequency bandwidth, 719

Fig. 6 compares SSP and ASD for different violation probabil- 720

ity ε1 in constraint C13. We set B = 500Mbit. SSP degrades 721

with ε1 when λR = 3MHz and it becomes less sensitive to ε1 722

values with λR increasing. ASD slightly grows with ε1 under 723

all the λR values. In a whole, performance of the proposed 724

approach is degraded by large ε1 values. This is because the 725

transmitted data amount b∗t ,u in each time slot grows with ε1. 726
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Fig. 6. Successful scheduling probability and average service delay for
different ε1 with different λR values.

Fig. 7. Comparison of average data rate and average service delay with
different level of mobility intensity and QoS requirement for MRPRA.

So it takes less time to have b′t ,u = 1 with larger ε1 values.727

Consequently, the agent will terminate transmission for user u728

and no longer plan to allocate any resources to it. However,729

the actually transmitted data amount of user u may be less730

than B bits. The central controller will serve it in a reactive731

way, which results in large delay and low SSP.732

MRPRA aims to adapt to users’ mobility intensities and733

QoS requirements. Fig. 7 studies the adaptiveness. We set734

B = 500Mbit and λR = 5MHz. QoS requirement is grouped735

into three levels, low (cmin
u ∈ {1, 2}Mbps), mid (cmin

u ∈736

{3, 4}Mbps), and high (cmin
u ∈ {5, 6}Mbps). The higher the737

level is, the larger the data rate should be. In Fig. 7(a), the738

average data rate increases with QoS requirement level under739

each mobility intensity level. This indicates that MRPRA has740

good adaptiveness to QoS requirements. Mobility intensity is741

grouped into three levels, low (τ̄u ∈ [1, 4]s), mid (τ̄u ∈ [4, 7]s),742

and high (τ̄u ∈ [7, 10]s). The higher the level is, the lower the743

service delay should be, which is exactly the results shown in744

Fig. 7(b). This indicates quite good adaptiveness of MRPRA745

to mobility intensity.746

With average residual frequency bandwidth λR varying,747

ASD and SSP are compared for different resource allocation748

approaches under different request data amount in Fig. 8(a)749

and Fig. 8(b), respectively. MPRA-perfect outperforms the750

Fig. 8. Comparison of average service delay and successful scheduling prob-
ability for different resource allocation approaches under different B values
with λR varying.

other three approaches. Averagely, 16% improvement in ASD 751

and 232% improvement in SSP are achieved over FS. This 752

indicates that MPRA-perfect can serve much more users and 753

meanwhile shorten service delay compared to FS. Such benefit 754

comes from perfect prediction. Averagely, MPRA-non-robust 755

has 9% performance loss in ASD and 18.5% performance 756

loss in SSP from MPRA-perfect. MRPRA reduces the losses 757

in ASD and SSP to 0.9% and 7.5%, respectively. As a 758

whole, MRPRA performs very close to MPRA-perfect, which 759

indicates that MRPRA guarantees as much data traffic as 760

MPRA-perfect does and shortens service delay. 761

Performance losses of MRPRA come from imperfectly pre- 762

dicted trajectories. The agent gets wrong figure of interactions 763

among users and coordinates resource allocation improperly. 764

However, with 72.72% mobility prediction accuracy, MRPRA 765

achieves much lower performance losses than MPRA-non- 766

robust, which shows robustness of MRPRA. 767

With request data amount B varying, ASD and SSP are com- 768

pared for different resource allocation approaches in Fig. 9(a) 769

and Fig. 9(b), respectively. The more data traffic is, the more 770

users MPRA-perfect can serve compared to FS. But ASD gets 771

close to that of FS with B increasing. Under such condition, 772

the reactive scheme FS can be activated instead of the proac- 773

tive approaches for computational simplicity if we ignore SSP. 774

Averagely, MPRA-non-robust has 6% performance loss in 775

ASD and 28% performance loss in SSP from MPRA-perfect. 776

MRPRA reduces the losses in ASD and SSP to 1.5% and 15%, 777

respectively. The actually transmitted data amount is less than 778
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Fig. 9. Comparison of average service delay and successful scheduling
probability for different resource allocation approaches under different λR
values with B varying.

the requested because of biased mobility prediction. The num-779

ber of under-served users who will be scheduled with FS grows780

with B. Thus the performance of MRPRA gets close to FS with781

B increasing and λR decreasing. But MRPRA achieves much782

lower performance losses than MPRA-non-robust, which ben-783

efits from the robustness of MRPRA. And it’s observed that784

the performance loss in SSP increases much faster than that785

in ASD. This indicates that MRPRA tries to guarantee ASD786

at a cost of dropping some users.787

Fig. 10(a) and Fig. 10(b) respectively compare ASD and788

SSP for different resource allocation methods with the num-789

ber of users varying. We set B = 500Mbit. It shows that gains790

in both ASD and SSP of MPRA-perfect over FS increase791

with the number of users and λR . Averagely, MPRA-non-792

robust respectively has 6% and 22% performance losses from793

MPRA-perfect in ASD and SSP. MRPRA reduces the losses794

to 1.8% and 3.9%, respectively. And it achieves 10.5% and795

more than 500% performance gains in ASD and SSP over796

FS, respectively. On the whole, the performance loss in SSP797

of MRPRA from MPRA-perfect keeps decreasing when the798

number of users is greater than 7. However, the ASD loss799

starts to increase at the tail of x-axis. We therefore conclude800

that MRPRA tries to guarantee SSP at a cost of delaying some801

users when the number of users grows large.802

In order to validate robustness of the proposed method, we803

study the impact of mobility prediction error on ASD and SSP804

in Fig. 11(a) and Fig. 11(b), respectively. We set B = 500Mbit805

and λR = 3MHz. Fig. 11 shows that the performance losses of806

Fig. 10. Comparison of average service delay and successful scheduling
probability for different resource allocation approaches under different λR
values with number of users varying.

TABLE III
CPU TIME, ASD AND SSP UNDER DIFFERENT K VALUES

MPRA-non-robust in both ASD and SSP from MPRA-perfect 807

grow sharply with prediction error. While losses of MRPRA 808

grow slightly and MRPRA performs very close to MPRA- 809

perfect. Averagely, MPRA-no-robust has 5.3% ASD loss and 810

33.6% SSP loss, respectively. While, MRPRA holds the losses 811

no greater than 1.5%. As a whole, MRPRA performs much 812

less sensitive to prediction error, which reflects robustness of 813

MRPRA. 814

As Algorithm 1 obtains a sub-optimal solution for 815

problem (4), we test the CPU time, ASD and SSP to study 816

the computational complexity reduction and performance loss 817

of Algorithm 1. The simulation platform is CPU Intel Core 818

i5-7300HQ. We set B = 500Mbit and λR = 5MHz. Results 819

are shown in Table III. 820

CPU time of directly solving problem (4) with CVX solver 821

sharply increases with K. When K grows greater than 30, 822

the time cost of CVX solver is unaffordable and no solution 823

can be obtained. By comparison, solving problem (4) with 824
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Fig. 11. Comparison of average service delay and successful scheduling prob-
ability for different resource allocation approaches with mobility prediction
error varying.

TABLE IV
CPU TIME FOR DIFFERENT METHODS

Algorithm 1 saves more than 73% CPU time. The average825

performance losses of Algorithm 1 in ASD and SSP from826

CVX solver are only 2% and 5%, respectively. In a conclu-827

sion, Algorithm 1 performs much more efficiently than CVX828

solver.829

We also test CPU time for MRPRA, MPRA-non-robust830

and FS for computational complexity comparison. We set831

B = 500Mbit and λR = 5MHz. Results are shown in Table IV.832

FS achieves the lowest CPU time. However, Fig. 8–11833

show that it performs worst in both terms of ASD and SSP.834

MRPRA uses multi-actor DDPG algorithm to make decisions.835

It takes about 8 times as much CPU time as MPRA-perfect836

and MPRA-non-robust to train multi-actor DDPG. Fortunately,837

DRL is characterized by “Once trained, run everywhere”. Once838

numbers of inputs and action outputs of multi-actor DDPG839

are fixed, whenever the environment which contains R′
t ,ϕ, B,840

users’ trajectories, changes, it can immediately make deci-841

sions for MRPRA after being well trained. It takes only 1.14842

seconds to execute MRPRA. However, MPRA-perfect and843

MPRA-non-robust need to solve problem (4) again to get the844

resource allocation plans. Besides, MRPRA performs close845

to MPRA-perfect compared to FS and MPRA-non-robust. 846

MRPRA is therefore time efficient and robust. 847

VII. CONCLUSION 848

In this paper, we have studied how to efficiently exploit 849

prediction and how to handle prediction uncertainty for PRA 850

optimization. Only coarse predicted information is needed. We 851

have modeled PRA with perfect prediction as a mixed inte- 852

ger convex problem to provide a performance upper bound 853

for robust PRA method design. Users’ mobility traces are 854

predicted by HMM. To make PRA robust against prediction 855

uncertainty, PCP is utilized to formulate the constraints accom- 856

modating the predicted uncertain achievable rate in a prob- 857

abilistic form. And the rate distribution is derived. We have 858

further modeled robust PRA optimization as a MDP and solved 859

it with our designed multi-actor DDPG algorithm. Simulations 860

demonstrate that the proposed approach has good adaptive- 861

ness to users’ rate requirements and mobility intensities. The 862

derived PDF of achievable rate is validated. Moreover, it’s 863

found that the reactive resource allocation scheme can be 864

performed instead of the proactive one when the available 865

frequency bandwidth is insufficient for computational sim- 866

plicity. And the proposed method achieves robustness and 867

efficiency. 868

APPENDIX A 869

PROOF OF PROPOSITION 1 870

Proof of Necessity: Might as well divide B into the sum 871

of variables Bt ,u ≥ 0, t = 1, 2, . . . ,HK . Then constraint 872

C4 can be rewritten by
∑HK

t=1 (∆x
ϕ̂t,u
t ,u ct ,u − Bt ,u) ≥ 0. 873

As both x
ϕ̂t,u
t ,u and Bt ,u are no less than zero, we can get 874

∆x
ϕ̂t,u
t ,u ct ,u ≥ Bt , ∀t . By normalizing Bt ,u to bt ,u = Bt,u

B 875

we can get ∆x
ϕ̂t,u
t ,u ct ,u ≥ bt ,uB , ∀t , which is constraint C11. 876

Obviously
∑HK

t=1 bt ,u = 1, which is constraint C12. 877

Proof of Sufficiency: Summing both sides of the inequal- 878

ity in C11 we can get
∑HK

t=1∆x
ϕ̂t,u
t ,u ct ,u ≥

∑HK
t=1 bt ,uB . 879

Substituting C12 into the result gives
∑HK

t=1∆x
ϕ̂t,u
t ,u ct ,u ≥ B , 880

which is constraint C4. 881

APPENDIX B 882

PROOF OF LEMMA 1 883

γ̃t ,u is i.i.d. among users and time slots, so we omit 884

subscripts of index t and u in the following notations. 885

[31, Lemma 3] gives the PDF fDk
(d) = 2πλk d

Ak
e−πBk d2

of 886

distance Dk between the user and its serving BS in tier k for 887

max SNR association, where 888

Ak =

⎛

⎜⎜⎜⎝
1 +

2∑

j=1,j ̸=k
λj (Pj )

2/α

λk (Pk )
2/α

⎞

⎟⎟⎟⎠

−1

889

is the probability that the user associates with the k-th tier. 890

Define Yk = Dα
k . The PDF of Yk is derived from fDk

(d) 891

as fYk
(y) = 2πλk

αAk
y2/α−1e−Bk y2/α

. 892
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Assume that the channel experiences Rayleigh fading. The893

channel power gain G = |h|2 is exponentially distributed with894

unit mean. And its PDF is fG(g ) = e−g .895

Define Zk = G
Yk

. Since random variables Yk and G are896

independent, the PDF fZk
(z ) of Zk is derived as897

fZk
(z ) =

∫ ∞

0
yfG (yz )fYk

(y)dy898

=

∫ ∞

0
ye−yz 2πλk

Ak
y1/αe−Bk y2/α 1

α
y1/α−1dy899

=
2πλk
αAk

∫ ∞

0
y2/αe−yz−Bk y2/α

dy .900

The achievable spectral efficiency when the user asso-901

ciates with the k-th tier is γ̃k = log 2(1 +
Pk Zk
σ2 ). Its902

cumulative distribution function (CDF) is P{γ̃k < ξk } =903

P{Zk < (2ξk −1)σ2

Pk
}. Thus the CDF of γ̃ is given by904

Fγ(ξ) = P{γ̃ < ξ}905

= P

⎧
⎨

⎩
⋃

k

Zk <

(
2ξ − 1

)
σ2

Pk

⎫
⎬

⎭906

=
2∑

k =1

Ak P

⎧
⎨

⎩Zk <

(
2ξ − 1

)
σ2

Pk

⎫
⎬

⎭.907

The differential of Fγ(ξ) gives the PDF fγ(ξ) of γ̃908

fγ(ξ) =
dFγ(ξ)

dξ
909

=
2∑

k =1

Ak fZk

((
2ξ − 1

)
σ2

Pk

)
σ2

Pk
2ξ ln 2910

=
2∑

k =1

2σ2πλk 2ξ ln 2

αPk

∫ ∞

0
y2/αe

−y
(
2ξ−1

)
σ2/Pk −Bk y

2/α

dy.911

APPENDIX C912

PROOF OF LEMMA 2913

Since R′
t ,ϕ is deterministic, the probability pϕt ,u =914

P{R̃t ,u = rt ,ϕ|t ,ϕ = 1, 2, . . . , |Φ|} that user u has R̃t ,u =915

rt ,ϕ available frequency bandwidth in time slot t is equal to916

the probability P{ϕ̃t ,u = ϕ|t ,R′
t ,ϕ = rt ,ϕ} that user u asso-917

ciates with BS ϕ which has R′
t ,ϕ = rt ,ϕ residual frequency918

bandwidth in given time slot t. Matrix B gives the prior prob-919

ability P{t |ϕ̃t ,u = ϕ,R′
t ,ϕ = rt ,ϕ}. Applying Bayes formula920

gives the posterior probability P{ϕ̃t ,u = ϕ|t ,R′
t ,ϕ = rt ,ϕ} =921

P{t |ϕ̃t,u=ϕ,R′
t,ϕ=rt,ϕ}p(ϕ)∑

ϕ′∈Φ

p(ϕ′)P{t |ϕ̃t,u=ϕ′,R′
t,ϕ′=rt,ϕ′} which is equal to the PMF922

pϕt ,u of R̃t ,u , where p(ϕ) can be obtained in matrix A.923

APPENDIX D924

PROOF OF THEOREM 1925

The maximum achievable rate Ct ,u for user u in time slot926

t is Ct ,u = γ̃R̃t ,u , which is a product of a continuous ran-927

dom variable and a discrete random variable. The CDF of the928

product of mixed type random variables can be calculated by929

FCt,u (c) = P{Ct ,u < c}930

=
∑

rt,ϕ>0

P{R̃t ,u = rt ,ϕ|t ,ϕ = 1, 2, . . . , |Φ|}931

×
∫ c

rt,ϕ

0
fγ(ξ)dξ 932

(a)
=

∑

rt,ϕ>0

pϕt ,u
rt ,ϕ

∫ c

0
fγ(

v

rt ,ϕ
)dv, 933

where (a) follows by applying ξ = v
rt,ϕ

. Then calculating the 934

differential of FCt,u (c) gives the PDF fCt,u (c) of Ct ,u 935

fCt,u (c) =
∑

rt,ϕ>0

pϕt ,u
rt ,ϕ

fγ

(
c

rt ,ϕ

)
. (21) 936

Plugging (7) and (8) into (21) gives 937

fCt,u (c) =
2σ2π ln 2

α

∫ ∞

0
y2/α

∑

rt,ϕ>0

2c/rt,ϕpϕt ,u
rt ,ϕ

2∑

k =1

λk
Pk

938

× exp{−y(2c/rt,ϕ − 1)σ2/Pk − Bk y
2/α}dy . 939

APPENDIX E 940

PROOF OF THEOREM 2 941

In problem (6), J and T are auxiliary variables to help for- 942

mulate problem (6) in a standard form. So when we solve 943

problem (6) in a RL way, J and T can be ignored. 944

We express the probability in C13 as a function of ψ 945

f (ψ) = P{∆x
ϕ̂t,u
t ,u c̃t ,u < bt ,uB} 946

=

∫ ψ

0
fCt,u (c)dc, 947

where ψ = bt,uB

∆x
ϕ̂t,u
t,u

. f (ψ) is monotone increasing with bt ,u . 948

To minimize service delay, the agent will prompt b′t ,u = 1 for 949

all users. So when x
ϕ̂t,u
t ,u is fixed, the optimal solution b∗t ,u of 950

bt ,u is the maximum value of bt ,u that satisfies constraint C13. 951

Thus solving equation f (ψ) = ε1 gives b∗t ,u =
ψ̄t,u∆x

ϕ̂t,u
t,u

B , 952

where
∫ ψ̄t,u
0 fCt,u (c)dc = ε1 and ψ̄t ,u can be obtained 953

from (11). In conclusion, the agent only needs to determine X. 954
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