
1

Behavioral Intention Prediction
in Driving Scenes: A Survey

Jianwu Fang, Fan Wang, Peining Shen, Zhedong Zheng, Jianru Xue, and Tat-seng Chua

Abstract—In the driving scene, the road participants usually show frequent interaction and intention understanding with the
surrounding. Ego-agent (each road participant itself) conducts the prediction of what behavior will be done by other road users all the
time and expects a shared and consistent understanding. For instance, we need to predict the next movement of other road users and
expect a consistent joint action to avoid unexpected accident. Behavioral Intention Prediction (BIP) is to simulate such a human
consideration process and fulfill the beginning time prediction of specific behaviors. It provides an earlier signal promptly than the
specific behaviors for whether the surrounding road participants will present specific behavior (crossing, overtaking, and turning, etc.)
in near future or not. More and more works in BIP are based on deep learning models to take advantage of big data, and focus on
developing effective inference approaches (e.g., explainable inference, cross-modality fusion, and simulation augmentation). Therefore,
in this work, we focus on BIP-conditioned prediction tasks, including trajectory prediction, behavior prediction, and accident prediction
and explore the differences among various works in this field. Based on this investigation and the findings, we discuss the open
problems in behavioral intention prediction and propose future research directions.

Index Terms—Behavioral intention prediction, prediction uncertainty, explainable AI, cross-modality fusion, simulation augmentation
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1 INTRODUCTION

D RIVING scene is a highly socialized environment. Any
movement of road participants involves the adequate

and accurate intention understanding of the surroundings.
For example, the instance of whether the pedestrian or
vehicle will cross the road or overtake the ego-car has a
direct influence on the decision making of safe driving. Most
often, we require the intention understanding to have an
earlier timeline than the emergence of a specific behavior.
However, signals for early prediction are often difficult to
be observed though they can be commonly inferred by the
road structure [1], road user attention [2], and other prior
knowledge, such as the gender, social and culture factors,
etc. [3].

Behavioral intention reveals the subjective tendency of
road participants to take specific actions or achieve a specific
target, which is usually understood as the internal reason
for presenting specific behaviors [4], [5]. Therefore, the
observation of behavioral intention is generally judged by
the presented specific behavior. In the September 30, 2020
issue of Science Robotics, it is clarified that the neural and
psychological mechanisms that increase human understand-
ing of the surrounding environment for machine systems
can provide ideas for designing the interactive autonomous
systems [6]. Loading the behavioral intention understanding
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of traffic participants can make various perception systems
in road vehicles to be integrated into the society better
and improve the service level. Hence, Behavioral Inten-
tion Prediction (BIP) of road participants could improve
the cognitive level of autonomous systems and help to
guarantee the safety of all road users. Nowadays, with
the demand for autonomous driving growing vigorously
at home and abroad, the corresponding scale of data also
grows rapidly, which provides a fertile soil for deep learning
based behavioral intention prediction. This survey explores
the issues, challenges and possible trends for the BIP in
the deep learning era. It is worth noting that the intention
prediction in this work is different from the psychological
intention which is a common thinking in mind [7] without
any behavior. Behavioral Intention Prediction (BIP) implies
the forecasting of the beginning time of the specific behavior,
e.g., the status of “will cross”, “will overtake”, etc.

With the beautiful vision for reducing the road fatal-
ities by replacing the human drivers by self-controlled
autonomous systems, numerous works have concentrated
on the detection, segmentation, tracking, re-identification,
and prediction of the behaviors of road participants over
the past decades, and some previous surveys [8], [9] have
summarized the pipelines and problems within this field.
Complementary to our survey, Rasouli and Tsotsos [3]
explore the interaction between vehicles and pedestrians
with the theory and practice view and summarize the
influencing factors for pedestrian behavior, especially for
crossing. Recently, the same team releases a new survey for
the algorithm and datasets for the driver attention modeling
in assisted and autonomous driving systems [10], which
focuses on the drivers’ perspective for safe decision mak-
ing. Xue et al. [11] propose the event reasoning survey in
autonomous driving, where the long-term and short term
intention prediction is reviewed while concentrated on the



2

Behavioral Intention 
Prediction (BIP)

Key Factors Promising Inference 
Approaches

BIP Conditioned 
Prediction Tasks Benchmarks

Scene
 Context

Intended 
Goals

Prediction
 Uncertainty

Cross-modality
 Fusion

Explainable
 Inference

Simulation 
Augmentation

Trajectory 
Prediction

Behavior
 Prediction

Accident 
Prediction

Collection
Views

Intention 
Types

Annotation
Details

Evaluation
Issues

Road Lane
 Context

Ego-Goal 
Prediction

Prediction
 Uncertainty

Scene
 Interaction

Surrounding 
Goal Recognition

Prediction
 Uncertainty

Clue 
Types

Fusion
 Strategies

Causal 
Inference

Counterfactual 
Analysis

Real-to-Synthetic
Generation

Synthetic-to-Real
Adaptation

Multi-task 
Learning 
Prototype

Parameter 
Conditioning 

Prototype

Ego-centric 
Views

BEV 
Views

Pedestrian: 
cross,

 not cross, 
stop, and 
walk, etc.
Vehicle:

lane change, 
turn, and 

overtake, etc. 

Bounding boxes, 
road semantics,

 long-terms goals, 
trajectories, 

driver attention,
pedestrian age 
and gender, etc.
 are annoated in

 different datasets

Issue1: Large 
performance 

gap in 
different 
datasets.

Issue2: Weak
confidence 
calibration

Multi-task Learning 
Prototype

Few studies have thus 
far been conducted.

Fig. 1. The content taxonomy in this survey, where the Behavioral Intention Prediction (BIP) in driving scenes is reviewed with the presented items,
where ego-goal means the intended destination of the road participants themselves, and the “Ego-centric” view and the “BEV” view denote the
observation view from the forward view of the ego-agent and the Birds’-Eye-View, respectively.

traditional methods. Human or vehicle trajectory prediction
is also investigated by the surveys of [12], [13], [14], which
reviewed the last two decades of probabilistic and deep
learning based trajectory prediction works. Sajjad et al. [15]
study the deep learning based vehicle behavior prediction
in autonomous driving applications, and investigate the
relation between trajectory and manoeuvres. Recently, the
explainability survey [16] of the deep vision based au-
tonomous driving systems presents a detailed description
for the counterfactual analysis in driving systems, which is
promising for understanding the behavioral intention in the
driving scene. A new survey summarized by Sharma et al.
[17] presents the progress of pedestrian intention prediction
for autonomous driving, while the content still focused on
the trajectory prediction.

Through the review of the related surveys, we find that
most of them concentrate on the trajectory prediction and
has a concept confusion for the tasks of trajectory prediction,
behavior prediction and intention prediction. Therefore, in
this work, we focus on the clarification of the concept
of these tasks and present a new comprehensive review
for behavioral intention prediction and its role in various
prediction tasks in the driving scene.

1.1 Motivation and Taxonomy
To fulfill a promising BIP, we must have an adequate un-
derstanding for the semantic context of the road scene. For
example, the traffic rules and the participant density will in-
fluence the decision making of the vehicles directly. Hence,
this survey will investigate the influencing factors in BIP,
which will provide the possible consideration for the traffic
scene representation. Besides, different road participants
commonly have differing behavioral intention. Based on this
prior, the role of BIP in different and popular prediction
tasks, such as trajectory prediction and accident prediction,
would have different focuses. In fact, BIP is a high-level
perception task with many cognitive and psychological
factors. It will certainly will change the research pipeline
and pave the way for the promising inference approaches.
Consequently, the large-scale benchmarks and methods of
evaluation will emerge and hasten the development of new
and advanced applications.

Fig. 1 shows the content taxonomy in this survey. To
provide a comprehensive survey for BIP in driving scenes,
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Fig. 2. The illustration for the timeline of behavioral intention prediction,
trajectory prediction, behavior prediction, and accident prediction.

we firstly start from the exploration of influencing factors in
BIP and target the primary road participants of the behavior
understanding of pedestrians and vehicles. Secondly, we
identify the promising inference approaches in BIP, and
focus mainly on the explainable AI models, multi-modal
fusion models and simulation augmentation models. We
then explore the behavioral intention role in the popular
prediction tasks of trajectory prediction, behavior prediction
and accident prediction. Finally, we summarize the available
benchmarks and future research trends.

1.2 Problem Description and Organization

To be clear, this work makes a definition for the behavioral
intention prediction, which is different from the trajectory
prediction or behavior prediction. Fig. 2 shows an illus-
tration of the timeline for behavioral intention prediction,
trajectory prediction, behavior prediction, and accident pre-
diction.

To be specific, behavioral intention prediction infers the
behavioral intention label at time tBIP with an interval of
Time-to-Behavior (TTB> 0)[tCUR, tBIP ].

Accident prediction implies a preference of larger Time-
to-Accident (TTA>0) [tACC , tBIP ], where there is a predic-
tion probability a (set as 0.5 commonly) for positive accident
prediction determination.

Behavior prediction is defined as the classification of be-
havior label in the [tBIP , tBE ] under the scene observation.

Trajectory prediction has no time interval with tCUR, and
is inferred as the future coordinate (x, y) chain prediction.

It is worth noting that the behavior prediction may
involve a sequentially behavioral intention prediction, in
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which when TTB=0, BIP can be treated as the behavioral
intention detection, and when TTB>0, some multi-task learn-
ing perspective may be useful for the BIP and behavior
or trajectory prediction tasks. For example, Bouhsain and
Saadatnejad [18] predict the crossing intention and locations
of pedestrian in the future simultaneously.

With the aforementioned taxonomy in this survey, the
reminder of this work is organized as follows. Sec. 2 briefly
reviews the influencing factors in BIP. The promising in-
ference approaches are described in Sec. 3. BIP-conditioned
traffic scene prediction, including trajectory prediction, be-
havior prediction, and accident prediction, is summarized
in Sec. 4. Sec. 5 elaborates the benchmarks. Sec. 6 presents
the trend discussion, and the conclusion is given in Sec. 7.

2 KEY FACTORS OF BEHAVIORAL INTENTION
PREDICTION

The surveys [3], [21] have summarized different factors
that influence the pedestrian-vehicle interaction, and mainly
concentrated on the social factors (e.g., group size, social
norms, imitation, gender, age, speed, and culture) and envi-
ronmental factors (e.g., physical context, signals, road struc-
ture, and traffic density, etc.). Certainly, the mixed traffic
scene makes the factors complex for behavioral intention
prediction in the real world scenario. Different from exist-
ing surveys, we investigate the key factors for behavioral
intention prediction in deep learning era. In this survey,
we present the factors from scene context, moving tasks or
goals, and prediction uncertainty.

2.1 Scene Context

Road scene is a highly-structured environment, and the
road structure contains the consistent traffic rules. In the
meantime, road users (pedestrians, vehicles, and cyclists,
etc.) should obey the road etiquette [22], [23]. All these
static and dynamic semantics in the road scene constitute
the scene context for safe driving [24]. Therefore, the first
kind of influencing factor is the scene context, which is often
jointly modeled by the road static semantics and dynamic
participants.

The most universal road participants in the mixed road
scene are pedestrians, cyclists, motorbikes, buses, trucks,
cars, and trailers, etc. Based on the movement patterns and
the road layout, the behavioral intention is different. Com-
pared with the participant category oriented intention, such
as “cross”, “walk”, “run”, “stop” for pedestrians, or “straight
move”, “turn left or right”, “brake”, “accelerate”, “change lanes”
for vehicles, the behavioral intention usually correlates with
different road semantics, as shown in Fig. 3(a), e.g., “moving
close to the bus station”, “leaving the bus station”, or “walking
close to a car”, etc. In other words, the interaction or the
relation link between different road participants or static
semantics should be considered adequately, as shown by
Fig. 3 (a). Actually, the interaction knowledge implies a fact
where the road participant should emerge normally. For
example, Makansi et al. predict the emergence of pedestrians
with a reachability prior [1].

(a) (b)

Goal1 0.05
Goal2 0.15

Goal1 0.8

Fig. 3. The scene context factor for behavioral intention prediction with:
(a) the uncertainty interactions [19]; and (b) different road layout which
can be obtained by the Birds-Eye-View (BEV) estimation [20].

2.1.1 Road Lane Context

The road lane is a manifest clue for the determination and
is of great interest to the autonomous driving community
[25], [26], [27], [28]. Using lane centerlines as the anchors for
constraining the trajectory prediction is widely investigated
[29], [30]. Lane graph representations are modeled from raw
map data to explicitly explore the complex topology and
long range dependencies, where four types of interaction
between actors and road map (i.e., lane-to-lane, lane-to-
actor, actor-to-lane, and actor-to-actor) are fused in the lane
graph representation. For an in-depth utilization of the
information on road lanes, Hong et al. [22] unify the repre-
sentation which encodes high-level semantic information in
a spatial road grid, allowing the use of fusing complex scene
context of entity-entity and entity-environment interactions.
Because of the critical role of the road map, some attempts
concentrate on the road topology estimation with on-board
camera data [31], [32]. This give rise to the hot topic of
Bird’s-Eye-View (BEV) estimation [33], [34], [35] (as shown
by Fig. 3 (b)) with raw camera data in this community.

2.1.2 Scene Interaction Context

The research team led by Dr. Raquel Urtasun releases
several works [38], [19], [39], [40], [41] on the interaction
or relation of the road participants to fulfill the behavior
or trajectory forecasting. The intermediate representation
of semantic occupancy map [19], [40] is modeled for fol-
lowing intention or trajectory prediction. For a long time,
the road map or the occupancy map is encoded with a
dense rasterized processing, which are adopted in many
popular trajectory prediction works, such as DESIRE [42],
IntentNet [41], CoverNet [43], Trajectron++ [44], MultiPath
[45], Target Driven Trajectory (TNT) [46], and so on. These
methods typically encode the road map with a Convolution
Neural Networks (CNN), while the semantic structure of
road layout is not modeled well with the restricted per-
ception field of CNN. MultiPath++[47] extends MultiPath
with an efficient polyline encoding of road semantics, which
exploits the region-to-region semantic relation with a better
prediction ability. Actually, road layout has its intrinsic
structure. For example, cars commonly drive in the road
with different lanes marked by the road line. Pedestrians
appear in the sidewalk and exhibit crossing behavior in the
zebra region. Therefore, Park et al. [48] synthesize the envi-
ronment’s scene context and interactions between multiple
surrounding agents to model the distribution of diverse and
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Fig. 4. The scene graph generation and utilization, where (a) is the
scene graph generation by RoadScene2Vec [36], and (b) denotes the
synthetic data generation by scene graph (credits to [37]).

admissible trajectory and give a high penalty for the implau-
sible trajectories with the impossible relation in road scene
context. Actually, for the scene context modeling, scene
graph is a promising tool. Consequently, scene generation
from raw data is important and some works have begun
on the encoding learning of scene graph for scene context
representation, such as the RoadScene2Vec [36], as shown
Fig. 4(a). In addition, scene graph is found to be effective
for synthetic data generation and very useful for the digital
traffic scene modeling, as shown by the MetaSim works [37],
[49] in Fig. 4 (b).

2.2 Intended Goals
Along with the scene context, the behavioral intention pre-
diction is commonly influenced by different intended goals,
and should be inferred with interpretablity. With this in
mind, we can see that the importance of the road partic-
ipants is different and changes with the varying driving
scene [50], [51], as shown in Fig 5(a). In this community,
for driving behavioral intention, the driver attention is a
direct clue to reflect the important and preferring goals. As
shown in Fig. 5(b), the intended fixation of drivers is not
only feasible for inferring driving tasks, but can also help to
discover the critical or dangerous objects [2].

For the goal-conditioned future prediction, the “goal” is
modeled as the future state (defined as destination coor-
dinates [52] or moving types [53]) that an agent desires.
The Imitative Models (IM) is used to estimate the predictive
likelihood of the trajectory by satisfying a goal determined
by human experts. Through model training, implausible
multiple predictions are omitted. Generally, the goals are
similar to the destination [42], while the moving goal or des-
tination is assumed as a priori. With the pre-known goals,
the goal-conditioned prediction is interred by the inverse
optimal control [54] or inverse reinforcement learning [55].
Manifestly, for future prediction, the coordinate based goals

Attention changes with the turning right intention

(b) Attention changes with the sudden crossing behavior

(c) 

(a) 

(b) 

Fig. 5. The goal-centric scene representation and prediction, where (a)
denotes an attention change (credits to [51]), (b) is a sample for driver
attention evolution in accident scenario (credits to [2]), and (c) specifies
a goal-centric intention prediction (credits to [53]).

may be unknown and hard to be predicted beforehand.
Therefore, the coordinate goal condition is relaxed in the
following two kinds of goal inference situations.

2.2.1 Ego-Goal Prediction
Ego-goal prediction aims to forecast the intended desti-
nation or area (static goals) for the ego-vehicle. This for-
mulation can provide a possible future path proposal or
locations that the ego-vehicle movement will be satisfied
[52]. For example, map-adaptive goal path [56] generates a
set of possible goal-directed future path anchors by the road
lane constraint. A recent work [57] proposes a Goal Area
Network (GANet) for motion prediction, which modeled
the goal areas rather than the exact goal coordinates as
the preconditions for motion prediction. Within GANet, the
possible goals are predicted by calculating the loss between
the predicted goal with the endpoint of the ground-truth
trajectory. Commonly, these ego-goal prediction works need
to pre-define many goal anchors and conduct heuristic or
rule-based goal selection. Apparently, the quality of the
goal anchors has a heavy impact on the prediction accu-
racy. In addition, Target-driveN Trajectory (TNT) [46] and
DenseTNT [58] are two popular vehicle trajectory prediction
models with ego-goal prediction, where DenseTNT fulfilled
the ego-goal prediction by estimating the probabilities of
dense goal candidates without relying on the heuristic an-
chors, instead of the sparse goal sampling strategy.

2.2.2 Surrounding Goal Recognition
Different from the ego-goal prediction that focuses on the
intended goal prediction for the ego-agents, surrounding
goal recognition focuses on the goal recognition of other
agents around the ego-agent. This aims to achieve a shared
temporal-spatial safe space for future movement. In this
domain, different from the ego-goal prediction works, the
“goal” is defined as many kinds of behavioral intentions
(dynamic goals), such as “straight-on”, “turn left”, “u-turn”,
and “stop”, etc. The interpretability of the goal recognition
is concentrated because of the safe-guaranteed demand for
collision-free, real-time, accurate, and verifiable recognition.
For example, Brewitt et al. [59] propose a Goal Recognition
method by Interpretable Trees (GRIT), i.e., Decision Trees
(DTs). Since GRIT can only work on fixed frame scenarios,
Interpretable Trees under Occlusion (OGRIT) is further pro-
posed recently in the work of [60], where the DTs are also
used for training the past observed trajectories to infer the
likelihood of the dynamic goals of other vehicles. Albrecht
et al. [61] recognize surrounding goals by generating a set of
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possible static locations (road end) and dynamic intention of
other vehicles heuristically based on the locations and traffic
context, and recognize the surrounding goals by inverse
planning model (A* search [62]).

For the behavioral intention prediction, all the agents
in the road scene will be considered, and the ego-goal
prediction (static goals) and surrounding-goal recognition
(dynamic goals) are all important for the safe decision
making, which is promising for the collision avoidance.
Compared with the static goal prediction, dynamic goal
recognition concentrates on the interpretable decision trees.
We advocate some deep decision trees, such as Neural-
Backed Decision Trees (NBDT) [63], and Neural Prototype
Trees (NPT) [64], as promising approaches to leverage of
the advantages of deep learning.

2.3 Prediction Uncertainty
Prediction uncertainty is a natural factor in the behavioral
intention prediction because of the objective and frequent
change of the surrounding driving scene context. The inher-
ent multi-modality, partial observability, short time scales,
data limitation and imbalance [65], domain gap [66], and
deficiency can all cause uncertainty. In addition, because of
the generalizability of deep learning models, the predicted
distribution may involve bias. Consequently, in the future
state prediction, there are two kinds of uncertainty: the
aleatoric uncertainty that mainly concerns with the latent
decision variables of intended goals, and the epistemic un-
certainty, the uncertainty that evaluates the a model general-
izability owning to the lack od knowledge. These two types
of uncertainties construct the basis for sensitivity analysis in
the prediction [67].

In particular, aleatoric uncertainty refers to the irre-
ducible, objective, or stochastic uncertainty of a physical
system (sensor ability) or environment (severe weather, low
light condition), and is modeled by the random variables
or stochastic processes in probability theory. The inherent
observation noise is captured in aleatoric uncertainty [70].
On the contrary, epistemic uncertainty accounts for uncer-
tainties in the model parameters, and can be called model
uncertainty with the assessment of the model generalizabil-
ity.

2.3.1 Aleatoric Uncertainty in Prediction
In future prediction, the ways for these two types of uncer-
tainties are different. For example, in order to weaken the
aleatoric uncertainty, extra clues, such as High-definition
Map (HD Map), Birds’ Eye View (BEV), and many other
priori, are taken account for the future prediction. Full-range
BEV representation is adopted in a recent work StretchBEV
[71] for the future instance prediction, and stretched the
spatial scene for longer time horizons than previous works.
MultiPath [45] proposes multiple probabilistic anchor tra-
jectory hypotheses with the aid of HD Map, and models the
future state as a Gaussian Mixture Model (GMM), where an
intention uncertainty is defined for inferring the latent coarse-
scale intention or desired goals. Yalamanchi et al. [72] ad-
dress the long-term future prediction with the uncertainty-
aware trajectories with lane-based paths. In order to model
the aleatoric uncertainty, various kinds of probability mod-
els are developed, such as Gaussian model [73], [44], GMM

(a) (b)

Fig. 6. The prediction uncertainty with: (a) Gaussian distribution for fu-
ture paths [68] and (b) the observation uncertainty with partially labeled
data [69].

[68], [74]. Actually, because of the dynamic and objective
intention, Gaussian distribution usually expresses the scene-
sensitivity poorly and the inherent multimodality of the
road participants increases the uncertainty of movement.
For example, the pedestrian may continue along a sidewalk
or cross a crosswalk, as shown in Fig 6 (a).

2.3.2 Epistemic Uncertainty in Prediction
For the epistemic uncertainty, various models with the con-
sideration of long-term dependency and large-range spatial
interaction are proposed. Discrete Residual Flow (DRF) [68]
is proposed for the long-term prediction with a residual
update for the marginal distributions over the time span
conditioned by the scene context. There are numerous works
that focused on the interaction models in future predic-
tion, and the interaction of different road agents can also
raise a collaborative uncertainty (CU) [75], [76] because of
the dynamics of the interaction. The consideration of CU
enables to evaluate the interaction uncertainty in the multi-
modal prediction. In addition to the model uncertainty on
a single dataset, the uncertainty for cross-dataset generation
in future prediction is recently proposed [77], which esti-
mates the model uncertainty by the heatmap distribution of
the predicted points, and computed by

∑
pH(p)||p − E||2

with E =
∑
pH(p)p, where p is the point position, and

H(p) denotes the probability value for the given position.
Actually, data shift has a large influence on the accuracy of
prediction even with good calibration between the model
and data. Deep ensembles of multiple networks seem to be
beneficial for boosting the model performance under data
shift [78].

2.3.3 Potential Trends
With the demand accuracy of long-term prediction, the
aleatoric uncertainty and epistemic uncertainty are consid-
ered simultaneously in this field all the time. What un-
certainties do we need for behavioral intention prediction?
Although there is few work for this question, we can seek
the answer from the work on Bayesian deep learning in com-
puter vision [70]. Aleatoric uncertainty can be focused when
we have sufficient data or with real-time demand, and epis-
temic uncertainty is important when we encounter safety-
critical applications with small data. Recently, Bayesian
deep learning models have become a favorite [80] in future
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Fig. 7. The uncertainty estimation in the latent space by PriorNet (b)
and PostNet (d) with the learned latent position of labels (a) and (c),
respectively. Credits to [79].

prediction. Similarly, Itkina and Kochenderfer [81] propose
an evidential deep learning model to estimate the epistemic
uncertainty for an interpretable trajectory prediction, where
the past agent behavior, social context, and road structure
are exploited. They are based on the assumption that the
unfamiliar road structure, input behavior, and social context
would give rise to high epistemic uncertainty. The evidential
deep learning in [81] is inspired by a Posterior Network
(PostNet) [79] which has a promising ability for distin-
guishing the latent space of the Out-of-Distribution (OOD)
samples, as shown in Fig. 7.

As for BIP in the driving scene, the intention types of
the road participants are multitudinous. Consequently, it is
impossible to collect enough data in practical use for each
type of behavioral intention, and may involve many types
with only few samples. In the meantime, each participant in
the driving scene may have different intentions at each time
step, which implies natural aleatoric uncertainty. Therefore,
aleatoric and epistemic uncertainty will coexist for a long
time. Recently, Digital Twining (DT) [135] or Parallel Intelli-
gence (PI) [136] may be promising for epistemic uncertainty
by generating large-scale behavioral intention data with the
consideration of long-term, abundant and diverse samples.
The real-synthetic data interaction and collaborative simu-
lation may be useful for the long-tailed [137] or few-shot
samples in the prediction (will be described in Sec.3.3 in
detail). Furthermore, with the influence of partial observa-
tion, few-shot [138] or zero-shot [139] learning models with
limited labels or important labels [69] (as shown in Fig.
6(b)) can also be taken as epistemic uncertainty. Human-
machine hybrid intelligence will have an important role in
future prediction with the humans help to correct prediction
error [140] in an active learning setting.

3 PROMISING INFERENCE APPROACHES IN BIP
In this section, we elaborate the promising inference ap-
proaches in BIP. We mainly focus on cross-modality fusion,
explainable AI, and simulation augmentation models in BIP.
It is worth noting that, we do not include the works of driver
intention (can be reviewed in other surveys [141], [142]) but
elaborate the existing works that concentrate on intention
prediction of pedestrians and surrounding vehicles.

3.1 Cross Modality Fusion in BIP
In order to enhance the category margin of different inten-
tions, most existing works exploited multiple clues. As for
pedestrians and vehicles, the types of clues are different,
where pedestrians prone to use harness images (I), pose (P),
estimated velocity (V), locations (L), while vehicles often

Fig. 8. The Dynamic Multi-modal Fusion flowchart. Credits to [146].

fuse many road structure information, such as images (I),
HD map (HD), Distance to Centerline (D2C), and velocity
(V). Table. 1 presents the related works for pedestrian BIP
and vehicle BIP, from the view of years, inference mod-
els, clue types, fusion strategies, and intention types. It
is manifested that the intention types of pedestrians and
vehicles are different, where crossing (C) and non-crossing
(NC) are the main concerns of the pedestrians, while lane
change (LC) is the key focus for vehicles. This observation
is reasonable that “crossing warning” often takes the most
important demand for assisted driving systems [143], and
lane change of vehicles is the most frequent behavior with
the potential threat to the other vehicles[144], [145].

With the development of deep learning, the inference
models for different clues still present a stable appreciation
for Convolution Neural Networks (CNN) and Recurrent
Neural Networks (RNN) and their related variants. Some
recent works [114], [115], [119], [106] adopt Graph Convo-
lution Networks (GCN) to infer the embedding of different
clues for pedestrian crossing intention prediction. Actually,
most multi-clue intention prediction works do not evaluate
the importance of different clues, but simply fuse them
together with the feature embedding models by combining
the embeddings in “concat” or “attentive fusion”. Certainly,
“attentive fusion” provides a mechanism for selecting the
important information, while it does not give an explicit
modeling and is unexplainable. Recently, Xu et al. [111] im-
itate the mechanism of retrospective memory in neuropsy-
chology and propose a MemoNet to store the representative
instance set and predicted the intention of road agent by
looking for similar scenarios in the training data. They infer
the future destination clues for the future intention feature
encoding.

Essentially, fusing more clues could reduce the aleatoric
uncertainty as aforementioned before. More information
provide more constraints for future intention prediction,
while it gives rise to a fundamental problem on how to
fuse these information in the best way. That is because, in
some situations, some information may be counteractive.
Various Dynamic Neural Networks (DNNs) [147] may be
promising for adaptively selecting the multi-modal infor-
mation in different situations. Dynamic Multimodal Fusion
(DynMM) [146] and Dynamic Routing Network (DRN) [148]
are two kinds of models, where the “dynamics” in modality
fusion is fulfilled by a Gating Network (GN) in DynMM and
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TABLE 1
The comparison of the cross-modality fusion models for behavioral intention prediction of pedestrians and vehicles, w.r.t., Years, Inference

Models, Fusion Strategies, Clue Types ( I: image; P:pose; L: location, E: ego-motion; V: velocity; M: other agent motion; T: trajectory; D: depth;
S: semantics; F: future state; H: head orientation; W: waiting time; D2C: distance to centerline; D2V: distance to vehicles; 3DP: 3D point cloud;
DM: dynamic map; R: raw-rate; SA: steering angle; HD: road map; RL: road lines; LC: longitudinal coordinate; VT: vehicle type), and Intention

Types (C: cross; NC: non-cross; L:look; NL: not look; W: walk; ST: stand; SM: straight move; TL: turn left; TR: turn right; UT: u-turn; KL: keep lane;
LC: lane change; S: stop; P: park; Pa: Pass; Y: yield; M: merge).

Ref. Years/booktitle Inference Models Clue Types Fusion Strategies Intention Types
[82] 2016/ITSC CNN, LSTM, SVM I concat C, NC
[83] 2018/IEEE TIV LSTM T concat C, NC
[84] 2018/IV CNN I, P, L concat C, NC
[85] 2018/IV CNN, LSTM I, P, L concat C, NC
[86] 2018/SITIS SVM,ANN,kNN,Decision Trees I, L, M, H concat C, NC
[87] 2019/BMVC GRU I, P, L, E concat C, NC
[88] 2019/ICCV DenseNet-121 I, P, L, E concat C, NC
[89] 2019/ICCV LSTM I, L concat C, NC, W, L, NL
[90] 2019/ICRA Residual Encoder-Decoder,3DCNN I concat C, NC
[91] 2019/ICRA Spatial-Temporal (ST) DenseNet I w/o fusion C, NC
[92] 2019/ITSC GCN P concat C, NC
[93] 2020/ACSSC STDenseNet I, P, L Early-Middle-Late concat C, NC
[18] 2020/hEART LSTM L, V concat C, NC
[94] 2020/IEEE TITS CNN I, P, L concat C, NC, TL, TR, S
[95] 2020/IEEE RAL GCN I, L concat C, NC
[96] 2020/ITSC LSTM, Dynamic Bayesian Network I, P concat C, NC
[97] 2020/IV GRU I, L, P, E concat C, NC
[98] 2020/IV Logistic Regression Classifier I, L, M concat C, NC
[99] 2020/WACV C3D, Conv-LSTM I w/o fusion C, NC
[100] 2020/Journal of Physics GCN, Conv-LSTM I, L, P, E concat C, NC, W, ST, L, NL
[101] 2021/ICCV LSTM T, I, L, E, S concat C, NC
[102] 2021/ICCVW LSTM, GCN I, L, P concat C, NC
[103] 2021/arxiv LSTM, Conv-LSTM I, L, P Attentive fusion C, NC
[104] 2021/arxiv Transformer I, L, P, V concat C, NC
[105] 2021/ICCVW 3DCNN P, L concat C, NC
[106] 2021/ICRA STGCN, LSTM M, E concat C, NC
[107] 2021/IEEE TITS Factor-CRF I, S, M, D, E concat C, NC
[108] 2021/IJCAI CNN, MLP I, L, S concat C, NC
[109] 2021/TRC 3DResNet50 I, P Attentive fusion C, NC
[110] 2022/arXiv CNN, GRU I, P, L, E concat C, NC
[111] 2022/CVPR Self-Attention, Memory network T, F Attentive fusion C, NC
[112] 2022/IEEE SPL Vison Transformer I, L, P concat C, NC
[113] 2022/IEEE TITS SVM P, V, H, W concat C, NC
[114] 2022/IEEE TITS GCN, CNN I, P, L, E, S concat C, NC
[115] 2022/IEEE TITS GCN P concat C, NC
[116] 2022/IEEE TIV CNN, GRU I, L, P, E Attentive fusion C, NC
[117] 2022/IV Transformer L concat C, NC
[118] 2022/IV CNN, LSTM I, S, L, E Attentive fusion C, NC
[119] 2022/IV GCN I, E concat C, NC
[120] 2017/ITSC LSTM E, HD concat LC
[121] 2018/IV CNN, GMM V, D2C concat SM; TL,TR, LC, S
[41] 2018/CoRL CNN 3DP, DM concat KL, TR, TL, LC, S, P
[122] 2018/Expert Syst. Appl. Adaptive Fuzzy Neural Network V, D2V, SA concat LC
[123] 2018/ICRA Bi-LSTM V,LC One-hot vector LC
[124] 2019/Expert Syst. Appl. MLP+Fuzzy C-Means V, D2V, SA concat LC
[125] 2019/IV LSTM LC, V concat LC
[126] 2019/ITSC CNN, LSTM I Muti-Channel Stacking LC
[127] 2020/IEEE TITS RNN L,V, SA concat SM, TL, TR, UT
[128] 2020/Transport. RR LSTM L,V, D2C concat SM, TL, TR, UT
[129] 2020/IV LSTM +Attention V, R Muti-Channel Stacking SM, TL, TR, S
[130] 2021/IEEE TVT RNN RL, V, SA concat LC
[131] 2022/IEEE TITS Echo State Network, LSTM SA concat LC
[132] 2022/IEEE TITS LSTM+Attention L, V, VT concat LC
[133] 2022/ICRA Variational RNN HD, V, E causal Pa, Y, M
[134] 2022/TIE LSTM L,V concat LC

achieved by the router network in DRN. Fig. 8 illustrates
the modality level fusion in DynMM, where the input
modalities, x1 and x2, are inferred by three expert networks
and each network has a link with the output y. The gating
network will select the best expert network in the final
decision. Certainly, the gating network can also be added in
the feature embedding part to fulfill a selective multi-modal
encoding.

3.2 Explainable AI in BIP

For explainable AI models in the driving scene, the at-
tention mechanism initially designed in Natural Language
Processing (NLP) applications [149] are fundamental and
have been exploited in many different applications. It learns
the scores of different regions for the final decision process.
Certainly, attention mechanism has also been adopted for
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Fig. 9. The conditioning analysis for future prediction with a causal
intention linking to different vehicles. Credits to [152].

the explainable AI models in the driving scene. The survey
[16] has investigated the works correlated with the au-
tonomous driving system, and will not be further described
in this work. Here, we mainly concentrate on the causality
inference in explainable AI in the driving scene.

Causal [133] or factor relation [150] amongst the road
agents is involved in future prediction, and constructs the
non-visible “Dark Matter” [151] for motivating the behav-
ioral intentions. Chen et al. propose a scene-consistent,
policy-based trajectory predictions, which firstly build a
scene graph by the agents’ distance, and partition the graph
into several cliques. The factor graph is constructed on
these cliques, which paved the way for the conditioning
and counterfactual analysis [152] for the prediction. Taking
Fig. 9 as an example, the intention of vehicle A will be
influenced by the causal chain of vehicle B conditioned
by the accelerating vehicle C. Hu et al. [133] contribute a
causal-based time series domain generalization model for
vehicle intention prediction, which construct a Structural
Causal Model (SCM) based on the domain knowledge of the
generation pattern of interactive trajectories within each ve-
hicle pair. The domain knowledge originates from the road
topology, speed limit, and traffic rules, and the interactive
pattern corresponds to the driver’s aggressiveness level and
the relation with other road agents. These information form
the causal relation of the features for the specific intention.

With the causal or factor relation, counterfactual analysis
can find the primary cause or the scene knowledge for
the specific prediction results by imagining a change of
the input state. For example, Li et al. [153] explore the
Causal Inference (CI) on the identification of risk objects
by masking the front participants. This formulation is also
adopted by the STEEK model [154] for the intention decision
model (e.g., stop or move forward), where “region-targeted
counterfactual explanations” is introduced and could generate
meaningful counterfactual with a preserved scene layout
and relevant semantic changes. Based on CI, some recent
works [155], [156], [157] begin to investigate the robustness
of future prediction by attacking the input observations.
These approaches aim toward explainability by changing
the semantic or scene state and check the influence on the

Fig. 10. An example for the pedestrian interaction ”say hello”, which
provides a strong crossing street intention. Credits to [159].

outcome for finding the primary input state. Actually, causal
relation has been observed by the safety-critical driving sce-
nario generation, such as tje CausalAF [158] that aligns with
the behavioral graphs; it integrates the Causal Order Masks
(COM) to generate possible cause-effect relations for the
road scene and Causal Visible Mask (CVM) to filter the non-
causal information. The causality has the natural relation
with the interaction of road participants. For example, if
two persons stand on different sides of the road and say
hello, one of them is likely to cross the road to meet each
other, as shown in Fig. 10. Therefore, the causality does not
just correlate with the static road semantics, but also the
dynamic action or pose of the participants.

3.3 Simulation Augmentation for BIP

From the aforementioned review, it is apparently that we
need to find the natural relation of the road semantics and
collect sufficient data samples. However, in practical use,
it is difficult to gather adequate samples that cover all of
the causal relation, diversity, and long-tailed future state
distribution in safety-critical driving scenes. Therefore, more
and more works begin to borrow multitudinous virtual
simulation tools (e.g., CARLA [163], AirSim [164], GTA-V
[165], and MetaDrive [166], etc.) to generate diverse driving
scenes in this field. We call it as Simulation Augmentation
(SA) in the following content.

The core problems in SA are to transfer the scene
consistency from real to synthetic data, and transfer the
diversity from synthetic to real scenarios, which generates
the possible future state with a parallel or transcendental
evolution [167], [168].

3.3.1 Real-to-Synthetic Generation
Within this domain, many kinds of virtual engines are
adopted with high fidelity rendering. A recent survey
[162] presents a methodological perspective review for the
safety-critical driving scene generation. It categorizes the
generation models as data-driven generation (e.g., Traffic-
Sim [160]), adversarial generation (e.g., AdvSim [161]), and
knowledge-based generation (e.g., MetaSim2 [37]), which
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TrafficSim AdvSim MetaSim2

Fig. 11. Different generation pipelines, where the TrafficSim [160], AdvSim [161], and MetaSim2 [37] are the representative examples in data-driven
generation, adversarial generation, and knowledge-based generation, respectively. The summary of different generation pipelines credits to [162].

are illustrated in Fig. 11. With these excellent simulators
in the driving scene, the research on the behavioral inten-
tion prediction booms in recent years. For example, the
AdvSim formulates the perturbed vehicles with an adver-
sarial future behavior, which provides the robust training
for the behavior prediction of the ego-vehicle. Chen and
Krahenbuhl [169] create a virtual multi-vehicle collaboration
environment for the behavioral intention prediction of ego-
vehicle with the learning of future intention of surrounding
vehicles. The behavioral intention in the vehicles are defined
as “turn-left, turn-right, go-straight, follow-lane, change-lane-to-
left, and change-lane-to-right.” TrafficSim [160] leverages the
real-world data to learn the rules of humans’ experience
for the behavior demonstration, and generates multi-agent
behaviors with socially-consistent plans for all actors in the
scene. The behaviors of “U-turn”, “yielding”, “merging”, and
“passing”, etc., are generated for road vehicles.

3.3.2 Synthetic-to-Real Adaptation
Synthetic-to-real adaptation absorbs the superiority of var-
ious simulators for generating vast amount of data in dif-
ferent weather, light, and road conditions. The data with
long-tailed distribution or adverse weather condition can be
collected efficiently.

In order to cover the dynamics of pedestrian crossing
intention, some works leverage the diversity in synthetic
data to the real scenarios. For example, the work [117]
transfers the dynamics of bounding box from synthetic
data to real data. Another work [170] constructs 4667 se-
quences with “crossing” or “non-crossing” intention and
models a virtual-to-real deep distillation for the lightweight
pedestrian crossing intention prediction. Different from the
works that addresses the intention prediction from the ego-
vehicle perspective, Kim et al. [171] propose a pedestrian
crossing intention prediction model with the pedestrians’
view with a Virtual Reality (VR) apparatus, which aims to
learn a shared understanding for the pedestrian crossing
intention. Although synthetic data can boost the diversity
of the scenarios, there is large distribution gap between the

synthetic data and real data. Therefore, models trained on
synthetic data often show degraded generalization to real
data [172], [173]. Recently, Zhou et al. [174] present a survey
for the domain generalization problem and exhibit the core
solutions for better synthetic-to-real adaptation.

3.3.3 Risk and Crash Inference
Within BIP problem, it has direct link with the risk as-
sessment in driving. Recently, the collision risk prediction
work [175] is modeled by inferring the hidden intention
of surrounding objects. Similarly, Kim et al. [176] learn to
identify dangerous vehicles using a simulator, which learns
the crash patterns in the real accident video data and con-
structs a GTACrash dataset. The crash label is refined by
predicting the future paths of other vehicles. VIENA2 [177]
is a promising benchmark with the synthetic data for the
prediction of accidents, pedestrian intention (e.g., cross, walk
alongside, stop), and front car intention (forward, stop, turn
right/left, and change lane left/right).

Finally, SA is gradually becoming an indispensable tech-
nique for the reasoning of safe-critical driving scenarios; it
has the direct relation with the Digital Twining (DT) [135] or
Parallel Intelligence (PI) [136] in the driving scene. With the
booming of Metaverse, the interaction between the virtual
and real world will become a fundamental and core basis
for understanding the world.

4 BIP-CONDITIONED SCENE PREDICTION

The accurate BIP provides the future movement tendency of
road agents. it is apparently useful for the following tasks
of trajectory prediction, behavior prediction, and potential
accident prediction. Specifically, how does BIP promote the
other prediction tasks will be described in this section.

4.1 BIP-Conditioned Trajectory Prediction
The first prediction task is BIP conditioned trajectory predic-
tion, where the conditioning function can be divided into
multi-task learning prototype and parameter conditioning
prototype.
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Fig. 12. The Retrospective-Memory-based Trajectory Prediction frame-
work in [111].

4.1.1 Multi-task Learning Prototype
Formulating the intention and trajectory prediction as a
multi-task learning prototype can be easily considered and
implemented. By adding an extra loss function with trajec-
tory prediction loss, these two coupling tasks can be inferred
simultaneously [178], [179], [180], [181], [18]. For example,
Su et al. [179] treat the pedestrian crossing intention as an
extra signal and fulfill the trajectory prediction by adding
an intention loss (cross entropy of the intention labels) to a
terminal time focusing on L2 loss of trajectory. The results
show that crossing intention had promoted the trajectory
prediction for the end time step significantly. Rasouli et al.
[101] formulate a multi-task prediction for pedestrian cross-
ing intention, trajectories, and final grid location. The binary
cross-entropy loss is used for the pedestrian crossing inten-
tion prediction. The Retrospective-Memory-based Trajectory
Prediction [111] combines the pedestrian crossing intention
and trajectory prediction together, and infers the intention
prediction with the MemoNet to jointly reconstruct the
compatible past trajectory and future intention features. As
shown in Fig. 12, the MemoNet and the encoder-decoder for
trajectory prediction is optimized alternatively. DROGON
[180] fulfills a goal-oriented trajectory prediction network,
which computes the probability of intended goals based on
the inferred interaction of vehicles, and estimated the label
of intention by cross-entropy loss. Sui et al. [181] introduce
the Transformer to model the cross-attention of different
information (locations and images) and formulate the multi-
task learning of intention and trajectory prediction.

Actually, the aforementioned goal-oriented trajectory
prediction is also another kind of intention for conditioning
the trajectory prediction. The goal estimation is also fulfilled
by the crossing-entropy loss [59], [56], [58], [46], [61], which
is investigated in Sec. 2.2. Recent work LOKI [182] combines
the intended goals and behavioral intention together in
a new behavioral intention prediction benchmark with 15
types of intentions. The goal proposal network (GPN) and
the intention prediction model are added with the trajectory
prediction in a multi-task inference model.

4.1.2 Parameter Conditioning Prototype
Parameter Conditioning Prototype for trajectory prediction
usually models the intent as an extra information to re-
weight or re-constrain the trajectory distribution sampling
function [183], [184], [185]. The Conditional VAE (CVAE)
models [186] defined as follows are commonly adopted.

pθ(yi|X) =

∫
pθ(yi|zi,X)pθ(zi|xi)dzi, (1)

where pθ(zi|xi) denotes the conditional independence of
the latent variables zi under the agent observation xi ∈ X.
Commonly, the intention is encoded in pθ(zi|xi), where the
other conditions, such as interaction and road scene knowl-
edge may also be encoded. Euro-PVI [187] models the inter-
active intention between the surrounding objects and ego-
vehicles (e.g., yield, slow down, and cross, etc.), and develops
a Joint-β-CVAE to conduct the trajectory prediction, where
the interaction intention is encoded as the latent variables
in the CVAE formulation. The results verify that involving
the interactive intention between pedestrians and vehicles
could significantly reduce the ADE and FDE values. Sun
et al. [188] also propose a CVAE model to jointly predict the
intended goals and trajectories, which embeds the predicted
goals and the interaction of agents with a Multiple layers
Perception (MLP) at each time step.

Besides, other parameter based intention predic-
tion models, such as the Dynamic Bayesian Network
(DBN) [189], [190], [133], [191], [192], are also be explored.
As for the deep learning era, the framework of DBN will
be popular, where the feature extraction of inference model
may be fulfilled by deep learning modules. The work [193]
firstly predicts the vehicle intention on the BEV sequence by
a CNN model with the binary cross-entropy loss, and then
fuses the predicted intent to the trajectory prediction with
a multi-head attention decoder model. Wu et al. [190] fuse
the pedestrians’ behavior, intention and the scene context
together to tackle the trajectory prediction problem. The
pedestrian intention is inferred by DBN with the vari-
ables for the existence of anxiety and longitudinal danger,
crossing area, waiting time, and distance to curb, etc. The
pedestrian crossing intention is treated as a bool variable
to change the trajectory sampling function. In some works,
the researchers fuse the intention and trajectory prediction
as a sequential prediction problem, where the predicted
trajectories are also useful for the intention prediction tasks.
For example, Saleh et al. [83], [194] predict the long-term
intention of pedestrians sequentially by a deep stacked
LSTM over the trajectory points.

4.2 BIP-Conditioned Behavior Prediction

In many related works, the behavior prediction and the
trajectory prediction has confusion by treating the trajectory
prediction as the behavior prediction. We think these two
tasks have intrinsic difference, where the behavior pre-
diction prefers the semantics of certain movement, while
the trajectory prediction only forecasts the future locations
without the specific semantics.

Compared with trajectory prediction, behavior predic-
tion has the most similar problem formulation with BIP,
where they are usually formulated as a classification task
for future state [202], [203]. Besides, since the behavior may
last for a while with a time window, the behavior prediction
can also be formulated as a sequential classification task for
the future states, e.g., that the prediction changes from the
“will cross” to “crossing” for pedestrians. For example, Yao
et al. [108] couple the intention and action for pedestrian
crossing behavior prediction, where the “standing”, “walking
towards”, “crossing” and “crossed” actions are combined with
the intention of “will cross or not cross”. The pedestrian
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Fig. 13. The benchmarks of JAAD [195], PREVENTION [196], BLVD [197], DADA-2000 [2], VIENA2 [177], INTERACTION [198], PIE [199], TITAN
[200], STIP [95], PePScenes [201], PSI [103], LOOK[23], and LOKI[182].

crossing behavior is modeled as a sequential prediction
problem solved by a multi-task inference. Similarly, Rasouli
et al. [101] fulfill the pedestrian behavior prediction by as-
signing the action state on the prediction trajectories. Ma et
al. [204] propose a continual multi-agent behavior prediction
work, which designs an episodic memory buffer and a
conditionally generative memory to capture the historical
interaction trajectories with the labeling of goal position
and interaction intention, and adopts the CVAE to infer the
prediction, respectively. Banijamali et al. [205] construct an
action-conditioned behavior prediction, where the predic-
tion problem is modeled as learning p(ot+1|o1:t,at) with
the action at and observation feature o1:t. The action at at
time t and the future state ot+1 are alternatively predicted
to fulfill a “Prediction by Anticipation” framework. Li et
al. [206] propose an interaction and behavior-aware driving
behavior prediction framework based on joint predictions
of intentions and motions of surrounding vehicles, which
is fulfilled by a multi-modal hierarchical Inverse Reinforce-
ment Learning (IRL) over the driving trajectory data. The
driving behaviors are defined as aggressive, conservative
and moderate driving.

From the investigation, we find that there are many
works on pure behavior prediction, while the intention
conditioned behavior prediction of pedestrians and vehicles
is a relatively undeveloped field. Actually, the behavioral
intention of road agents has a manifested promotion role
for long-term behavior prediction.

4.3 BIP-Conditioned Accident Prediction

Accidents are the special events in the driving scene and
many works concentrated on how to reduce the occurrence
probability of them. The accident prediction implies the col-
lision avoidance problem. For example, these works [207],
[208] have conducted the relation modeling between pedes-
trian intention and trajectory with the collision avoidance.
Some previous works exploited the role of the behavioral

intention for the collision avoidance by changing the inten-
tion or the moving speed [209], [210], [211], [212]. However,
these works are all based on Gaussian Process (GP) [212],
social force [211], or Markov Decision Process (MDP) [207]
by learning the transition model for each vehicle given the
driving intention. As for deep learning era, few studies have
thus far been conducted on the intention-aware accident
prediction or collision avoidance.

In this field, there are deep learning based works which
predict the accident in dashcam video data [213], [214],
[175], [215], [216], [217], [218], [176], where the interaction
or relation of road participants are considered similar to
the models in other prediction tasks. Nevertheless, the
behavioral intention is also seldom involved. For the ex-
plainable AI model for behavioral intention prediction as
aforementioned before, the causal inference or the attack
based models are promising for this field. We think that it
is urgent to open this problem because the behavioral inten-
tion change will have the largest influence on the avoidance
or accident prediction. If we change the behavioral intention
earlier, we can get the larger Time-to-Accident (TTA) for
collision avoidance or decision making. As aforementioned,
some works contribute the counterfactual analysis or attack
operation on the factual scene by changing the status of
road semantic or masking the objects [155], [154], [153]. We
think that compared with these scenarios, the exploration
for the behavioral intention changing mechanism will be
more useful for accident prediction.

5 AVAILABLE BENCHMARKS

In this section, we elaborate the publicly available bench-
marks for the behavioral intention prediction task. Here, we
only present the benchmarks for the behavioral intention
prediction, while the datasets for trajectory prediction and
accident prediction are not contained. Table. 2 presents the
attributes of fourteen datasets, and the samples are shown in
Fig. 13. Almost all the datasets have the pedestrian crossing
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TABLE 2
Behavioral intention prediction benchmarks generated by real data (R) or simulated data (S) with the Intention Types (C: cross; NC: non-cross;

L:look; NL: not look; W: walk; ST: stand; SM: straight move; TL: turn left; TR: turn right; UT: u-turn; KL: keep lane; CI: cut in; CO: cut out; VO:
vehicle overtake; LK: looking; NLK: not look; LC: lane change; S: stop; Y: yield; M: merge; NC: near collision; RD: move along the roundabout) and
the Annotations (L: locations (boxes); 3DB: 3D boxes; VT: vehicle type; V: velocity; DA: driver attention; T: trajectory; W: weather, B: behavior; O:

occasions; A: age; G: gender; BO: human body orientation; DES: destination; SM: semantic map; SD: scene description). The serviceable
prediction tasks (Pred. Tasks) by these benchmarks are denoted as behavioral intention prediction (BIP), trajectory prediction (TP), behavior

prediction (BP), future location prediction (FLP), accident prediction (AP), and driver attention prediction (DAP).

Datasets Years/booktitle Seq. num Annotations Intention Types S/R Pred. Tasks
JAAD [195] 2017/ICCVW 346 I, L, W, O, B, G, A, BO C, NC R BIP, TP, FLP

VIENA2 [177] 2018/ACCV 15000 I, B S, TL, TR, LC, C,NC,W S BIP, AP
INTERACTION [198] 2019/arXiv - I, L, SM, B RD, NC, LC, M R BIP, TP, BP

PIE [199] 2019/ICCV 53 I, L, B, GPS, V W, S, LK, NLK, C, NC R BIP, BP, TP, FLP
BLVD [197] 2019/ICRA 654 I,L,T, B,3DB 22 types R BIP, BP, TP, FIP

PREVENTION [196] 2019/ITSC 11 I,L,VT, B LC, CI, CO R BIP, BP, FLP
TITAN [200] 2020/CVPR 700 VC, I, L, B ST, C, NC R BIP, BP, TP, FLP

STIP [95] 2020/IEEE RAL - I, L, B C,NC R BIP, TP, FIP
PePScenes [201] 2020/NeurIPS 850 I, B, SM, BO, SD C,NC R BIP, TP, FLP, BP

PSI [103] 2021/arXiv 110 I, L, S, B C,NC R BIP, FIP, TP
LOOK [23] 2021/arXiv - I, DA, L C,NC R BIP, DAP, FLP, TP
LOKI [182] 2021/ICCV 664 I, L, 3DB, SM, A, G, DES, W C,NC R BIP, FLP, TP

Virtual-PedCross-4667 [170] 2022/ITSC 4667 I, W, L, B C, NC S BIP, BP, TP, FIP
DADA-2000 [2] 2022/IEEE TITS 2000 I, B, DA LC, VO, C, NC R BIP, DAP, AP

or not crossing intention. In the following, we describe the
main differences among these benchmarks from the aspects
of collection views, intention types, annotation details, and
evaluation issues.

5.1 Collection Views

From Fig. 13, we can see that only INTERACTION [198]
is collected from BEV view. Compared with the ego-centric
view, BEV view can capture a large spatial range of view
and provide a complete movement process. BEV view can
provide a good ground-truth verification for the BIP or other
prediction tasks. Besides INTERACTION, the ego-centric
view has a limited range of perception, while the pose and
the height of the road agents are clearer. In addition, the
ego-centric view perception provides the opportunity for
collision avoidance. Apart from the BEV and ego-centric
views, 3D point cloud can also capture the BEV and ego-
centric view jointly, such as BLVD [197]. However, the raw
3D point cloud has no semantic label or fine-grained pose in-
formation of the road agents. Some recent works capture are
done on capturing the pedestrian point clouds [219], and the
panoramic view by multiple cameras, such as Argoverse 3D
dataset [220] (with seven cameras) or NuScenes dataset [221]
(with six cameras). However, these 3D point cloud datasets
do not provide the behavioral intention label. Therefore, in
future, these panoramic view datasets should be extended
with behavioral intention or behavior labeling.

5.2 Intention Types

From Table. 2, the intention types on most of the bench-
marks only contain the pedestrian crossing or not crossing.
Specially, BLVD [197] annotates 22 types of intention, in-
cluding 12 types, 7 types, and 8 types of behavioral intention
for vehicles, pedestrians, and riders (cyclists or motorbikes),
respectively. It is promising for fine-grained BIP in the
driving scene. In addition, PREVENTION [196] has the “cut
in” (CI) and “cut out” (CO) intention, in which a “hazardous
status” is provided for the vehicle lane change intention.

Based on the road structure, INTERACTION [198] offers
the behavioral intention of “move along the roundabout” (RD),
and TITAN [200] provides the fine-grained behavior labels,
such as pedestrian crossing, pedestrian pushing, or pedestrian
standing. The label in TITAN is actually a sequential action
label for each road agent. Based on the comparison, we can
see that the behavioral intention types for different road
participants in the current benchmarks are far from being
meticulous. Some safe-critical behavioral intention types,
such as “vehicle runs conversely” and “brake”, etc., and many
kinds intention types involving the interactions between
different road agents with road semantics (e.g., sidewalk,
bus station, and steep slope, etc.) are not exploited.

5.3 Annotation Details

The annotation details in these benchmarks implies an issue
that there are many problems in the traffic scene prediction,
and the factors are intricate. The object bounding boxes, tra-
jectories, road semantics, driver attention, long-term goals,
eye-contact status, hazardous status, pedestrian age and
gender are all important for the safe-evaluation in the driv-
ing scene. PSI [103] provides the scene description (DES) for
different situations, which presents another perspective for
scene understanding. From the demonstration in Fig. 13, we
can see that only DADA-2000 considers the accident scenar-
ios. If we want to check the counterfactual analysis for the
BIP on accident prediction or collision avoidance, current
benchmarks are all not feasible. Hence, some attempts for
creating editable driving scene may be promising. In ad-
dition, crow-view annotation of the behavioral intention is
another direction for the cross-validation or counterfactual
analysis of BIP.

5.4 Core Issues in Evaluation

For the evaluation on the single dataset of BIP, the precision,
recall, F1-measure, and accuracy metrics are commonly
adopted in most of the works. For the trajectory prediction,
the Average Distance Error (ADE) and Final Distance Error
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(FDE), Miss Rate are taken for the evaluation, and mean
Time to Accident (mTTA) over all samples are used for the
accident prediction task. It is noted that, all current works
evaluate the performance on different datasets, and the
evaluations have obvious performance gaps. For example,
the investigation of [222] finds that different methods on
pedestrian crossing intention prediction generate different
accuracy and generalization capability for the crossing or
not crossing localization in prediction.

For cross-dataset evaluation on pedestrian crossing in-
tention prediction, a recent work [223] shows that current
state-of-the-art pedestrian crossing prediction models gen-
erated poor performance in cross-dataset evaluation (JAAD
and PIE are used). They introduce the confidence calibration
metrics, i.e., Expected Calibration Error (ECE) and Maxi-
mum Calibration Error (MCE) [224], to provide a comple-
ment evaluation, and find that ECE and MCE differ drasti-
cally. In the meantime, the pre-trained model on density and
diverse source datasets can boost the generalization ability
on other target datasets. For the BIP problem, beside the
two classes of pedestrian crossing or not crossing intention
prediction, multiple kinds of behavioral intentions and the
uncertainty estimation of model calibration in multi-label
classification problem will be exploited [225]. Furthermore,
with the development of deep learning models, the calibra-
tion measurement [226] is also a core issue in trustworthy
implementation.

6 FUTURE TRENDS AND DISCUSSION

Through exhaustive investigation on the behavioral inten-
tion prediction and its roles for other prediction tasks, we
arrive at a full portrait of this topic. Here, we discuss the
future trends for BIP in the deep learning era.

6.1 Theories and Benchmarks

6.1.1 Theories
Despite the numerous works on BIP that have exhibited
a significant progress in the performance, most of current
works on BIP are all based on the CNN, LSTM, Conv-LSTM,
Transformer, and GCN, etc. These deep learning models are
all deterministic neural networks for achieving a mapping
from input space to output space, which is usually overcon-
fident in the testing phase. Consequently, one self-calibrated
deep learning approach on one benchmark faces the data
shift issue in cross-dataset evaluation, and may cause over-
fitting or under-fitting problem when encounters the dataset
with simpler and more diverse samples, respectively.

For the deterministic neural networks, current research
efforts employ the domain adaptation to address this prob-
lem by using a well pre-trained model on large scale
datasets or leveraging more complex architectures. For ex-
ample, vision-language pre-trained models, such as BEit-3
[227] and VinVL [228], learn an informative representation
with the help of dense semantics in language. However,
although these pre-trained models can generate a good
representation, the domain gap in the behavioral intention
prediction is still large and needs further valuable inference
models. We think the possible ways for developing the new
theories on BIP should consider the influencing factors as

aforementioned before, such as better adoption of the scene
context, clearer modeling for the intended goals, and robust
estimation of the prediction uncertainty. Standing at the
natural characteristics of multiple clues and preferring goals
in BIP problem, more explainable scene representation with
the aid of scene knowledge should be involved, such as
the scene graph [37], [49]. Actually, recent BEV estimation
works [33], [34] provide a road scene layout for the scene
graph generation. For cross-modal information fusion, var-
ious dynamic neural networks can be considered, such as
the dynamic multi-modal fusion [146].

Beside the deterministic neural networks, stochastic neu-
ral networks aim to estimate the prediction distribution,
which is possible for providing the prediction uncertainty
estimation, caused by data shift, Out-of-Distribution (OOD)
samples (i.e., unfamiliar behavioral intention), the objective
property of behavioral intention, and the long-term pre-
diction situations. Existing works [229] estimate the dis-
tribution prediction uncertainty for the Bayesian neural
networks, generative adversarial networks, CVAE, or deep
ensembles [230] by adding the uncertainty consistency loss
in Bayesian latent variable model [231]. Therefore, a possible
direction for new theories in BIP is to develop the models
with more consideration of prediction uncertainty.

6.1.2 Benchmarks
Most of the available benchmarks for BIP focus on the
behavioral intention of pedestrian crossing, not crossing,
vehicle lane change, and turning intention. In addition, the
collection views concentrate on the ego-centric views, which
cannot capture the full-range of the road scene, and many
types of behavioral intentions cannot be found, such as
the “rear car follow”, and “overtake from behind”, etc. A
possible way is to add the behavioral intention label for the
datasets with panoramic view, such as the Argoverse 3D
dataset [220], NuScenes dataset [221], or KITTI-360 [232].
It is also interesting to introduce viewpoints from novel
devices, e.g., drone and satellite, for comprehensive scene
understanding [233]. Besides, the intention types in current
datasets are not fine-grained, and the type imbalance issue is
universal. In future, more fine-grained interaction between
the road participants with other road semantics involving
the specific application and the category of road partici-
pants should be considered. For example, pedestrians with
different age and gender often show different behavioral
intention on the road. Furthermore, the safe-critical scenar-
ios with long-tailed distribution or harsh environment (e.g.,
rainy, fogy, snowy, windy, and low-light conditions) are also
the issue and should be considered.

6.2 Counterfactual Analysis and Parallel Testing
As aforementioned, the ultimate goal of BIP is to avoid road
accident or collisions. In practice, we cannot collect enough
dataset in the safe-critical scenarios for data-hungry models.
Pre-trainning is one straight-forward solution. Zheng et al.
collect the public real data to pre-train the model and then
conduct the domain adaptation fine-tuning to the specific
scenario [234]. Meanwhile, the occurred scenarios usually
cannot be changed and edited. Therefore, if we want to
further check the role of BIP for following accident pre-
diction or collision avoidance, another way is to create the
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parallel scenarios which can be edited and changed [235].
With this setting, the causal reasoning with cause setting
for the behavioral intention, accident question answering,
counterfactual analysis is the indispensible problem to be
solved. Manifestly, the parallel testing framework [236]
should be considered for the testing in synthetic data, joint
testing in synthetic and real data, testing in real data con-
ditioned with counterfactual behavioral intention. A recent
work [237] generates realistic and diverse trajectories with
feasible agent behaviors for automated vehicles. It learns the
behavior patterns from the aforementioned INTERACTION
[198]. For more complex urban scene, the interaction and
attributes are rather complex, and more promising genera-
tion pipelines are needed. Meanwhile, the intention pairs of
crashing-intention (with collision tendency) and free-crash-
intention (without the collision tendency) are the issue to
be solved. Usually, a crashing intention may be changed to
many free-crash-intentions. We think the changing should
be minimal, which implies a problem for finding the most
essential intention reason for a certain collision.

6.3 End-to-End BIP
Currently, the prediction tasks usually are based on the
pre-detected or collected object locations; this implies that
some pre-detection or tracking works have already been
conducted. However, we all know that each pre-detection or
tracking work will generate the generalization error which
is inherited to the following prediction tasks [238]. In order
to address the error accumulation problem, it is urgent to
develop end-to-end behavioral intention prediction models
with the raw video frames as input, so as to fulfill a joint op-
timization of sequentially tandem tasks [239]. Some works
have began to make some attempts on trajectory prediction
with the uncertainty motion encoding [240] or sparse agent
queries [241] in multi-task learning perspective.

6.4 Promising Applications
From the investigation, we find that there are far research
efforts on BIP conditioned behavior prediction and accident
prediction. Many intention-aware collision avoidance works
are based on traditional methods, such as Gaussian Pro-
cess (GP) [212] and Markov Decision Process (MDP)[207].
Manifestly, in the big data era, the learning ability of these
methods are limited. Meanwhile, the behavioral intention
is the most direct promotion for certain behavior and can
obtain the largest TTA for collision avoidance. Therefore,
BIP-conditioned behavior or accident prediction need to be
urgently developed.

In addition, multi-vehicle cooperation (internet of ve-
hicles) [242] and road-vehicle collaboration [243] are the
promising applications with the help of other vehicles’
perception and large-scale cloud data. For instance, some
works [244], [132], [245], [246] predict the pedestrian cross-
ing intention from the cooperative vehicles’ view. This kind
of formulation can capture a larger range scene context in
inference than ever before. Within these applications, the
consistent and shared behavioral intention understanding is
an important issue. For example, the lane change intention
for a vehicle may be understood as an overtaking intention
because of the location difference. Therefore, group-wise

consistent understanding [247], [248] in collaboration is
promising with a reasonable spatial and temporal percep-
tion window partitioning.

7 CONCLUSION

This paper presented a literature review for the behav-
ioral intention prediction, with a comprehensive investi-
gation for the influencing factors, promising inference ap-
proaches, and the intention conditioned prediction tasks.
Related researches around the influencing factors are sum-
marized from the aspects of scene context, intended tasks or
goals, and the prediction uncertainty. Cross-modality fusion
model, explainable AI models, and the simulation augmen-
tation models are investigated for the promising inference
approaches. The behavioral intention conditioned trajectory
prediction, behavior prediction, and accident prediction are
described and exhibited that the intention-aware behavior
prediction and accident prediction have a large space to be
developed. Through the investigation, we also found that
significant challenges still exist for the behavioral intention
prediction topic from the aspects of explainable prediction
models, fine-grained benchmarks, and the testing prototype.
Finally, we also discuss future trends and possible solutions.
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M. Tang, K. A. andf Kalle Bjurek, R. D. Raj, E. Davidsson,
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