# Jiaoyang LiUniversity of Southern California | USC · Department of Computer Science

Jiaoyang Li

Doctor of Philosophy

## About

92

Publications

9,128

Reads

**How we measure 'reads'**

A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more

1,990

Citations

Introduction

Jiaoyang Li currently works at the Department of Computer Science, University of Southern California.

**Skills and Expertise**

## Publications

Publications (92)

Lifelong Multi-Agent Path Finding (LMAPF) is a variant of MAPF where agents are continually assigned new goals, necessitating frequent re-planning to accommodate these dynamic changes. Recently, this field has embraced learning-based methods, which reactively generate single-step actions based on individual local observations. However, it is still...

Diffusion models have recently been successfully applied to a wide range of robotics applications for learning complex multi-modal behaviors from data. However, prior works have mostly been confined to single-robot and small-scale environments due to the high sample complexity of learning multi-robot diffusion models. In this paper, we propose a me...

Traditional multi-agent path finding (MAPF) methods try to compute entire start-goal paths which are collision free. However, computing an entire path can take too long for MAPF systems where agents need to replan fast. Methods that address this typically employ a "windowed" approach and only try to find collision free paths for a small windowed ti...

We use the Quality Diversity (QD) algorithm with Neural Cellular Automata (NCA) to generate benchmark maps for Multi-Agent Path Finding (MAPF) algorithms. Previously, MAPF algorithms are tested using fixed, human-designed benchmark maps. However, such fixed benchmark maps have several problems. First, these maps may not cover all the potential fail...

Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations. This problem is computationally complex, especially when dealing with large numbers of agents, as is common in realistic applications like autonomous vehicle coordination. Find...

We study how to use guidance to improve the throughput of lifelong Multi-Agent Path Finding (MAPF). Previous studies have demonstrated that, while incorporating guidance, such as highways, can accelerate MAPF algorithms, this often results in a trade-off with solution quality. In addition, how to generate good guidance automatically remains largely...

Multi-Agent Path Finding (MAPF) is a complex problem aiming at searching for paths where teams of agents navigate to their goal locations without collisions. Recent advancements in MAPF have highlighted the necessity for robust benchmarks to evaluate their performance. Previously, the benchmarks used to evaluate MAPF algorithms are predominantly fi...

We study the problem of generating arbitrarily large environments to improve the throughput of multi-robot systems. Prior work proposes Quality Diversity (QD) algorithms as an effective method for optimizing the environments of automated warehouses. However, these approaches optimize only relatively small environments, falling short when it comes t...

With the rapid progress in Multi-Agent Path Finding (MAPF), researchers have studied how MAPF algorithms can be deployed to coordinate hundreds of robots in large automated warehouses. While most works try to improve the throughput of such warehouses by developing better MAPF algorithms, we focus on improving the throughput by optimizing the wareho...

The majority of multi-agent path finding (MAPF) methods compute collision-free space-time paths which require agents to be at a specific location at a specific discretized timestep. However, executing these space-time paths directly on robotic systems is infeasible due to real-time execution differences (e.g. delays) which can lead to collisions. T...

Multi-Agent Path Finding (MAPF) is the problem of moving multiple agents from starts to goals without collisions. Lifelong MAPF (LMAPF) extends MAPF by continuously assigning new goals to agents. We present our winning approach to the 2023 League of Robot Runners LMAPF competition, which leads us to several interesting research challenges and futur...

Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics that asks us to compute collision-free paths for a team of agents, all moving across a shared map. Existing scalable approaches struggle as the number of agents grows, as they typically plan free-flow optimal paths, which creates congestion. To tackle this issue, we propose a new...

Multi-Agent Path Finding (MAPF), i.e., finding collision-free paths for multiple robots, plays a critical role in many applications. Sometimes, assigning a target to each agent also presents a challenge. The Combined Target-Assignment and Path-Finding (TAPF) problem, a variant of MAPF, requires one to simultaneously assign targets to agents and pla...

Multi-Robot-Arm Motion Planning (M-RAMP) is a challenging problem featuring complex single-agent planning and multi-agent coordination. Recent advancements in extending the popular Conflict-Based Search (CBS) algorithm have made large strides in solving Multi-Agent Path Finding (MAPF) problems. However, fundamental challenges remain in applying CBS...

One area of research in multi-agent path finding is to determine how replanning can be efficiently achieved in the case of agents being delayed during execution. One option is to reschedule the passing order of agents, i.e., the sequence in which agents visit the same location. In response, we propose Switchable-Edge Search (SES), an A*-style algor...

An exciting frontier in robotic manipulation is the use of multiple arms at once. However, planning concurrent motions is a challenging task using current methods. The high-dimensional composite state space renders many well-known motion planning algorithms intractable. Recently, Multi-Agent Path Finding (MAPF) algorithms have shown promise in disc...

The Multi-Objective Multi-Agent Path Finding (MO-MAPF) problem is the problem of computing collision-free paths for a team of agents while minimizing multiple cost metrics. Most existing MO-MAPF algorithms aim to compute the Pareto frontier. However, the Pareto frontier can be time-consuming to compute. Our first main contribution is BB-MO-CBS-pex,...

Multi-agent path finding (MAPF) is the problem of finding collision-free paths for a team of agents to reach their goal locations. State-of-the-art classical MAPF solvers typically employ heuristic search to find solutions for hundreds of agents but are typically centralized and can struggle to scale when run with short timeouts. Machine learning (...

Recent works have made significant progress in multi-agent path finding (MAPF), with modern methods being able to scale to hundreds of agents, handle unexpected delays, work in groups, etc. The vast majority of these methods have focused on 2D "grid world" domains. However, modern warehouses often utilize multi-agent robotic systems that can move i...

The Multi-Agent Path Finding (MAPF) problem involves planning collision-free paths for multiple agents in a shared environment. The majority of MAPF solvers rely on the assumption that an agent can arrive at a specific location at a specific timestep. However, real-world execution uncertainties can cause agents to deviate from this assumption, lead...

Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics that asks us to compute collision-free paths for a team of agents, all moving across a shared map. Although many works appear on this topic, all current algorithms struggle as the number of agents grows. The principal reason is that existing approaches typically plan free-flow opt...

We address multi-robot geometric task-and-motion planning (MR-GTAMP) problems in synchronous, monotone setups. The goal of the MR-GTAMP problem is to move objects with multiple robots to goal regions in the presence of other movable objects. We focus on collaborative manipulation tasks where the robots have to adopt intelligent collaboration strate...

Combined Target-Assignment and Path-Finding problem (TAPF) requires simultaneously assigning targets to agents and planning collision-free paths for agents from their start locations to their assigned targets. As a leading approach to address TAPF, Conflict-Based Search with Target Assignment (CBS-TA) leverages both K-best target assignments to cre...

This paper considers a multi-agent multi-objective path-finding problem that requires not only finding collision-free paths for multiple agents from their respective start locations to their respective goal locations but also optimizing multiple objectives simultaneously. In general, there is no single solution that optimizes all the objectives sim...

The increasing demand for same-day delivery and the commitment of e-commerce companies to this service raise a number of challenges in logistics. One of these challenges for fulfillment centers is to coordinate hundreds of mobile robots in their automated warehouses efficiently to allow for the retrieval and packing of thousands of ordered items wi...

The Multi-Objective Multi-Agent Path Finding (MO-MAPF) problem is the problem of finding the Pareto-optimal frontier of collision-free paths for a team of agents while minimizing multiple cost metrics. Examples of such cost metrics include arrival times, travel distances, and energy consumption. In this paper, we focus on the Multi-Objective Confli...

In Multi-Agent Path Finding (MAPF), we are asked to plan collision-free paths for teams of moving agents. Among the leading methods for optimal MAPF is Conflict-Based Search (CBS), an algorithmic family which has received intense attention in recent years and for which large advancements in efficiency and effectiveness have been reported. Yet all o...

Given a set of agents on a grid, the multi-agent path finding problem aims to find a path that moves each agent from its given start location to its target location such that they do not collide and that the sum of arrival times is minimized. LNS2 is a state-of-the-art algorithm for anytime, suboptimal solving. It is an upper-bounding algorithm tha...

Robots will play a crucial role in the future and need to work as a team in increasingly more complex applications. Advances in robotics have laid the hardware foundations for building large-scale multi-robot systems. But how to coordinate robots intelligently is a difficult problem. We believe that graph-search-based planning can systematically ex...

The development of connected and autonomous vehicles opens an opportunity to manage intersections without signals. One promising approach is to use a central autonomous intersection manager to optimize the movement of the vehicles in the intersection. Existing work uses Mixed Integer Linear Programming (MILP) to find optimal solutions for this prob...

The Flatland Challenge, which was first held in 2019 and reported in NeurIPS 2020, is designed to answer the question: How to efficiently manage dense traffic on complex rail networks? Considering the significance of punctuality in real-world railway network operation and the fact that fast passenger trains share the network with slow freight train...

In this work, we consider the Multi-Agent Pickup-and-Delivery (MAPD) problem, where agents constantly engage with new tasks and need to plan collision-free paths to execute them. To execute a task, an agent needs to visit a pair of goal locations, consisting of a pickup location and a delivery location. We propose two variants of an algorithm that...

We formalize and study the multi-goal task assignment and path finding (MG-TAPF) problem from theoretical and algorithmic perspectives. The MG-TAPF problem is to compute an assignment of tasks to agents, where each task consists of a sequence of goal locations, and collision-free paths for the agents that visit all goal locations of their assigned...

Multi-Train Path Finding (MTPF) is a coordination problem that asks us to plan collision-free paths for a team of moving agents, where each agent occupies a sequence of locations at any given time. MTPF is useful for planning a range of real-world vehicles, including rail trains and road convoys. MTPF is closely related to another coordination prob...

Prioritized Planning (PP) is a fast and popular framework for solving Multi-Agent Path Finding, but its solution quality depends heavily on the predetermined priority ordering of the agents. Current PP algorithms use either greedy policies or random assignments to determine a total priority ordering, but none of them dominates the others in terms o...

Mutex propagation and its concomitant symmetry-breaking techniques have proven useful in Multi-Agent Path Finding (MAPF) with point agents. In this paper, we show that they can be easily generalized to richer MAPF problems. In particular, we demonstrate their application to MAPF with ``Large'' Agents (LA-MAPF). Here, agents can occupy multiple poin...

Mutex propagation is a form of efficient constraint propagation popularly used in AI planning to tightly approximate the reachable states from a given state. We utilize this idea in the context of Multi-Agent Path Finding (MAPF). When adapted to MAPF, mutex propagation provides stronger constraints for conflict resolution in CBS, a popular optimal...

Multi-Agent Path Finding (MAPF) is the problem of planning collision-free paths for multiple agents in a shared environment. In this paper, we propose a novel algorithm MAPF-LNS2 based on large neighborhood search for solving MAPF efficiently. Starting from a set of paths that contain collisions, MAPF-LNS2 repeatedly selects a subset of colliding a...

Modern multi-agent robotic systems increasingly require scalable, robust and persistent Multi-Agent Path Finding (MAPF) with performance guarantees. While many MAPF solvers that provide some of these properties exist, none provides them all. To fill this need, we propose a new MAPF framework, the shard system. A shard system partitions the workspac...

Multi-Agent Path Finding (MAPF) is the problem of finding collision-free paths for multiple agents that minimize the sum of path costs. EECBS is a leading two-level algorithm that solves MAPF bounded-suboptimally, that is, within some factor w of the minimum sum of path costs C*. It uses focal search to find bounded-suboptimal paths on the low leve...

Multi-Agent Path Finding (MAPF) is the problem of finding a set of collision-free paths for a team of agents in a common environment. MAPF is NP-hard to solve optimally and, in some cases, also bounded-suboptimally. It is thus time-consuming for (bounded-sub)optimal solvers to solve large MAPF instances. Anytime algorithms find solutions quickly fo...

In this paper, we formalize and study the Moving Agents in Formation (MAiF) problem, that combines the tasks of finding short collision-free paths for multiple agents and keeping them in close adherence to a desired formation. Previous work includes controller-based algorithms, swarm-based algorithms, and potential-field-based algorithms. They usua...

In the Multi-Agent Meeting (MAM) problem, the task is to find a meeting location for multiple agents, as well as a path for each agent to that location. In this paper, we introduce MM*, a Multi-Directional Search algorithm that finds the optimal meeting location under different cost functions. MM* generalizes the Meet in the Middle (MM) bidirection...

We consider two new types of pairwise path symmetries which appear in the context of Multi-Agent Path Finding (MAPF). The first of them, corridor symmetry, arises when two agents attempt to pass through the same narrow passage but in opposite directions. The second, target symmetry, arises when the shortest path of one agent requires the target loc...

The multi-agent pathfinding problem (MAPF) is the fundamental problem of planning paths for multiple agents, where the key constraint is that the agents will be able to follow these paths concurrently without colliding with each other. Applications of MAPF include automated warehouses, autonomous vehicles, and robotics. Research on MAPF has been fl...

We describe a new way of reasoning about symmetric collisions for Multi-Agent Path Finding (MAPF) on 4-neighbor grids. We also introduce a symmetry-breaking constraint to resolve these conflicts. This specialized technique allows us to identify and eliminate, in a single step, all permutations of two currently assigned but incompatible paths. Each...

Conflict-Based Search (CBS) and its enhancements are among the strongest algorithms for Multi-Agent Pathfinding. Recent work introduced an admissible heuristic to guide the high-level search of CBS. In this work, we prove the limitation of this heuristic, as it is based on cardinal conflicts only. We then introduce two new admissible heuristics by...

We study prioritized planning for Multi-Agent Path Finding (MAPF). Existing prioritized MAPF algorithms depend on rule-of-thumb heuristics and random assignment to determine a fixed total priority ordering of all agents a priori. We instead explore the space of all possible partial priority orderings as part of a novel systematic and conflict-drive...

Multi-Agent Path Finding (MAPF) has been widely studied in the AI community. For example, Conflict-Based Search (CBS) is a state-of-the-art MAPF algorithm based on a two-level tree-search. However, previous MAPF algorithms assume that an agent occupies only a single location at any given time, e.g., a single cell in a grid. This limits their applic...

The Flatland competition aimed at finding novel approaches to solve the vehicle re-scheduling problem (VRSP). The VRSP is concerned with scheduling trips in traffic networks and the re-scheduling of vehicles when disruptions occur, for example the breakdown of a vehicle. While solving the VRSP in various settings has been an active area in operatio...

Multi-Agent Path Finding (MAPF) is a challenging combinatorial problem that asks us to plan collision-free paths for a team of cooperative agents. In this work, we show that one of the reasons why MAPF is so hard to solve is due to a phenomenon called pairwise symmetry, which occurs when two agents have many different paths to their target location...

Multi-Agent Path Finding (MAPF) is the challenging problem of computing collision-free paths for multiple agents. Algorithms for solving MAPF can be categorized on a spectrum. At one end are (bounded-sub)optimal algorithms that can find high-quality solutions for small problems. At the other end are unbounded-suboptimal algorithms that can solve la...

Multi-Agent Path Finding (MAPF) is the problem of finding collision-free paths for multiple agents. CBS is a leading optimal two-level MAPF solver whose low level plans optimal paths for single agents and whose high level runs a best-first search on a Constraint Tree (CT) to resolve the collisions between the paths. ECBS, a bounded-suboptimal varia...

Multi-Agent Path Finding (MAPF) is the combinatorial problem of finding collision-free paths for multiple agents on a graph. This paper describes MAPF-based software for solving train planning and replanning problems on large-scale railway networks under uncertainty. The software recently won the 2020 Flatland Challenge, a NeurIPS competition tryin...

Solving Multi-Agent Path Finding (MAPF) instances optimally is NP-hard, and existing optimal and bounded suboptimal MAPF solvers thus usually do not scale to large MAPF instances. Greedy MAPF solvers scale to large MAPF instances, but their solution qualities are often bad. In this paper, we therefore propose a novel MAPF solver, Hierarchical Multi...

Multi-Agent Path Finding (MAPF) is the planning problem of finding collision-free paths for a team of agents. We focus on Conflict-Based Search (CBS), a two-level tree-search state-of-the-art MAPF algorithm. The standard splitting strategy used by CBS is not disjoint, i.e., when it splits a problem into two subproblems, some solutions are shared by...

It is well known that many graph problems, like the Traveling Salesman Problem, are easier to solve in a Euclidean space. This motivates the idea of quickly preprocessing a given graph by embedding it in a Euclidean space to solve graph problems efficiently. In this paper, we study a nearlinear time algorithm, called FastMap, that embeds a given no...

Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents to their goal locations without collisions. In this paper, we study the lifelong variant of MAPF, where agents are constantly engaged with new goal locations, such as in large-scale automated warehouses. We propose a new framework Rolling-Horizon Collision Resolution (RHCR) f...

We present a scalable and effective multi-agent safe motion planner that enables a group of agents to move to their desired locations while avoiding collisions with obstacles and other agents, with the presence of rich obstacles, high-dimensional, nonlinear, nonholonomic dynamics, actuation limits, and disturbances. We address this problem by findi...

Multi-Agent Path Finding (MAPF), i.e., finding collision-free paths for multiple robots, is important for many applications where small runtimes are necessary, including the kind of automated warehouses operated by Amazon. CBS is a leading two-level search algorithm for solving MAPF optimally. ECBS is a bounded-suboptimal variant of CBS that uses f...

During Multi-Agent Path Finding (MAPF) problems, agentscan be delayed by unexpected events. To address suchsituations recent work describes k-Robust Conflict-BasedSearch (k-CBS): an algorithm that produces coordinated andcollision-free plan that is robust for up tokdelays. In thiswork we introducing a variety of pairwise symmetry break-ing constrai...

Two popular optimal search-based solvers for the multi-agent pathfinding (MAPF) problem, Conflict-Based Search (CBS) and Increasing Cost Tree Search (ICTS), have been extended separately for continuous time domains and symmetry breaking. However, an approach to symmetry breaking in continuous time domains remained elusive. In this work, we introduc...

Multi-Agent Path Finding (MAPF) is the combinatorial problem of finding collision-free paths for multiple agents on a graph. This paper describes MAPF-based software for solving train planning and replanning problems on large-scale rail networks under uncertainty. The software recently won the 2020 Flatland Challenge, a NeurIPS competition trying t...

Multi-Agent Path Finding (MAPF) is a challenging combinatorial problem that asks us to plan collision-free paths for a team of cooperative agents. In this work, we show that one of the reasons why MAPF is so hard to solve is due to a phenomenon called pairwise symmetry, which occurs when two agents have many different paths to their target location...

During Multi-Agent Path Finding (MAPF) problems, agents can be delayed by unexpected events. To address such situations recent work describes k-Robust Conflict-BasedSearch (k-CBS): an algorithm that produces coordinated and collision-free plan that is robust for up to k delays. In this work we introducing a variety of pairwise symmetry breaking con...

Multi-agent path finding (MAPF) is the problem of planning a set of non-colliding paths for a set of agents so that each agent reaches its individual goal location following its path. A mutex from classical planning is a constraint forbidding a pair of facts to be both true or a pair of actions to be executed simultaneously. In the context of MAPF,...

Multi-Agent Path Finding (MAPF), i.e., finding collision-free paths for multiple robots, is important for many applications where small runtimes are important, including the kind of automated warehouses operated by Amazon. CBS is a leading two-level search algorithm for solving MAPF optimally. ECBS is a bounded-suboptimal variant of CBS that uses f...

Conflict-Based Search (CBS) is a leading algorithm for optimal Multi-Agent Path Finding (MAPF). CBS variants typically compute MAPF solutions using some form of A* search. However, they often do so under strict time limits so as to avoid exhausting the available memory. In this paper, we present IDCBS, an iterative-deepening variant of CBS which ca...

We consider two new classes of pairwise path symmetries which appear in the context of Multi-Agent Path Finding (MAPF). The first of them, corridor symmetry, arises when two agents attempt to pass through the same narrow passage in opposite directions. The second, target symmetry, arises when the shortest path of one agent passes through the target...

Mutex propagation is a form of efficient constraint propagation popularly used in AI planning to tightly approximate the reachable states from a given state. We utilize this idea in the context of Multi-Agent Path Finding (MAPF). When adapted to MAPF, mutex propagation provides stronger constraints for conflict resolution in Conflict-Based Search (...

In the Multi-Agent Meeting problem (MAM), the task is to find a meeting location for multiple agents, as well as a path for each agent to that location. In this paper, we introduce MM*, a Multi-Directional Heuristic Search algorithm that finds the optimal meeting location under different cost functions. MM* generalizes the Meet in the Middle (MM) b...

Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents to their goal locations without collisions. In this paper, we study the lifelong variant of MAPF where agents are constantly engaged with new goal locations, such as in large-scale warehouses. We propose a new framework for solving lifelong MAPF by decomposing the problem int...

Conflict-Based Search (CBS) and its enhancements are among the strongest algorithms for Multi-Agent Path Finding. Recent work introduced an admissible heuristic to guide the high-level search of CBS. In this work, we prove the limitation of this heuristic, as it is based on cardinal conflicts only. We then introduce two new admissible heuristics by...

Multi-Agent Path Finding (MAPF) has been widely studied in the AI community. For example, Conflict-Based Search (CBS) is a state-of-the-art MAPF algorithm based on a twolevel tree-search. However, previous MAPF algorithms assume that an agent occupies only a single location at any given time, e.g., a single cell in a grid. This limits their applica...

We study prioritized planning for Multi-Agent Path Finding (MAPF). Existing prioritized MAPF algorithms depend on rule-of-thumb heuristics and random assignment to determine a fixed total priority ordering of all agents a priori. We instead explore the space of all possible partial priority orderings as part of a novel systematic and conflict-drive...

We describe a new way of reasoning about symmetric collisions for Multi-Agent Path Finding (MAPF) on 4-neighbor grids. We also introduce a symmetry-breaking constraint to resolve these conflicts. This specialized technique allows us to identify and eliminate, in a single step, all permutations of two currently assigned but incompatible paths. Each...

The MAPF problem is the fundamental problem of planning paths for multiple agents, where the key constraint is that the agents will be able to follow these paths concurrently without colliding with each other. Applications of MAPF include automated warehouses and autonomous vehicles. Research on MAPF has been flourishing in the past couple of years...

We study prioritized planning for Multi-Agent Path Finding (MAPF). Existing prioritized MAPF algorithms depend on rule-of-thumb heuristics and random assignment to determine a fixed total priority ordering of all agents a priori. We instead explore the space of all possible partial priority orderings as part of a novel systematic and conflict-drive...

We formalize Multi-Agent Path Finding with Deadlines (MAPF-DL). The objective is to maximize the number of agents that can reach their given goal vertices from their given start vertices within the deadline, without colliding with each other. We first show that MAPF-DL is NP-hard to solve optimally. We then present two classes of optimal algorithms...

Conflict-Based Search (CBS) and its enhancements are among the strongest algorithms for the multi-agent path-finding problem. However,existing variants of CBS do not use any heuristics that estimate future work. In this paper, we introduce different admissible heuristics for CBS by aggregating cardinal conflicts among agents. In our experiments, CB...

We formalize Multi-Agent Path Finding with Deadlines (MAPF-DL). The objective is to maximize the number of agents that can reach their given goal vertices from their given start vertices within the deadline, without colliding with each other. We first show that MAPF-DL is NP-hard to solve optimally. We then present two classes of optimal algorithms...

We formalize the problem of multi-agent path finding with deadlines (MAPF-DL). The objective is to maximize the number of agents that can reach their given goal vertices from their given start vertices within a given deadline, without colliding with each other. We first show that the MAPF-DL problem is NP-hard to solve optimally. We then present an...

It is becoming increasingly difficult for Chinese citizens to access traditional public transport because of overcrowded community structures. Therefore, novel ideas are required to improve the transport system. In this respect, this study considers the design of a public transport scheduling model for a micro system. The model aims to minimize pas...

The multi-agent path-finding (MAPF) problem has recently received a lot of attention. However, it does not capture important characteristics of many real-world domains, such as automated warehouses, where agents are constantly engaged with new tasks. In this paper, we therefore study a lifelong version of the MAPF problem, called the multi-agent pi...