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Wheat is the most important cereal crop traded on international markets and winter wheat constitutes
approximately 80% of global wheat production. Thus, accurate and timely production forecasts are critical
for making informed agricultural policies and investments, as well as increasing market efficiency and
stability. Becker-Reshef et al. (2010) developed an empirical generalized model for forecasting winter
wheat production. Their approach combined BRDF-corrected daily surface reflectance from Moderate
resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop
statistics and crop typemasks. It is based on the relationship between the Normalized Difference Vegetation
Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel (area within the CMG
pixel occupied by wheat), and the final yields. This method predicts the yield approximately one month to
six weeks prior to harvest. In this study, we include Growing Degree Day (GDD) information extracted from
NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the
timeliness of the forecasts while conserving the accuracy of the original model. We apply this modified
model to three major wheat-producing countries: the Unites States (US), Ukraine and China from 2001 to
2012. We show that a reliable forecast can be made between one month to a month and a half prior to
the peak NDVI (meaning two months to two and a half months prior to harvest), while conserving an
accuracy of 10% in the production forecast.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Following the foodprice spikes in recent years, therehas been increased
international demand for more accurate and timely crop production fore-
casts at national to global scales. Such information is essential tomaking in-
formed national and international agricultural policies, stabilizing markets,
enhancingmarket access andaverting food shortages. Theutility of remote-
ly sensed methods for timely crop monitoring and forecasting has been
demonstrated extensively across a variety of crops and geographic scales
(Delécolle, Maas, Guérif, & Baret, 1992; Idso, Hatfield, Jackson, & Reginato,
1979; Johnson, 2014; Lobell, Asner, Ortiz-Monasterio, & Benning, 2003;
Maselli, Moriondo, Angeli, Fibbi, & Bindi, 2011; Mkhabela, Mkhabela, &
Mashinini, 2005; Moriondo, Maselli, & Bindi, 2007; Huang et al., 2015).
Atzberger (2013) recently provided an extensive review of existing re-
mote sensing based agriculture monitoring systems. He highlighted
four key challenges addressed to the remote sensing scientific com-
munity for supporting the agricultural sector: (i) yield estimation,
(ii) stress monitoring, (iv) crop phenology monitoring, (iv) land-
cover mapping and land-cover change monitoring.
proving the timeliness of win
mote Sensing of Environment (
Several remote sensing forecasting methods are based on deriving
empirical relationships between vegetation indices during a specific phe-
nological stage, and final yields (Dente, Satalino, Mattia, & Rinaldi, 2008;
Kouadio et al., 2012; Wit, Duveiller, & Defourny, 2012). Pioneering work
carried out in thisfield, such as by Fischer (1975), found thatwheat yields
could be forecasted as a function of the leaf area at the onset of the repro-
ductive stage, which corresponds to the timing of maximum crop green
leaf area. In the case ofwheat, studies have found a strong correlation be-
tween the peak of the Normalized Different Vegetation Index (NDVI,
Rouse, 1974), which corresponds closely to the reproductive stage, and
final wheat yields (Groten, 1993; Mahey et al., 1993; Rasmussen, 1992;
Smith, Adams, Stephens, & Hick, 1995; Tucker, Holben, Elgin, &
McMurtrey, 1980). Nevertheless, one of the challenges in crop forecast-
ing over large areas, such as at the state or national scale using remote
sensing data, is the variability in climatic zones,which can result in differ-
ent timing of crop development. This means that in cooler parts of a
country, wheat will reach the reproduction stage later than in warmer
areas. This, therefore, presents a challenge to producing a timely national
scale forecast prior to the NDVI peak of the croplands in the cooler areas.
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Fig. 1. Example of the ANDVIday,year time-series for a) the Harper county (Kansas, US), b) the Autonomous Republic of Crimea (Ukraine) and c) the Henan province (China), which are the
top wheat producing administrative units in each country analyzed. The numbers in italics are the accumulated GDD during the NDVI peak.
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Fig. 2. Example of the ANDVIday,year versus the accumulated GDD for the Autonomous Republic of Crimea during 2005 and 2006.
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One of the driving factors for the phenological development of
wheat is the accumulated heat over the growing season. Plants require
a specific amount of heat to develop from one point of their life cycle to
another. The amount of heat energy an organism accumulates is often
expressed as a unit, termed Growing Degree Day (GDD). It is well ac-
cepted that GDD is a key driver of plant phenology (Bonhomme,
Derieux, & Edmeades, 1994; Durand, De Parcevaux, & Roche, 1967; Lu,
Lu, Chan, & Wei, 2001; Wang, 1960). Indeed, most agrometeorological
crop models (e.g., AFRCWHEAT2, CERES, Sirius, SUCROS2, STICS,
SWHEAT, WOFOST, DSSAT) use this variable to define the different
stages of the crop from seeding to the end of senescence. GDD is com-
puted as the accumulation of daily average temperature since the
seeding day or the emergence day, depending on themodel. It is largely
used for local scale cropmodeling (e.g., Claverie et al., 2012 and Liu et al.,
2010; Lobell et al., 2003; Ma et al., 2013), but has also been employed in
global or regional crop forecasting models (Dubey et al., 1994; Idso,
Pinter, Hatfield, Jackson, & Reginato, 1979; Qian, De Jong, Warren,
Chipanshi, & Hill, 2009; Raun et al., 2001; Walker, 1989). Additionally,
the GDD has been used to smooth the time series of various biophysical
variables by providing a better temporal consistency and coherence
(Duveiller, Baret, & Defourny, 2013).

In this study, we used an existing model for wheat yield forecasting
(Becker-Reshef, Vermote, Lindeman, & Justice, 2010) and sought to im-
prove its forecasting timeliness by integrating GDD, in order to estimate
the timing of the NDVI peak and to forecast the NDVI peak itself. This
would then enable forecasting wheat yields at a national scale prior to
wheat reaching its NDVI peak throughout the entire country, thus
enabling an earlier forecast. Secondly, thismethodwould allowus to as-
sess how early reliable forecasts could still be made. In the following
sections we describe the materials employed, the methodology for im-
proving the model and the results obtained both in the US, Ukraine
and China. Finally, we discuss the main conclusions of the study.

2. Materials

In this study we use four types of data: winter wheat county-level
crop statistics; winter wheat crop type masks: BRDF corrected MODIS
surface reflectance time series data; and NCEP/NCAR air temperature
time series data.

2.1. Study area

This paper is focused on developing a robust method for forecasting
wheat production and we evaluate its utility for the US, Ukraine and
China from 2001 until 2012. The US is one of the main producers and
Please cite this article as: Franch, B., et al., Improving the timeliness of win
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exporters of wheat globally. Amongst field crops in the US, wheat
ranks third in terms of planted area behind corn and soy. Wheat is pro-
duced in almost every state in the United States and winter wheat vari-
eties dominate US production, representing between 70 and 80% of the
total. Themain class is Hard RedWinterWheat, which is grown primar-
ily in the Great Plains, with Kansas being the largest producing state. In
this region winter wheat is primarily grown on soils in the Mollisol
order, which are dark and relatively rich in organicmatter, formed in as-
sociation with prairie grasses. Common crop rotations in the Great
Plains includewinterwheat-fallow,winterwheat-corn-fallow, and con-
tinuous winter wheat (monoculture). The large majority of winter
wheat is rainfed and approximately seven percent is irrigated. Wheat
planted area has decreased over the past 40 years, though, has generally
stabilized in the past 10 years. On the other hand yield levels increased
over the past 30 years, and also seem to be stabilizing in recent years.
Approximately 50% of US produced wheat is exported.

Ukraine, is another critical player in the global wheatmarket.Wheat
is grown all across the country, although the central and southern re-
gions are the key growing areas (Forest-Steppe and Steppe zones).
About 95% of Ukraine wheat production is winter wheat, planted in
the fall and harvested during July and early August of the following
year. Generally, wheat is not irrigated in this country. Ukraine produces
mostly the Hard Red Winter Wheat. On average, approximately 15% of
fall-planted crops fail to survive the winter. The amount of winterkill
varies widely from year to year, from 2% in 1990 to 65% in 2003, when
a persistent ice-crust smothered the crop. Ukraine is characterized by
highly variable wheat and coarse grains productivity. On average,
every three years, wheat production changes by 20%. Lower wheat
yield variability is generally characteristic of provinces in the Forest-
Steppe and Forest zones. On the contrary, the Steppe zone is usually
characterized by higher variability especially in Kharkiv Province. Crop
rotations are common in Ukraine. A typical six-year crop rotation will
often include two consecutive years of wheat and one season of fallow,
during which no crop is sown. The main reason for including fallow in
the rotation is to replenish soil-moisture reserves, and this ismorewide-
ly practiced in southeastern Ukraine, which is drier. Ukraine has some of
the most fertile soils in the world, including the famous Chernozems,
deep black soils rich in humus. Chernozems occupy about half of the
country (about 68 percent of the arable land), followed by Phaeozems
and Albeluvisols.

China is the largest producer of wheat globally. There are ten major
wheat production provinces, which comprise the largest wheat-sowing
fraction:Hebei, Henan, Shandong, Shanxi, Shaanxi, Gansu, Hubei, Jiangsu,
Sichuan and Anhui. These are mainly located in the semi-arid region of
themid-latitude zone and the semi-humid region of thewarm temperate
ter wheat production forecast in the United States of America, Ukraine
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Fig. 3. Diagram of the ANDVIday,year versus the accumulated GDD.
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zone. The main soil type in these regions is pedocals. Pedocals are calci-
um soils from which the lime has not been leached. Rainfall during the
winterwheat growing season ranges between 90 and 300mm,which is
much less than the estimated cropwater requirements, especially in the
northern plain (Zhang, Wang, You, & Liu, 1999). Thus, in large parts of
the North China Plain, supplemental irrigation with ground or surface
water is used in winter wheat production (Wu, Yu, Lu, & Hengsdijk,
2006). The prevailing planting pattern is dominated by an intensive
double-cropping system of wheat and summer crops. Summer crops
mainly includemaize,millet, sorghum, soybeans and cotton. Thewinter
wheat largest planting class in this region is HardWhiteWinterWheat.
For the past ten or so years, Chinahas had a relatively stable sowing area
of 23 million hectares, and yields have been steadily growing up.
Fig. 4. Flow chart that summa
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2.2. Crop statistics on winter wheat

In each country we forecast the wheat yield for each administrative
unit. Thus, we work at different spatial scales depending on the data
availability. In the case of the US, we work at county level (average
area of 258,000 ha). In the case of Ukraine the administrative units are
oblasts (average area of 2,414,000 ha), while in the case of China we
work at the province level (average area of 29,085,000 ha).

For the US, we use the official archive of county-level statistics on
yield, area harvested, and production that is available from the USDA
National Agricultural Statistics Service (NASS) Quick Stats database
(http://www.nass.usda.gov/Quick_Stats/). The NASS crop statistics are
based on data obtained from multiple frame-based sample surveys of
rizes the data processing.

ter wheat production forecast in the United States of America, Ukraine
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Fig. 5. a) US, b) Ukraine and c) China accumulatedGDD the day of theNDVI peak versus theANDVIpeak,year. Each point represents the accumulated GDD for a particular oblast and year. The
error bars refer to the standard deviation of the average temperature of the 5% purest pixels.
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Fig. 6. NDVI for GDDaccum(peak) (1024° in our case) plus 10° (red) and minus 10° (black) versus the original ANDVIpeak,year in Ukraine. Each point represents the NDVI at the peak for a
particular oblast and year.
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farm operators, objective yield surveys, agribusinesses, shippers, pro-
cessors and commercial storage firms.

For Ukraine, oblast-level crop statisticswere obtained from the State
Statistical Committee of Ukraine (SSC) for winter wheat area harvested
and yield. An oblast is a sub-national unit approximately three times the
size of a Kansas county. These official statistics are based on farm sur-
veys collected from all the agricultural enterprises (large-scale farms
that produce commodities exclusively for sale) which account for over
75% of Ukraine's grain production, and from a sample of household
farms (small farms and household plots that produce crops both sale
and for personal consumption) which account for the remainder of
the grain production (Personal communication, Oleg Prokopenko,
Chief Agricultural Section, State Statistical Committee of Ukraine, April
2009).

For China, province level crop statistics for winter wheat sown-area
and yield were obtained from the National Bureau of Statistics of China
(NBS, http://data.stats.gov.cn/). A province is a sub-national unit. For
sown area, the county (city) and village supplementary investigators
obtain the winter wheat cultivation conditions of each crop for survey
samples through observation from the registered arable lands or
collecting the household estimations on a seasonal basis. Then, NBS
a
Median DOY for GDDpeak

80 180

Fig. 7. a) Median DOY when the GDDaccum = 980° for each county and b)
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investigators deduce the provincial sown areas for winter wheat ac-
cording to the weighting of the sampling households in that province.
For household yield per unit area, systematic sampling is used to select
samples of yield farmer groups based on the expected production for
winter wheat and the self-weighting production using the expanded
sown areas of farmer groups. Current crop production sampling in
China involves 846 crop survey counties, 15,000 villages, 130,000
plots and 140,000 households across the country. Nearly 10,000 investi-
gators and supplementary investigators conducted the fieldwork on
sown areas and yield. These provincial production statistics are
China's most authoritative data with a high accuracy.

2.3. Crop type masks

We used the same crop masks as in Becker-Reshef et al. (2010) for
Ukraine and the US, therefore, only a brief description is provided. For
the US, a winter wheat mask was available from the Cropland Data
Layer (CDL) produced by NASS. The CDL is a rasterized land cover map
using field level training data from extensive ground surveys, farmer re-
ports provided to the U.S. Farm Service Agency (FSA), and remotely
sensed data from Landsat Thematic Mapper (TM), Landsat Enhanced
b
Percentage winter wheat

0 80

percentage of winter wheat within the CMG pixel (purity) over US.
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Thematic Mapper (ETM+) and Advanced Wide Field Sensor (AWiFS).
These data are used in a decision tree classifier in order to produce a
land cover classification that distinguishes between different crop
types, including winter wheat (Boryan, Yang, Mueller, & Craig, 2011;
Johnson & Mueller, 2010). In this study, an average of the 2006 and
2007 CDL layers scaled up to the CDL spatial resolution, were used to
identify winter wheat growing areas. Becker-Reshef et al. (2010) used
the same constant average CDL. They analyzed the winter wheat rota-
tions in western Kansas, concluding that at the CMG scale the per-
centage wheat was relatively constant from one year to the next. For
Ukraine, as no winter wheat maps were available, a rasterized winter
wheat map was produced by Becker-Reshef et al. (2010) using a deci-
sion tree classifier, similar to that used to produce the NASS CDL and
other land cover classifications such as those described by Pittman,
Hansen, Becker-Reshef, Potapov, and Justice (2010), Hansen, Defries,
Townshend, and Sohlberg (2000) and De Fries, Hansen, Townshend,
and Sohlberg (1998).

The wheat mask for mainland of China was derived from the Inter-
national Food Policy Research Institute (IFPRI) Spatial Production
AllocationModel (SPAM) 2005 beta cropland product, generated in col-
laboration with the International Institute for Applied Systems Analysis
(IIASA). SPAM (You, Wood, Wood-Sichra, & Wu, 2014; You, Guo, Koo,
Wood-Sichra, & Gong, 2005) is based on the IIASA Best Available Crop-
land Mask, subnational level statistics, and a range of suitability vari-
ables. These are used within a cross-entropy approach in order to
make an estimate of cropland distribution within a 5 arc-minute grids
(0.0833 degrees). This product provides cultivated hectares of wheat
per grid cell and was converted into a percent wheat mask for the pur-
poses of this research.

2.4. MODIS daily climate model grid (CMG) time-series

This study uses the MODIS Climate Modeling Grid (CMG) daily sur-
face reflectance Collection 6 data (M{OY}DCMG) distributed by the
Land Processes Distributed Active Archive Center (LP DAAC, https://
lpdaac.usgs.gov/products/modis_products_table) which are gridded in
the linear latitude, longitude projection at 0.05° resolution (5600 m at
the equator). ScienceData Sets provided for this product include surface
reflectance values for Bands 1–7, brightness temperatures for Bands 20,
21, 31, and 32, solar and view zenith angles, relative azimuth angle,
ozone, granule time, quality assessment, cloud mask, aerosol optical
thickness at 550 nm andwater vapor content. Based on the VJBmethod
(Vermote, Justice, & Breon, 2009), we derived the nadir BRDF-corrected
surface reflectance inMODIS band 1 and 2 that we used to compute the
NDVI. Following the VJB, the BRDF-corrected surface reflectance or
normalized surface reflectance (ρN) is written as

ρN 45;0;0ð Þ ¼ ρ θs; θv;ϕð Þ 1þ V F1 45;0;0ð Þ þ RF2 45;0;0ð Þ
1þ V F1 θs; θv;ϕð Þ þ RF2 θs; θv;ϕð Þ ð1Þ

where ρ is the surface reflectance, θs is the sun zenith angle, θv is the
view zenith angle, ϕ is the relative azimuth angle, F1 is the volume scat-
tering kernel, based on the Ross-Thick function derived by Roujean,
Roujean, Leroy, and Deschamps (1992) but corrected for the Hot-Spot
process proposed by Maignan, Breon, and Lacaze (2004), F2 is the geo-
metric kernel, based on the Li-sparse model (Li & Strahler, 1992) but
considering the reciprocal form given by Lucht (1998), V represents
the volume parameter since it is linked to the Volume kernel and R rep-
resents the roughness parameter since it is linked to the geometric ker-
nel. These parameters (V and R) represent the shape of the BRDF.

2.5. NCEP/NCAR data

Air temperature used to compute GDD was derived from the NCEP/
NCAR reanalysis 1 data set, a joint product from theNational Centers for
Environmental Prediction (NCEP) and the National Center for
Please cite this article as: Franch, B., et al., Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine
and China using MODIS data and NCAR..., Remote Sensing of Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.02.014

https://lpdaac.usgs.gov/products/modis_products_table
https://lpdaac.usgs.gov/products/modis_products_table
http://dx.doi.org/10.1016/j.rse.2015.02.014


8 B. Franch et al. / Remote Sensing of Environment xxx (2015) xxx–xxx
Atmospheric Research (NCAR). The data set is a near real time gridded
data set that incorporates observations and numerical weather predic-
tion model output dating back to 1948 (Kanamitsu et al., 2002; Kistler
et al., 2001). The variable air.2m.gauss used for this study is the air tem-
perature near the surface level (0.995 sigma level). Data are available
every 6 hours at a spatial resolution of about 2° (2 km at the equator)
(Kalnay et al., 1996) and, for convenience, their values are averaged
daily and linearly interpolated to the MODIS CMG grid.

3. Methods

3.1. Method description

The Becker-Reshef et al. (2010) method is based on the assumption
that the yield is positively and linearly correlated to the seasonal
Fig. 8. Total winter wheat predicted yield and production in US using the o

Please cite this article as: Franch, B., et al., Improving the timeliness of win
and China using MODIS data and NCAR..., Remote Sensing of Environment (
maximum NDVI (adjusted for background noise) at the administrative
unit (AU, county or oblast) level and to the purity of the wheat signal.
Thus, they developed a regression model that was calibrated and ap-
plied at the state level in Kansas and was proven directly applicable at
the national level in Ukraine. Following this method, in order to derive
the seasonal maximum NDVI we estimated the adjusted NDVI. We
first derived the daily average NDVI over the 5% purest winter wheat
pixels at 0.05° gridwithin the AU using the cropmask, hereafter written
as VIwheat(day,AU). We selected the 5% threshold following the Becker-
Reshef et al. (2010)method. In that study they explain that using the 5%
purest pixels minimized the tradeoff between pixel purity (wheat sig-
nal) and the contribution of other fields or crops. Depending on the ad-
ministrative unit analyzed,we obtainedmaximumpurities between 70-
80% andwe established theminimum as 10% of purity.We used the 10%
minimum purity threshold since below this limit we could not
riginal method (a,b) and using the original method re-calibrated (c,d).

ter wheat production forecast in the United States of America, Ukraine
2015), http://dx.doi.org/10.1016/j.rse.2015.02.014

http://dx.doi.org/10.1016/j.rse.2015.02.014


a b

140 180

Median DOY for GDDpeak

0 80

Percentage winter wheat

Fig. 10. a) Median DOY when the GDDaccum = 990° for each oblast and b) Percentage of winter wheat within the CMG pixel (purity) over Ukraine.

Fig. 9.Wheat yield and production forecast 40 (a and b) and 50 days (c and d) before the average NDVI peak date in US.
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distinguish the wheat signal from the contribution of other fields or
soils. Then, we reduced the non-wheat noise in the NDVI time-
series, such as soil, removing the averaged NDVI of the minimum
5% values for the years studied (VIbackground(year,AU)). The adjusted
NDVI (ANDVI(day,AU)) parameter is defined as (2).

ANDVI day;AUð Þ ¼ VIwheat day;AUð Þ−
X2012

year¼2001

VIbackground year;AUð Þ ð2Þ

where N is the number of the years (2001 through 2012).
Fig. 1 shows three examples of the daily VIwheat(day,AU) time-series

derived from a weighted average of the purest winter wheat pixels
within the top wheat-producing administrative units in the US
(Fig. 1a), Ukraine (Fig. 1b) and China (Fig. 1c). Each year shows different
NDVI peaks and their values are correlated to the yield values (Becker-
Reshef et al., 2010). However, there are some years that show two
peaks. In the Ukraine and China examples, while the first peak corre-
sponds to winter crops, the second peak can be attributed to spring/
summer planted crops, such as spring wheat, barley or corn, for which
NDVI peaks occur later than for winter wheat. However, in the example
of the US, the first peak is largely due to the winter wheat emergence
(prior to dormancy) while the second one is largely attributed to the
wheat reproduction stage. Note that the summer/spring planted crops
are not only present when there is a double peak but are present in
every year. However, sometimes the synchronization with winter
wheat changes from year to year and the secondary peak is dampened
more than others.

In this paperwe enhance the Becker-Reshef et al. (2010)method by
including the GDD information to get an earlier forecast of the winter
wheat production at the national scale. GDD is defined as the average
daily maximum (Tmax) and minimum temperatures (Tmin) minus a
base temperature (Tbase).

GDD ¼ Tmax þ Tmin

2
−Tbase ð3Þ

where if [(Tmax+ Tmin)/2 b Tbase], then [(Tmax+ Tmin)/2] = Tbase
(McMaster & Wilhelm, 1997).

Each developmental stage of an organism has its own total heat
requirement. Accumulated GDD, calculated by summing GDDs for
each day during a period starting from a biofix date (Eq. (4)), is related
to the amount of accumulated heat by plants and can be directly related
to the actual stage of plant development. Thus, we expect a constant
accumulated GDD at the NDVI peak (GDDaccum(peak)) through every
AU and year analyzed, as it is approximately representative of a critical
development point of the wheat reproduction stage.

GDDaccum dayð Þ ¼
Xday

i¼biofix date

GDDi ð4Þ

Going back to Fig. 1 we display the GDDaccum(peak) for each year in
each administrative unit, considering the base temperature equal to
0 °C. In the case of the US counties and Ukraine oblasts, almost every
year exhibits a constant GDDaccum(peak) around 1000°. This value was
also estimated during the reproduction stage (NDVI peak) by other
studies when considering the start date as January 1st (Undersander
& Christiansen, 1986). In fact, in the particular case of the Hard Red
Winter Wheat, main class for US and Ukraine, Miller, Lanier, and
Brandt (2001) showed GDDaccum values between 807 and 901° to
start the anthesis phase (start of reproduction). Note that in Crimea
(Ukraine) the year 2003 shows a lower accumulated GDD at the peak.
This is because in 2003 over 60% of winter wheat in Ukraine was
destroyed due to December frost damage and to a persistent ice-crust
Please cite this article as: Franch, B., et al., Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine
and China using MODIS data and NCAR..., Remote Sensing of Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.02.014
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that formed in February as a result of repeated cycles of thawing and
refreezing (FAS, 2003). Regarding the case of China, theGDDaccum(peak)
along the time series shows values of around 900°. As previously men-
tioned, in China is mostly planted the HardWhiteWinterWheat. With-
in this class, the main winter wheat variety planted in high latitudes
(such as in Hebei Province), needs a GDDaccum of about 880° for the re-
production stage to start (Ma et al., 2005). While for relative low lati-
tude provinces (such as Henan and Shangdong Provinces), the
GDDaccum required is about 1020° (Ma et al., 2005). Thus, for whole
study area of China, the estimation that we obtained of around 900° is
in agreement with these values.

Fig. 2 shows an example of the ANDVI versus the accumulated GDD
for Crimea during 2005 and 2006. The daily evolution of the ANDVI ver-
sus the accumulatedGDD shows similar patterns in both years along the
Fig. 11. Total winter wheat predicted yield and production in Ukraine using the original meth
(c and d).

Please cite this article as: Franch, B., et al., Improving the timeliness of win
and China using MODIS data and NCAR..., Remote Sensing of Environment (
range from 700° until the NDVI peak, which occurs in both years at ap-
proximately 1010°, as already observed in Fig. 1b. To forecast the pro-
duction, we assume that after a certain date and in the absence of any
further information or any perturbation (such as drought, bad weath-
er…), the evolution of the adjusted NDVI with the GDDaccum will follow
a normal evolution (of themedian adjusted NDVI). Therefore, the NDVI
at the peak could be predicted using the following equation:

ANDVIpeak ¼ ANDVIGDD
ANDVIpeak
ANDVIGDD

ð5Þ

where the different quantities are illustrated in Fig. 3. For simplicity we
have omitted the AU dependency of every variable.
od (a and b) and using the proposed method 40 days before the average NDVI peak date

ter wheat production forecast in the United States of America, Ukraine
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ANDVIpeak andANDVIGDD are estimated based on themedian adjusted
NDVI from all the years for each GDD and respectively represent the
peak and the adjusted NDVI value for a certain day.

3.2. Algorithm implementation

Fig. 4 shows a flow chart that summarizes the algorithm implemen-
tation. First, we used the NCEP/NCAR daily air temperature data to com-
pute the GDD. We estimated the daily average of the air temperatures
considering that it is equivalent to the average dailymaximumandmin-
imum temperatures (as defined by Eq. (3)). We fixed the base temper-
ature to 0° Celsius (°C) following Bauer, Fanning, Enz, and Eberlein
(1984) and accumulated the GDD during the growing season. Note
that winter wheat is generally planted in September-October, and
therefore emerges andhas an increase in NDVI in the fall. However, dur-
ing thewintermonths, the crop goes into dormancy due to cold temper-
atures. Therefore, we defined the biofix date of each year (the date
when we start accumulating GDD) as the date after January 1st when
the NDVI presents a value higher than the average 5% minimum NDVI
plus 0.1. We selected this date in order have the same reference to
start accumulating the heat at the same time in every case. We also
studied the stability of the accumulated GDD at the peak when starting
to accumulate in October (when the wheat is generally planted). How-
ever, this date showed higher variability in the accumulated GDD at the
NDVI peak.

Next, following the original algorithm (Becker-Reshef et al., 2010),
we estimated the adjusted seasonal maximum NDVI for each adminis-
trative unit using the percent wheat mask and the daily BRDF-
corrected NDVI images using Eq. (2). However, since we work at a
coarse spatial resolution, most of the pixels include other summer/
spring crops that could in-turn impact the NDVI peak by pushing it to
a later date and dampening the peak. Thus, in order to be sure that the
NDVI peak corresponds primarily to wheat, we added a condition with-
in the algorithm that limits the peak retrieval to a threshold of accumu-
latedGDD. Given that the accumulated GDD at the peak is around 1000°
for the US and Ukraine, we analyzed the presence of any peak from 700°
to 1300° and since the GDD at the peak is around 900° for China we
extracted the NDVI peak from 600° to 1200°.

Afterwards, we simulated the ANDVIpeak(year,AU) from a range of
days prior to the peak in order to check the forecasting capability of
this method. Using the predicted ANDVIpeak(year,AU), we applied the
original method (Becker-Reshef et al., 2010) to derive the wheat pro-
duction. Following the originalmethod,we implemented the previously
a Median DOY for GDDpeak

80 150

Fig. 12. a) Median DOY when the GDDaccum = 890° for each province and b) Perce

Please cite this article as: Franch, B., et al., Improving the timeliness of win
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derived purity of wheat within the AU (Mcpt) to derive the percent
wheat dependent slopes using Eq. (6).

SMpct ¼ 9:61þ −0:05Mpctð Þ ð6Þ

where Mcpt is defined as the weighted average of the percent wheat
values of the purest 5% wheat dominated pixels for each AU. This equa-
tion was derived by Becker-Reshef et al. (2010) using Kansas statistics
and subsequently it was successfully applied in Ukraine. We then
applied this slope uniformly to the entire US, Ukraine and China to ob-
tain winter wheat yields in tons/ha for each AU by multiplying the
ANDVIpeak,year value by the corresponding slope derived.

Forecast Yield ¼ ANDVIpeak;year SMpct ð7Þ

The forecast production was finally obtained by multiplying the
yield forecast by the official county area harvested statistics.

Total Forecast Production ¼
X

AU

Forecast Yield � Area Harvested ð8Þ

Note that there are two different things thatwe forecastwith the pre-
sented method. First we forecast the NDVI peak (ANDVIpeak(year,AU))
and then, using these values in Eq. (7), we forecast the wheat yield and
production.

4. Results

In this section we present the wheat yield and production forecasts
applying the Becker-Reshef et al. (2010) method and the proposed
method over the US, Ukraine and China.

First of all, in order to assess the generalization of the assumption of
GDDaccum(peak) stability, Fig. 5 shows the accumulated GDD at the
NDVI peak as a function of the NDVI peak value (ANDVIpeak(year,AU))
for each AU and for all years in the US (Fig. 5a), Ukraine (Fig. 5b) and
China (Fig. 5c). The figure shows that the NDVI peak occurs at an aver-
age GDDaccum(peak) value of 980° with a Root Mean Square Error
(RMSE) of 7° in US, 1024° with a RMSE of 24° in Ukraine and 883°
with a RMSE of 62° in China. Note that we compute this error by
weighting the deviation from the mean by the purity of wheat for
each AU to give more weight to the wheat dominated ones. Both in
the US and Ukraine the GDDaccum(peak) shows higher accumulated
GDD at the peak with stability and low errors, while China shows a
b

0 80

Percentage winter wheat

ntage of winter wheat within the CMG pixel (purity) over mainland of China.
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lower accumulated GDD at the peak with higher variability along each
province and year and a higher error. This lower accumulated GDD at
the peak in China could be a consequence of the scale. Chinese prov-
inces have an average area one hundred times bigger than the average
size of the US counties and ten times bigger than the average size of the
Ukraine oblasts. Thus, the average of the five percent purest pixels for
the province can mix pixels with some gradient of temperatures. In
fact, the plot of China (Fig. 1c) shows bigger error bars (standard devi-
ation of the average temperature of the 5% purest pixels) than in the US
(where the error bars cannot be observed in the plot since their magni-
tude is around 1°) and Ukraine. Another reason for this lower accumu-
lated GDD at the peak can be the amount of heat accumulated before
the dormancy stage. Note that we accumulate the GDD mainly from
January 1st. Thus, a lower accumulated GDD at the peak can be caused
by the particular weather conditions in China along the biggest produc-
ing provinces, which can accumulate more heat prior to the dormancy
stage than in the US and Ukraine.

Ultimately, to check the impact of considering a fixed value of accu-
mulatedGDDon the computation of theNDVI peak, ANDVIpeak(year,AU),
we plot on Fig. 6 the adjusted NDVI for GDDaccum = 1034° (red) and
for GDDaccum = 1014° (black) versus the “actual” NDVI peak,
ANDVIpeak(year,AU) for Ukraine. The approximation of ANDVI and the
actual peak are well correlated with a correlation coefficient close to
one and a RMSE equal to 0.008. These results confirm that our main
hypothesis is viable (i.e. the stability of the ANDVIpeak(year,AU) around
a constant GDDaccum).

4.1. The United States

As discussed from the analysis of Fig. 5a, in the case of the US we
considered GDDaccum(peak) equal to 980°. Looking for an approximate
day when the NDVI peak occurs, we estimated the median Day Of the
Year (DOY) when the GDDaccum reached 980° between 2001 and
2012. Fig. 7a displays the median DOY when the GDDaccum reach 980°
for the years analyzed for each county with a minimum average of
10% wheat purity (percentage of winter wheat within the CMG pixel)
for the top 5% purest pixels (Fig. 7b). Southern and coastal counties
show earlier DOYs than northern counties. This is a consequence cli-
matic variability across the country. The northern counties and the
counties along the Great Lakes have a humid continental climate, with
warm to hot summers and cold winters. The Southern Plains counties
have a temperate humid climate with hot summers and cool to cold
winters. The southwest counties along California have aMediterranean
climate with wet cool winter and dry hot summer. Thus, the winter
wheat crops located in the Southern Plains and the southwestern
areas need less time to reach the accumulatedGDD than in the northern
regions. Overall, the median DOY for GDDaccum(peak) along US is 140.
Considering DOY 140 as a reference for the NDVI peak, we simulated
the ANDVIpeak(year,AU) 10, 20, 30, 40, 50, 60 and 70 days prior to that
date applying Eq. (5) but in this case considering GDDaccum(peak) =
980°. Note that DOY 140 is just used as reference to check how early
in time we can get a forecast of the wheat production. Table 1 presents
the error of the NDVI peak, the wheat production and the wheat yield
forecast. The 10 day’s NDVI peak forecast has the minimum RMSE of
0.010 while it increases to 0.033 and 0.032 for 60 and 70 day’s forecast
respectively.

Finally, we forecasted the yield and total production in the US for
each year by applying Eqs. (6), (7) and (8) with the simulated
ANDVIpeak(year,AU) for each period considered prior to the peak. We
also ran the original model with the original extraction of the
ANDVIpeak(year,AU). In this process there are two different sources of
error. First, some counties with low concentration of wheat fields do
not display a clear wheat signal within the CMG pixel. Thus, we did
not include these in this study. As a consequence the total production
forecast obtained for the US was around 8% lower than the national
statistics. In order to correct this error we first forecasted the average
Please cite this article as: Franch, B., et al., Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine
and China using MODIS data and NCAR..., Remote Sensing of Environment (2015), http://dx.doi.org/10.1016/j.rse.2015.02.014
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yield for the whole country and for each year and then we multiplied it
by the total national wheat area to get the national production. Second,
there is a constant bias on the wheat yield and production results when
applying the originalmethod at the national scale in the US. Fig. 8 shows
this bias for both the wheat yield (Fig. 8a) and production (Fig. 8b) val-
idation compared to the official national statistics for the US. Since the
original method is an empirical method, it may need a re-calibration
when applied to larger regions. In order to correct the bias, we re-
calibrated the original method dividing the yield results by a constant
factor, which is equal to the slope of the yield validation (0.854). Thus,
in the case of applying the model to the US, Eq. (6) is now:

SMpct ¼
9:61þ −0:05Mpctð Þ

0:854
ð9Þ

Fig. 8c and d show the wheat yield and production after the re-
calibration of the original method, that is applying Eq. (9). Going back
to Table 1, the statistics presented for the yield and the production fore-
cast correspond to these re-calibrated results. The lowest error corre-
sponds to the original method for both the wheat yield and production
Fig. 13. Total winter wheat predicted yield and production in China using the

Please cite this article as: Franch, B., et al., Improving the timeliness of win
and China using MODIS data and NCAR..., Remote Sensing of Environment (
forecast (0.22 MT/ha, 3.10 MMT and 7% in both cases). Concerning the
forecast before the NDVI peak, lower errors were obtained for the fore-
casts closer in time to the peak date. The earliest best forecasts are 30
and 40 days before the average NDVI peak date since they provide an
error around 10% (11% and 12% in the yield and production forecast
respectively). With the level of statistical significance of the dataset ana-
lyzed, the results of both the original method and the method proposed
in this manuscript are equivalent until the 40–50 day forecasts prior to
the peak. Fig. 9 shows the predicted yield and production using the 40
and 50 day forecasts versus the official statistics. Compared to the origi-
nal method, although the slope is close to one, the forecasts using the
method presented in this paper show a slight tendency of overestima-
tion that mainly affects 2007. This year’s results are also overestimated
by the originalmethod (Fig. 8c and d). The reason for this overestimation
can be the fact that in 2007 a late spring frost affected large portions of
the Kansas state, one of the main producing states in the US. Although
the 50 days forecast shows a RMSE of 14%, the correlation coefficients
for the yield and production validation are low. Thus, the earliest date
that we can forecast the yield and production in the US is 40 days prior
to the average date of the peak. Note that the 40 day forecast means
original method (a,b) and using the original method re-calibrated (c,d).
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that awheat yield and production forecast can be obtained from theDOY
100, that is April 10th (2 to 2.5months prior to harvest), with an error of
10%.

4.2. Ukraine

From the analysis shown in Figs. 5b and 6, we considered
GDDaccum(peak) equal to 1024° for Ukraine. Following the samemethod
as the US analysis, we estimated the median DOY when the GDDaccum

reaches 1024° for the years analyzed for each oblast. Fig. 10a displays
the DOY for each oblast for the GDDaccum(peak). As expected, the analy-
sis shows that southern oblasts reach the accumulated GDD peak earlier
than northern ones. This is a consequence of the different climates of
each area. While southern oblasts around the Crimean coast have a
humid subtropical climate, inland and northern oblasts present mostly
temperate continental climatewith lower temperatures during thewin-
ter. Thus, the winter wheat fields located in these northern oblasts need
more time to accumulate the same amount of heat. There are some ob-
lasts locatedmainly in the northwest of Ukrainewhere themedian DOY
of GDDaccum(peak) is later than the others and around 180. Observing
the percentage of wheat in Fig. 7b for Ukraine, these oblasts have few
winter wheat fields so they are not representative and the date is likely
Fig. 14.Wheat yield and production forecast 30 (a and b) and 40

Please cite this article as: Franch, B., et al., Improving the timeliness of win
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influenced by spring and summer crops. Next, we estimated themedian
DOY for GDDaccum(peak) for Ukraine, which is DOY 165. Considering this
date as an average national approximation of the peak date, we simulat-
ed the ANDVIpeak(year,AU) 10, 20, 30, 40, 50, 60 and 70 days prior to the
peak using Eq. (5). Table 2 shows the error committed (RMSE) when
forecasting the ANDVIpeak(year,AU) from each of these days as well as
the wheat yield and production forecast. The lowest error for the peak
forecast is achieved when using the 10 day forecast prior to the peak
and it increases as we simulate the peak earlier in time. Therefore, as
we approach or even pass the peak date we get lower errors in the
ANDVIpeak(year,AU) estimation.

Finally, we forecasted the total production of Ukraine for each year.
Note that all years (2001 to 2012) were included in this analysis.
Table 2 shows the RMSE comparing the simulated production and
yield with the official NASS statistics. The best simulations correspond
to the original method (0.34 MT/ha, 2.03 MMT and 11-12%). Regarding
the forecasts using the method proposed, as observed in the NDVI peak
forecast, we get higher errors as we simulate the production and the
yield earlier in time. Since our objective is to get the earliest reliable
forecast possible, we focus our analysis on 40 days prior to the NDVI
peak forecast, which provides an error of 14% both in the production
and yield forecasts. Fig. 11 shows the linear regression for both the
days (c and d) before the average NDVI peak date in China.
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original method (Fig. 11a and b) and the 40 day winter wheat produc-
tion forecast (Fig. 11c and d) versus the official production statistics.
Generally, the original method provides better statistics. However, the
40 day forecast shows a slightly more accurate result in 2008, which
represents the highest production year. At the level of statistical signif-
icance of the analyzed dataset, the results of both methods are equiva-
lent. This is a good result considering that the 40 day forecast (which
corresponds toMay 5th) is generally two and a halfmonths prior to har-
vest, and implies an improvement of a month and a half in the timeli-
ness of the forecast compared to the original method. Going back to
Fig. 10, this means a shorter time range in the forecast for the southern
oblasts (which present a higher percentage of wheat) since the peak
happens earlier in time. Compared to the US results, slightly higher er-
rors are obtained in the Ukraine results. The better results in the US
may be a result of having amore accurate wheatmask than for Ukraine.

4.3. China

Finally, we applied the same method to China. Going back to Fig. 5c,
we considered a GDDaccum(peak) equal to 880°. Fig. 12 shows themedi-
anDOYwhen theGDDaccum reached 880° for the years analyzed for each
province. Southern provinces present earlier NDVI peaks than northern
ones. Similar to the cases of Kansas andUkraine, this is a consequence of
the climate gradient in China. While northern provinces have a mild to
warm temperate climate, characterized by a warm andwet climate and
well-defined seasons, the central-southern provinces (displayed in
Fig. 12a in blue colors) have a subtropical climate with soft andwet win-
ters and hot and rainy summers. Note that the Gansu Province (displayed
in Fig. 12a in red in the center of China) shows a later NDVI peak date.
This is not only due to the continental climate of that area but also due
to a weak wheat signal. The median DOY for GDDaccum(peak) for China
is 130, which is close to the average US result (DOY 140). Analogously
to the US and Ukraine, considering DOY 130 as an approximation of the
peak date, we simulated the ANDVIpeak(year,AU) 10, 20, 30, 40, 50 and
60 days prior to the peak using Eq. (5). Table 3 presents the error of the
NDVI peak, the wheat production and the wheat yield forecast. The
10 day NDVI peak forecast exhibited the minimum RMSE equal to
0.007 while it increased to 0.025 for the 60 day forecast.

Finally, we applied the original method as well as the presented
method to forecast the wheat production and yield based on the
ANDVIpeak(year,AU) estimations. Figs. 13a and 12b show the validation
of the originalmethodwith the official statistics. As in the case of the US
there is a clear bias,which resulted in anunderestimation ofwheat yield
and production, although in China this systematic error has a higher im-
pact. Analogously to the USwe propose the re-calibration of the original
method when applied to this country by dividing the yield results by a
constant factor, which is equal to the slope of the Yield validation
(0.854). Thus, in the case of applying themodel to China, Eq. (6) is now:

SMpct ¼
9:61þ −0:05Mpctð Þ

0:590
ð10Þ

Fig. 13c and d show the wheat yield and production validation after
the re-calibration of the original method, which is applying Eq. (10).
Going back to Table 3, the statistics presented for the yield and the pro-
duction forecast correspond to these re-calibrated results. The 30 day
forecast shows the lowest errors for both the wheat yield and produc-
tion (0.24 MT/ha, 5.30 MMT, 5%) although compared to the original
method statistics (0.28MT/ha, 6.15MMT, 6%) the results are equivalent.
The earliest reliable forecast can be obtained 30 to 40 days prior to the
average peak date (DOY130). Thismeans thatwe can provide a forecast
for China’swheat yield and production by the beginning of April with an
error of 10%. Fig. 14 shows the validation of thewheat yield and produc-
tion forecasts. The 40 day forecast presents a higher standard deviation
mainly for the average production years (2005, 2006 and 2007),
although it works well for the higher and lower production years.
Please cite this article as: Franch, B., et al., Improving the timeliness of win
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These results for US, Ukraine and China provide evidence to support
the assertion that the improvement to the original method presented in
this paper can be easily transferable to other regions.

5. Discussion

In this paper we present a method to forecast winter wheat produc-
tion and we apply it to three major wheat producing countries: the US,
Ukraine and China. The method is based on the assumption that the
GDD presents a stable value at the NDVI peak (which represents the re-
production stage of the wheat). Fig. 5 shows stable values of the GDD at
the peak of around 1000° for the US and Ukraine, while China displays
lower values (around 900°). As commented in the Methods Section,
the US and Ukraine mostly produce Hard Red Winter Wheat, whereas
China produces different varieties of winter wheat. Compared to the
theoretical values extracted from the literature, these estimations are
consistent with the main winter wheat classes in each country. Note
that although the spatial resolution of the air temperature is quite
coarse, it seems to be sufficient for our purposes, since we are working
with accumulated temperatures through time and any error derived
from this assumption is minimized.

Ukraine is the only country that was previously analyzed in Becker-
Reshef et al. (2010). Comparing our statistics (0.34 MT/ha, 2.03 MMT
and 11-12%) with their statistics (0.44 MT/ha, 1.83 MMT and 15-10%)
the inclusion of four more years in the analysis shows a lower error in
the yield and a slightly higher error in the production. However, given
the statistical significance of the analysis, we can consider that both re-
sults are equivalent reasserting the good performance of themethod. In
addition, in this paper we present the calibration coefficients for the US
and China and since themethodwas calibrated in Kansas, for the US the
calibration coefficient is closer to one (0.854) than in China (0.590).

Focusing on themethod proposed, the 40–50 days forecast provides
statistically equivalent results to the original method in the three differ-
ent countries. Additionally, the results of the method proposed provide
a good forecast of the extreme years in terms of production, in Ukraine
(which is the country with the highest wheat production variability)
and in China. Concerning the US, the 40 days forecast provide a good
agreement with the lowest production year, while we get a slight over-
estimation of thehighest production year. However, this overestimation
is only an 8% error. Overall, the results show that with the method pro-
posed, we can forecast the wheat production between 30 to 50 days
prior to the average date of the peakwith an error of 10%. Given the dif-
ferent average dates of the peak in each country, the earliest forecast
corresponds to China, which can be provided between April 1st to
10th, while the US forecast can be provided between April 10th to
20th and the latest forecast is for Ukraine, that is after May 5th. This
late forecast in Ukraine is due to the fact that the peak occurs later
(DOY 165) than for US and China (DOY 140 and 130 respectively).
This means that the winter wheat matures later on average in Ukraine
than in the US and China.

Note that the three countries analyzed here have different types of
soils, different varieties of winter wheat, different rotation systems, dif-
ferent climates and different sizes of AU. However, regardless of this in-
herent variability, both the method presented here and the Becker-
Reshef et al. (2010) method show good results over the three countries
with errors around 10%.

6. Conclusions

This paper presents an improvement in the timeliness of the winter
wheat production forecast based on the Becker-Reshef et al. (2010)meth-
od. This method, based on the NDVI peak relationship with yield for each
administrative unit, enables forecasting the total production at the coun-
try/state level (market relevant scale) with an error of 10%. However, the
production forecast for each administrative unit depends on the date of
the NDVI peak and this date often varies across a country/state due to
ter wheat production forecast in the United States of America, Ukraine
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different climatic conditions and crop management practices. Thus, in
order to forecast production at a country/state level an NDVI peak is re-
quired for all the administrative units and this often delays the forecast
until a peak is reached across all climatic zones. Since it is important to
forecast the production reliably as early as possible, the improvement
proposed in this paper enables us to do so. This has been achieved by in-
cluding the GDD as a time-driven variable. The inclusion of this infor-
mation provides in the case of the US, Ukraine and China equivalent
results to the original method but improving the timeliness. The results
show that the earliest time winter wheat production can be forecasted
within an error of 10% is roughly one to one and a half months prior to
the average date of the peak, which is the timewhen the originalmeth-
od provides the results. This date is two months to two and a half
months prior to the harvest. These forecasts correspond to the earliest
dates at which reliable production forecasts can be obtained. Later pro-
duction forecasts (closer to the peak date) also provide reliable results
and are generally influenced to a lesser extent by other variables that
can affect the yield at the later development stages. As commented in
the text, at the level of statistical significance of the dataset analyzed,
the method presented provides equivalent results with the same reli-
ability than the Becker-Reshef et al. (2010) method but earlier in time.
The improvement in the timeliness of the forecast is a result of the in-
clusion of the GDD, which provides more information about the plant
physiological status and enables us to better predict the peak.

By applying the Becker-Reshef et al. (2010) method over a larger
extent, such as the US and China, we observe a systematic error that
can be corrected using new calibration indexes that are dependent on
each country. Thus, in this paper we provide a new calibration of the
model for the US and China. The next step in this research will be the
implementation of this methodology for different crops and to further
apply it to additional wheat producing countries.
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