
GROUND USER LOCALIZATION IN UAV-BASED WIRELESS NETWORKS:
FROM CHANNEL CHARACTERIZATION TO SYSTEM DESIGN

A Dissertation
Presented to

The Academic Faculty

By

Jianqiao Cheng

Doctor of Philosophy in the
Brussels School of Engineering

BEAMS Department. Embedded Electronics
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Abstract

Unmanned aerial vehicles (UAVs) are widely used in numerous applications thanks to

their excellent mobility and fast deployments. One promising application is to let UAVs

serve as flying base stations for providing reliable and cost-effective wireless communi-

cations. Such UAV-assisted communications are interesting for extending the range of an

existing network, serving remote areas, or temporarily replacing cellular infrastructure in

disaster scenarios. Unlike traditional terrestrial cellular networks where base stations are

fixed to the ground and serve nearby cells, a UAV base station can be moved and deployed

on demand. Its service coverage area is entirely dependent on the location of the UAV

itself. This characteristic leads to a key challenge for UAV-assisted communications: the

system should localize ground users before deploying UAV base stations to ensure optimal

capacity and energy efficiency.

In this thesis, we focus on an advanced localization technique that has a great poten-

tial to help UAV platforms to localize ground targets based on their emitted radio signals.

This so-called “virtual antenna array” technique uses bearing measurements to estimate the

Direction-of-Arrival (DoA) of the targets. Unlike conventional DoA estimation methods

that require large, expensive antenna arrays, the virtual antenna array is implemented with a

mobile single-antenna receiver. While the receiver is moving and receiving signals simulta-

neously, the DoA can be estimated by capturing the phase interferometry of the intercepted

signal at several locations along the receiver trajectory.

The first part of this thesis is to verify the suitability of channels in UAV-assisted com-

munication for the application of DoA-based localization methods. We investigate channel

characteristics of UAV-assisted communications by performing extensive simulations using

ray-tracing simulations. The results show that the angular spread of the UAV platform is

very limited, and the power-weighted average angle of all multipath is close to the actual

azimuthal angle. Both features are beneficial for DoA estimation, which proves that the
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application of virtual array methods on UAV platforms is very promising.

We then focused on improving the accuracy and the robustness of the proposed method.

The main difficulties of the virtual array are two-fold: 1) estimate the relative positions of

the receiver during its movement to reconstruct the array manifold that is necessary for ar-

ray signal processing; 2) address the phase distortion caused by the Local Oscillator (LO)

frequency offset between the transmitter and the receiver. The first challenge is addressed

by implementing inertial navigation with inertial sensors, and the second challenge is ad-

dressed by the two frequency offset compensation methods presented in this thesis. We then

perform a comprehensive nonlinear observability analysis for the system to provide guide-

lines for designing feasible and user-friendly receiver trajectories. The proposed system is

implemented on a software-defined radio testbed and tested in an indoor environment.

Finally, the proposed virtual array system is implemented and evaluated in UAV-based

communication networks. We have performed extensive simulations to investigate the DoA

estimation accuracy by considering different system configurations. Parameters including

the LO quality, the frequency offset compensation method, the SNR, and the UAV tra-

jectories are evaluated. Simulation results show that the virtual array can be a promising

technology for UAVs to localize ground targets.

Keywords: Direction-Finding, Inertial Navigation, Radiogoniometry, Signal-Direction-

Tracking, Software Defined Radio, Synthetic Aperture Radar, UAV-assisted Communica-

tion, Virtual Antenna Array
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CHAPTER 1

INTRODUCTION: WIRELESS COMMUNICATIONS WITH UAVS

1.1 Unmanned Aerial Vehicles

Unmanned aerial vehicles (UAVs), also known as drones, are aircraft that are piloted by

remote controllers or embedded computer programs. Historically, UAVs were mainly used

in military applications and aerial inspections. In recent years, there has been a surge of

enthusiasm for using UAVs in civil and industrial applications due to the advancement of

UAVs’ manufacturing technologies and their reducing cost, making them more accessible

to the public. Nowadays, UAVs have found numerous applications in many fields, including

filmmaking, aerial surveillance, photography, package delivery, and telecommunications

[1]. In June 2016, Pricewaterhouse Coopers (PwC) announced that the addressable market

value of UAV products is over $127 billion, and the civil infrastructure is dominating with a

market value of $45 billion. Besides, more than 100,000 new jobs in the unmanned aircraft

industry are expected by 2025 [2]. Therefore, UAVs have become a promising technology

that could create abundant business opportunities in the next decade.

UAV configurations are typically split into two categories: fixed-wing UAVs and rotary-

wing UAVs, as shown in Figure 1.1. Choosing the right type of UAV is essential for efficient

mission accomplishment. The fixed-wing UAVs are good candidates for long-range or

long-endurance surveillance missions but inherently suffer from hovering difficulties; The

rotary-wing UAVs can take off/land vertically and remain stationary at a hovering location,

which has attracted a great deal of attention from the scientific and industrial community

[3]. In the remainder of this thesis, we only refer to the multi-copter rotary-wing UAVs

unless stated otherwise.

With unique features including excellent mobility in three-dimensional (3D) space, au-
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(a) Fixed-wing (b) Rotary-wing

Figure 1.1: Typical UAV categories

tonomous operation, and on-demand deployment, UAVs have the potential to provide ap-

pealing solutions for a wide range of applications, including civil, public safety, industrial

Internet of Things (IIoT), and surveillance. In these applications, UAVs serve as flying

platforms with adaptive altitude support and inherent mobility, and hence require a se-

cure, reliable wireless communication infrastructure for command and control, as well as

efficient information dissemination towards the ground control station [4]. Therefore, inte-

grating a suitable wireless communication technology into UAV platforms for ubiquitous

connectivity and seamless service is important. Similar technology is also promising in

emergency communication, where UAVs can carry commercial base stations and assist in

terrestrial wireless networks, especially when ground base stations collapse (e.g., disaster

relief, military situations).

1.2 Wireless Communication with UAVs

The integration of wireless communication into UAVs brings both opportunities and chal-

lenges. There are different types of communication links in an aerial network, each with

its own requirements. As a result, the network modules onboard the UAVs have to satisfy

these distinctive requirements. Moreover, proper wireless technologies are also required to

support the demand of these identified use cases. For example, in UAV-based surveillance,

the wireless communication infrastructure must ensure safe piloting and transmission of
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the real-time surveillance video. In the following, we will provide a brief overview of

the communication requirements and the applicability of common wireless technologies in

UAV networks. Two common paradigms for integrating UAVs into cellular networks are

also presented.

1.2.1 Communication Requirements

From the communication viewpoint, the requirements of UAVs can be classified into two

broad categories: one should be able to ensure a safe, reliable, and efficient flight operation,

commonly known as the control and non-payload communication (CNPC) [5]; the other

one refers to all information dissemination activities between the UAV and the ground sta-

tion pertaining to a UAV mission, known as payload communication [4], as shown in Figure

1.2;. The latency and spectrum requirements for CNPC and payload communications are

generally different.

A typical CNPC link is dedicated to maintaining and securing communications between

the ground pilot station and the aircraft to ensure safe and effective UAV flight operations.

This link can be either a line-of-sight (LoS) air-to-ground (ATG) link between the two

platforms or a beyond-line-of-sight (BLoS) link with another entity, such as a satellite or a

cellular network [6]. Data rates for such links are expected in the order of Kbps (Kilobits

per second). The requirements for reliability and latency are much more stringent, e.g.,

less than 10−3 packet error rate and a latency less than 50 milliseconds (ms) [1]. Since

losing the CNPC signal can be catastrophic, the CNPC links must operate over a protected

spectrum, allocated by the International Telecommunications Union Radiocommunication

Sector (ITU-R) [7]. Actions taken at the ITU World Radio-communication Conference

(WRC) in 2012 have established sufficient spectrum resources to meet this requirement,

i.e., the L-band spectrum at 960-977 MHz and a portion of C-band at 5030-5091 MHz [8].

Compared to CNPC links, the payload communication link is usually used for data ap-

plications. Therefore, it requires much higher throughput and bandwidth [9]. For instance,
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Figure 1.2: UAV Link Type

to support the transmission of real-time high-definition (HD) image/video from the UAV

to the ground user, the data rate should keep in the order of Mbps (Megabits per second).

The data rate requirement for UAVs serving as aerial platforms can be even higher, e.g.,

Gbps (Gigabits per second) for data backhauling applications. As a result, proper wireless

technologies are required to meet both the CNPC link requirements and the payload link

requirements in UAV communication scenarios.

1.2.2 Wireless Technologies in UAV Communication

In UAV wireless applications, four candidate communication technologies are applied to

support CNPC and payload requirements:

• Direct Link: Traditional UAV systems mainly rely on simple direct communication

links between the UAV and the ground pilot station over the unlicensed spectrum

(e.g., the Industrial Scientific Medical (ISM) 2.4 GHz). The direct link is typical of

low data rate, insecure, short operation range, vulnerable to interference, and relies

on the LoS visibility. Due to the above limitations, the direct link cannot be a proper

solution for supporting the deployment of UAVs in many wireless communication

applications.
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• Satellite Link: Enabling UAV communications by leveraging satellites is partic-

ularly useful for UAVs where the terrestrial network coverage is unavailable. In

addition, satellite signals can be used to support CNPC links and payload commu-

nications under BLoS conditions, providing maximum coverage. Despite all these

advantages, this technology suffers from propagation losses and delays due to the

long distances that data packets have to travel [9]. The high operational cost of

satellite communications also hinders its widespread deployment in consumer-grade

applications.

• Flying Ad-Hoc Network (FANET): FANETs can be used to offer easily deployable

and self-configured peer-to-peer communications among UAVs. With the help of a

multi-hop ad-hoc network schema, FANETs architecture allows all the UAVs to com-

municate with each other and other base stations simultaneously without having any

pre-defined fixed infrastructure [10]. While FANETs are robust and flexible architec-

ture that allow UAV communications to be deployed as a relatively small network,

their topology changes rapidly and can cause many routing problems. Moreover, it is

generally unable to provide a scalable solution for serving massive UAVs deployed

in a wide area.

• Cellular Network: While the technologies mentioned earlier have failed to satisfy

the critical criterion for UAV communication and networking in a cost-effective man-

ner, integrating UAVs into cellular networks (e.g., 4G networks) has attracted signif-

icant interest. Due to the almost ubiquitous coverage of cellular networks, as well

as their high throughput and advanced communication technologies, both the CNPC

and payload communication requirements of UAVs can be potentially met [1]. For

instance, challenges like link reliability can be overcome by exploiting the possi-

ble link redundancy in cellular technology, meaning that if one link fails or operates

poorly, the system can switch to a better link [6]. This opportunity provides the UAV
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network with resilient and seamless connectivity, which is desirable for several ap-

plications [11]. Even though cellular technologies for UAV communication sounds

promising, it still comes with several disadvantages. First, a single cellular signal

tower has a limited service range and needs several handovers during UAV missions.

Then, due to the high altitude of UAVs, the UAV causes and suffers more severe inter-

cell interference (ICI) from a much larger number of non-associated co-channel base

stations in the neighboring area as compared to the terrestrial user equipment, which

can result in very poor performance [12]. Besides, there are still scenarios where

cellular services are not available, such as in remote areas like the sea, desert [5]. A

detailed discussion of the opportunities and challenges has been provided in [13, 14].

In summary, four wireless technologies can be applied to support UAV platforms in

emergency communications, and cellular networks have some distinct advantages over the

other technologies. Current 4G networks can accommodate most UAV applications. Al-

though there are a number of mission-critical applications that still require higher through-

put and stringent latency, these features are expected to be enabled by next-generation mo-

bile technology. In addition, cellular communications are only suitable for UAV platforms

flying below 125 meters above the ground due to increased path loss and reduced signal to

interference and noise ratio (SINR) [9]. At higher altitudes, satellite data links are more

commonly used. In the next section, we will discuss the commonly known paradigms of

integrating UAVs into the cellular network.

1.2.3 Integration UAVs with Cellular Network

The integration of UAVs in cellular networks falls under two main categories: UAVs can

be employed as aerial communication platforms in which each UAV serves as a flying base

station or a mobile relay node by mounting communication transceivers to provide and

enhance communication services to ground user equipment (UEs). UAVs can also serve as

new UEs in the existing cellular network, supported by the ground cellular base stations, to
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(a) The UAVs operate as base stations for rapid service recovery after disaster situations.

(b) The UAVs function as relay nodes to provide wireless connectivity without direct links.

Figure 1.3: The schematic diagram for UAV-assisted cellular communication networks to
provide ubiquitous coverage in the serving area
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achieve significant performance improvement and enable many applications ranging from

surveillance to navigation. These two paradigm are commonly referred to UAV-assisted

wireless communications and Cellular-Connected UAVs. Most of the existing research is

restricted to these two paradigms [1, 3, 4, 11].

• UAV-assisted wireless communications

UAV-assisted wireless communication is achieved by mounting light commercial

base stations on UAVs, serving as aerial base stations or aerial relay nodes. The

architecture of this application is shown in Figure 1.3. Aerial base stations are typi-

cally deployed for emergency communications and require seamless integration with

existing cellular networks and ground communication infrastructures; The aerial re-

lay node serves as a bridge between end-users without cellular coverage and the

nearest available cell towers [15]. Overall, UAVs are used to assist existing terres-

trial wireless communication systems to improve the Quality of Service (QoS) of

users, spectral efficiency, and coverage gains. Base stations mounted on UAVs can

be deployed on-demand, bringing great opportunities for disaster management, res-

cue, and emergency response [16]. These advantages will meet the diverse, dynamic,

and growing data requirements in 5G cellular systems.

• Cellular-Connected UAVs

In this paradigm, UAVs serve as new UEs that are coworking with terrestrial UEs

that access the cellular network infrastructure from the sky, that provide the follow-

ing opportunities, with the architecture shown in Figure 1.4. First, unlike typical

wireless UAV connectivity that relies on short-range communication technologies

(e.g., WiFi, radio fingerprints), cellular-connected UAVs allow ground pilots to con-

trol UAVs remotely with an unlimited operation range [4]. Thus, they provide an

effective solution to maintain wireless connectivity between UAVs and other end-

users, regardless of their locations. Secondly, Cellular-Connected UAVs can achieve

significant performance gains in terms of reliability, security, and communication
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throughput compared to simple direct ground-to-ground UAV communication [5]. In

addition, Cellular-Connected UAVs are also cost-effective solutions since they reuse

advanced cellular technologies and millions of existing cellular infrastructures de-

ployed worldwide.

The above applications make integrating UAVs into the cellular network a promising

new technology to support the data traffic requirements of the current cellular systems.

Moreover, the new released 3GPP document has published the enhanced requirements for

UAV communications, including new Key Performance Indicators (KPIs) and hobbyist

applications relevant to UAVs [17]. The 3GPP also proposed a Non-terrestrial networks

in [18], including an airborne or space-borne vehicle to embark a transmission/reception

equipment node, for extending service to places without terrestrial coverage. In the follow-

ing section, we highlight the primary opportunities, design challenges, and perspectives to

be considered for UAV-based cellular networks, including solutions that are already avail-

able.

Figure 1.4: The schematic diagram for Cellular Connected UAVs

9



1.2.4 Opportunities and Challenges

Opportunities

The integration of UAVs into cellular networks is a fundamental shift from terrestrial to

airborne networks. It also comes with great opportunities for applications across diverse

areas. The characteristics of aerial networks bring the following main advantages [1, 19,

16]:

• Fast and on-demand deployment: Conventional ground cellular infrastructures are

generally built and distributed based on the user density and geographic conditions

[20]. However, the locations and altitudes of the UAV platforms can be dynamically

adjusted according to the real-time demand (e.g., user distribution, data traffic, chan-

nel condition) [21]. Therefore, UAVs’ fast and on-demand deployment makes them

an attractive method to provide reliable cellular coverage in time-varying scenarios,

without the cost of extra infrastructure.

• Excellent mobility and flexibility: Because of the excellent mobility and flexibility

of UAV platforms, they can serve as both quasi-stationary aerial base stations/relays

and mobile base stations/relays, depending on the mission [22]. At the same time,

the ability of the UAV to move in three dimensions removes the need for the network

to be affected by wireless channel uncertainty (e.g., a target being blocked by an

obstacle). Instead, the network can reduce channel uncertainty to a required low

value by reacting to the current channel conditions.

• LoS-dominant channel: UAV platforms typically operate at high altitudes, which

has several benefits, including a higher possibility to have clear LoS visibility with

ground infrastructures. While the terrestrial channels usually suffer from severe at-

tenuation, shadowing, and fading due to multipath scattering, the links in LoS chan-

nels are typically more stable and reliable due to the absence of obstacles [23].
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Challenges

Despite the numerous advantages of the UAV-integrated cellular network, several key chal-

lenges and considerations also arise and need to be considered.

• Unique Channel Characteristics: Unlike traditional terrestrial networks, the UAV

platforms serve at high altitudes and lead to unique ATG channels. Given the unique

propagation nature for UAV communications, the ATG channels are highly depen-

dent on the altitude, the elevation angle, and propagation environment (e.g., urban,

suburban, rural) [24]. Accurate ATG channel modeling is of vital importance to

enhance the network-related quality-of-service (QoS). However, finding a generic

channel model for ATG communications requires comprehensive simulations and

measurements in various environments. A detailed state-of-the-art for ATG channel

modeling is presented in Chapter 2.

• Optimal Deployment: The number of UAV platforms and their respective geograph-

ical locations significantly impact various factors such as latency, data rate, and en-

ergy consumption. Hence, the optimal placement of UAVs for coverage and capacity

maximization is a challenging task as many parameters must be taken into account,

including altitude, deployment environment (e.g., geographical area), locations of

ground users, channel conditions, etc. In addition, locations of nearby cellular in-

frastructures also need to be considered to avoid frequent handover and co-channel

interference. Among current literature, there are different solutions to solve the opti-

mization problem. Some researchers consider the altitude of the UAV as a variable in

their optimization formulation, then treat it as a 3D placement problem, while others

work on a 2D placement problem with a constant height. A brief survey about these

solutions is presented in [25].

• Path Planning: In a UAV-based communication network, optimal path planning for

the UAV to travel to its final operating location is another major challenge. It requires
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considering many practical constraints, including ground users’ demands, flight time,

energy consumption, and collision avoidance. A proper dynamic trajectory could

increase the probability of link connections while maintaining sufficient coverage

of the entire target area. Some work in [26] provides a new paradigm to consider

both the communication throughput and the UAV’s energy consumption to perform

trajectory optimization.

• Localization of Ground Users: In traditional cellular networks, base stations are

deployed on selected, fixed locations without time or power constraints. The signal

coverage range and cell size are also dictated by design. On the contrary, the ser-

vice coverage of an aerial base station is determined by the geographical location

of the UAV itself. As a result, the UAV-enabled communications are much more

location-aware than terrestrial networks, i.e., UAVs should actively locate ground

users and then fly nearby, thus providing maximum capacity to the target area and

being more energy-efficient. This challenge is of critical demand, especially in emer-

gencies where the disaster has damaged other ground facilities used for localization,

and we have to locate users quickly and provide rescue services efficiently.

In the literature, practical algorithms and schemes have been proposed for addressing

challenges related to ATG channel modeling, UAV deployment, path planning, etc. How-

ever, the localization of ground users with UAVs has not received sufficient research focus

yet. Most ground user localization methods currently use time-based measurements or

received signal strength (RSS) measurements [21, 27], which requires sophisticated time

synchronization steps or only provides rough distance estimates. The following section

will briefly describe the state-of-the-art of current ground user positioning methods and

propose a new paradigm, i.e., UAVs equipped with radio platforms for localizing and serv-

ing ground users.
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1.3 New Paradigm: UAV-assisted Ground User Localization

1.3.1 Localization Approaches in Cellular Networks

Localization is acknowledged as a fundamental functionality in modern communication

systems. The highly accurate location information can be used to provide location-aware

services, such as navigation, mapping, social networking, and intelligent transportation

systems. In UAV-based aerial networks, the knowledge of the ground user’s location is

even more important since most UAV applications are location-aware. Moreover, ground

user localization is also a key consideration in designing the optimal deployment and flight

path of the UAV. In principle, the Global Positioning System (GPS) can be applied in many

outdoor scenarios to support ground users in calculating their location. However, users need

to actively broadcast their location to inform the UAV base station, which may not always

be feasible in practical situations. GPS is also known for its high cost and vulnerability

to jamming. Therefore, alternative localization techniques in UAV-based communication

networks are essential.

As UAVs are integrated into cellular networks in UAV-assisted communications and

cellular-connected UAVs applications, localization methods in conventional cellular net-

works are also promising in aerial networks. Various localization approaches have been

devised for each generation of cellular technology, from the first generation (1G) to the

fifth generation (5G), and they utilize cellular infrastructures based on uplink and downlink

communications. More specifically, localizing a target with these approaches in cellular

networks is a two-step process. First, a set of signals are exchanged between the target and

a sufficient number of base stations. Then, approaches with different metrics, including the

RSS, the time of arrival (ToA), the time difference of arrival (TDoA), and the direction of

arrival (DoA), are used to compute the location of the target [28]. More specifically, ToA,

TDoA, and RSS provide the distance information between the target and receivers, while

DOAs estimate the source bearings relative to the receivers.
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(a) RSS and ToA Principle

(b) TDoA Principle

(c) DoA Principle

Figure 1.5: Passive Localization Concept [28]; (a) Trilateration for RSS and ToA technique;
(b) TDoA localization; (c) DoA Estimation with Antenna Array;
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• RSS technique: this method relies on the physical principle that the received strength

of a radio signal is inversely proportional to the increase in propagation distance. The

RSS is the actual signal power strength received at the receiver, usually measured in

decibel milliwatts (dBm) or milliWatts (mW). The absolute distance between the

target transmitter and a receiver can be estimated via several different signal propa-

gation models, given that the transmission power or the power at a reference point

is known [29]. Then, basic trilateration algorithms are applied for the target trans-

mitter to obtain its location relative to the multiple reference points, as shown in

Figure 1.5a. Additionally, the RSS technique works under non-line-of-sight (NLoS)

conditions when a specific propagation model is used.

• ToA technique: also known as Time of Flight (ToF), which exploits the signal prop-

agation time to calculate the distance between the target transmitter and the receiver.

The distance is provided by the ToA value multiplied by the speed of electromagnetic

waves (approximately 3×108 m/s). Similar to the RSS, each ToA corresponds to a

circle centered at a reference node, and the ToA from at least three different reference

nodes is required to calculate the unique location of the target device with respect to

these reference nodes. In general, ToA technology requires high precision time syn-

chronization between the transmitter and receiver, as a synchronization deviation of a

few nanoseconds can lead to positioning errors of several meters [30]. Moreover, the

accuracy of ToA relies on the LoS visibility since the multipath caused by obstacles

will travel through a longer path, causing an increased propagation time.

• TDoA technique: TDoA is the difference in signal propagation time from the target

transmitter to two reference nodes. A single TDoA measurement can be used to

determine the position of the target on a hyperbola, with foci on these two reference

nodes. Then, at least two TDoA measurements from three reference nodes (with

known positions) are required to calculate the exact location of the target transmitter
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as the intersection of the two (or more) hyperbolas, as shown in Figure 1.5b. In

TDoA-based localization, clock synchronization is only required across all reference

nodes, which gives more flexibility than ToA, where all transmitters and nodes need

to be synchronized [31]. The TDoA estimation accuracy depends on the reliability

of TDoA measurements and the existence of the LoS path.

• DoA technique: DoA-based approaches use antenna arrays to estimate the angle at

which the transmitted signal impinges on the receiver, as depicted in Figure 1.5c.

The received signals are delayed versions of the transmitted signal where the delays

are functions of the emitter direction θ and the array geometry. As a result, the re-

ceived signal phase is the sum of the geometry/direction-related phase and a random

phase component common to all antennas. Several direction-finding algorithms are

proposed to estimate the θ by analyzing the received phase at the array elements [32].

The accuracy of DoA estimation depends on the physical size of the antenna array, ar-

ray element imperfections (mutual coupling, manufacturing inaccuracies), multipath

effect, interference, and signal-to-noise ratio. In other words, to realize a satisfying

localization, the DoA estimation generally requires a clear LoS visibility and an an-

tenna array with reasonable physical size. Moreover, the DoA estimation does not

need synchronization among nodes, and the system complexity is simple, which is

extremely valuable in many industries (e.g., cellular networks, radar, industrial IoT).

The above localization metrics differ in terms of positioning accuracy, system com-

plexity, and requirements for collaborating users. The trade-off between each technique’s

positioning accuracy and implementation complexity is a significant factor when deciding

which method to use. For example, localization based on the RSS measurement requires

no specialized hardware or signal processing, which is one of the simplest and widely used

approaches for indoor localization [33]. Methods based on ToA or TDoA generally provide

high accuracy, but they require precise time-synchronization between sensors, which often

complicates the system design [28]. The DoA method determines the angle of the arriving
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signal, and it has great potentials for feasibility without synchronization requirements or

prior knowledge from the environment. However, to allow base stations to estimate the

DoA, they should be equipped with multi-antenna arrays, which incurs high price, signifi-

cant form factors, and power consumption [34].

In real-world scenarios, the performance of different localization methods is also sen-

sitive to the LoS visibility, i.e., the estimation accuracy can be significantly biased due

to multipath and shadowing. While LoS connections are easy to establish with UAV plat-

forms, it is still challenging to implement conventional cellular localization approaches into

aerial networks directly due to the distinctive characteristics of UAVs and ATG channels.

In the following, a state-of-the-art for UAV-assisted passive localization is presented.

1.3.2 State of the Art

There are a wide variety of technical challenges that must be addressed in UAVs for local-

ization. The first difficulty is the uncertainty and characteristics of the ATG channel, which

may plague the metrics designed for terrestrial positioning. Secondly, the localization-

relevant module should not add too much weight and physical size for the aerial platform

due to UAVs’ payload and battery constraints. Besides, the mobility and 3D operation range

make UAVs extremely difficult to be clock synchronized. Last but not least, the number

of UAV platforms required for ground user localization should be minimal to maintain the

system’s cost and efficiency.

Attempts to use UAVs to assist localization have been documented since the early 21st

century. In [35], a control architecture that allows multiple UAVs to detect mobile radio

frequency (RF) emitting ground targets is presented. The UAVs are equipped with low-

precision RF detecting sensors, and the targets are emitting specific signals randomly with

variable time duration. In [36], researchers provide a prototype for UAVs to localize a

stationary radio source with ranging measurements and bearing measurements. The flight

test in this research provides good accuracy in a small search area (9m×9m); however,

17



it only works for a specially designed signal beacon. The UAV platforms used in these

experiments are also customized quadrotor helicopters, thus significantly increasing the

cost of the system. After that, most relevant literature focuses on using existing cellular

network infrastructure and algorithms.

After 2008, considerable research focus appeared on the fields of ground source local-

ization with RSS measurement. In [37], authors provide a new method to exploit the RSS

measurements. The UAV rotates once to make a bearing estimate, then flies to the direction

with the strongest transmit power and rotates again for a new bearing estimate. Instead of

using the maximum RSS over a single rotation, authors in [38] perform a correlation over

the RSS measured over a single rotation and the radiation pattern measured in an anechoic

chamber, thereby requiring shorter times to reach the transmitter. However, these control

strategies are challenging to design in practice, and they require the UAV to make some spe-

cific trajectories or maneuvers, which puts an additional latency on mission time or flight

time. In [39, 40], authors propose a method of tracking wild animals by attaching signal

beacons to them, then measuring RSS by implementing directional antennas to fixed-wing

UAVs to enable localization.

In [41], authors present a localization method based on RSS from terrestrial nodes when

UAVs serve as base stations; a specific path loss model is also proposed for range estimation

by considering height-dependent exponent and shadowing effect. Localization error versus

UAV altitudes, number of UAVs, and UAVs’ inter-distance are also studied with simula-

tions. In [42], an RSS-based UAV localization model has been proposed to jointly exploits

the UAV trajectory information and RSS measurements from multiple base stations. Simi-

lar research can be found in [43], where a localization scheme was developed for multiple

RF source positioning by using two UAVs equipped with multiple RSS sensors. The RSS

measurement subjected to each source was applied as an input for the developed Kalman

Filter. However, this model-based research only provides a theoretical basis without ex-

perimental verification. Overall, as RSS measurements usually significantly degrade with
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distance due to the increasing shadowing effect, the accuracy of RSS-based localization

methods is not guaranteed.

Time-based localization methods (e.g., ToA and TDoA) usually require a complex time

synchronization process. More specifically, TDoA measurements require synchronization

between base stations (i.e., UAVs), while ToA measurements require synchronization be-

tween base stations and targets [28]. Those requirements are challenging to achieve and

maintain in UAV networks. Researchers in [30] proposed a time synchronization-free ToA

method to locate the source position, and the synchronization error is compensated by em-

ploying a multivariate linear model. However, such a method requires at least four UAV

platforms and transceivers with excellent clock stability; otherwise, the localization error

will be unacceptable. In [44], the localization of a stationary emitter by two UAVs mea-

suring the ToA of the radio signal has been investigated; a trajectory control algorithm is

also provided to minimize the ToA estimation uncertainty. In [45], a scheme for ToA local-

ization using pseudo-range measurements from satellites with a single UAV is proposed.

However, its accuracy is unsatisfying. Besides, the possibility of indoor ToA localization

by using UAVs is studied in [46]. The results proved that the localization accuracy could be

improved with an increasing number of anchor nodes and optimal UAV locations. Overall,

ToA technology usually requires multiple UAV platforms and is more suitable in coopera-

tive scenarios, which may not be available in emergency scenarios.

TDoA localization utilizes the time delay between the emitter signals received at mul-

tiple UAVs. As a result, at least three UAV-mounted sensors are necessary to perform the

required hyperbola positioning. A detailed literature review could be found in [21, 47]. In

[48], an approach for UAV indoor navigation using a TDOA-based ultra-wideband (UWB)

indoor localization system is presented, a complex wireless clock synchronization method

is also provided to overcome the time offset between multi UAV limitations. The TDOA

localization of a stationary emitter by a swarm of UAVs is provided in [49], where a UAV

trajectory optimization method is applied. Besides, researchers in [50] performed target
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localization with a combination of TDoA measurements and RSS measurements, where

TDOA measurements are obtained from multiple moving sensors over time intervals along

a UAV flight path. A simple Least-Squares solution to determine target localization is de-

rived based on the TDOA measurements combined with known sensor locations. However,

the synchronization challenge is not considered. Therefore, the accuracy of time synchro-

nization in UAV platforms is still the bottleneck of ToA/TDoA localization techniques.

Localizing a target via DoA measurements is widely used previously in ground mobile

sensor networks and cellular networks. The ground targets’ position can be determined by

utilizing its one-dimensional DoA measurements (only the azimuth angle) measured at a

multi-antenna array with prior known locations. In UAV-based scenarios, the localization

of ground emitters can be obtained by analyzing the paired two-dimensional DoA mea-

surements (i.e., azimuth and elevation angles), measured by antenna arrays from the sky.

For example, a localization scheme is proposed in [51] by mounting multiple sensors on

a UAV swarm. In [52], a method for locating GPS jamming transmitters is proposed by

jointly using DoA and TDoA measurements collected by smart antennas mounted on mul-

tiple UAVs. Since the cost of multiple UAVs is prohibitive, performing localization with

a single UAV is more convenient and cost-effective. Some researchers choose to mount or

hang multi-antenna arrays on the bottom of the UAV; however, they suffer from the sig-

nificant payload and form factor constraints. In [53], a circular microphone array is hung

from the UAV with nylon cords of 1 m length. However, this method is only possible for

acoustic source localization. In [54], a linear array of 2 m length is mounted on a UAV, and

the localization is performed outdoors. Although the accuracy seems good, such architec-

ture design is hard to implement in practice. Other researchers focus on using the nested

array in UAV-based localization [55, 56], while the sensitivity and spatial resolution is not

satisfying due to limited array size.

In summary, DoA-based localization keeps a good balance between the accuracy and

the system complexity among all the localization metrics, without requirements for syn-
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chronization. These features lead to significant potential in UAV-based communication

networks to provide a solution for the power and payload constraints. In this thesis, we are

trying to improve the DoA estimation accuracy in ground users localization by exploiting

the benefits and mobility of the UAV networks. Instead of using a multi-antenna array,

which caused high power consumption and significant form factors, we provide a DoA

estimation method using a single-antenna device called the “virtual multi-antenna array”.

While the device is moving and continuously receiving signals, the DoA can be estimated

by analyzing the intercepted signals at several positions along the receiver’s trajectory.

In addition, the term “localization” in target scenarios with DoA measurements refers to

two different applications of source localization. The first application is to find the location

of a source from a sensor array’s point of view, where only the direction towards the source

can be estimated. This is equivalent to estimating the parameter θ from the far-field sensor

array model in chapter 3. The second application is to find the spatial location of a source in

a physical environment. The mapping from the spatial source location to the corresponding

DoA vector is unique, and the reverse is not true. This means that multiple DoA estimation

have to be taken to disambiguate the location of the source. In the rest of this thesis, the

term “localization” refers the first application only, i.e., only the direction of the source is

estimated.

1.4 Contributions and Outline of the Thesis

This thesis proceeds in Chapter 2 with a detailed channel characteristics analysis of the

ATG channel using ray-tracing simulations to determine whether the DoA-based metrics

are suitable for performing the DoA localization in UAV-based networks. Important fac-

tors corresponding to the DoA estimation accuracy, including the angular spread (AS) and

power-weighted mean DoA, are investigated to describe the channel’s spatial properties.

Our major contributions in this chapter are:

• In UAV-based communications, the angular spread at the UAV platform is very lim-
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ited; the weighted mean AOA and EOA are also close to the actual bearing angles

with respect to ground targets. Such channel characteristics are beneficial for apply-

ing DoA-based localization methods on UAV platforms.

• Contrary to conventional ground cellular channels, the angular spreads, and delay

spread at the MT are larger in LoS than NLoS situations, which could be explained

by the particular geometry of the ATG channels.

• The delay spread in LoS scenarios and NLoS scenarios vary substantially with in-

creasing UAV altitudes. In LoS scenarios, the delay spread shows a decreasing trend

with increasing UAV altitudes. On the contrary, in NLoS scenarios, the delay spread

tends to increase monotonically with the UAV.

Chapter 3 proceeds with the design and system model of the Virtual Multi-antenna Ar-

ray. Two algorithms are provided to eliminate the bias introduced by imperfect hardware.

A detailed observability analysis is also provided for improving its robustness by providing

solutions when the receiver positions are unknown. The whole system is proved to be feasi-

ble in UAV communications, consumer electronics, industrial IoTs, and other applications

with form factor constraints. Our major contributions in this chapter are:

• The concept for DoA estimation with the conventional array processing method and

the proposed virtual array method is explained in detail. The Main difficulties with

virtual array systems are discussed: 1) the relative position of the receiver needs to

be estimated with high accuracy; 2) phase distortions caused by the LO frequency

offset need to be addressed.

• Two methods are provided to compensate for the phase distortions due to the LO

frequency offset: the SAS method and the joint estimation method. Their advantages

and disadvantages are both presented.

• Receiver trajectory reconstruction with inertial sensors is realized by implementing
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a nonlinear Kalman filter. Constraints regarding the receiver movement (maximum

velocity, maximum trajectory size, etc.) are also discussed.

In Chapter 4, the proposed virtual array system is implemented on a software-defined

radio testbed to verify its feasibility in real-world scenarios. The proof of concept is de-

signed with common commercial electronics that contain significant hardware bias. In

addition, we use the nonlinear observability analysis method to design user-friendly trajec-

tories that are feasible for DoA estimation. In this chapter:

• A comprehensive nonlinear observability analysis is performed for the virtual array

system. Results show that the azimuth angle of arrival and the LO frequency off-

set can be estimated with linear trajectories if the movement contains accelerations.

Also, the azimuth angle can be estimated by measuring the accelerations.

• Extensive simulations are performed to confirm the theoretical observations provided

by the observability analysis.

• The proposed system is implemented on a software-defined radio that integrates off-

the-shelf components. Experiments are performed in an indoor multipath environ-

ment with designed trajectories. DoA estimations are realized by tracking the po-

sitions and accelerations of the receiver, which proves the feasibility of the virtual

array system.

In Chapter 5, we aim to implement the virtual array system in UAV-based commu-

nication networks. The original system (estimate azimuth angle only) expands to a high

dimension (estimate both azimuth angle and elevation angle); thus, we make necessary

adaptations for the corresponding signal model and the LO frequency offset compensa-

tion methods. Extensive simulations are then performed to investigate the effects of UAV

channels and UAV movements. The results show that the accuracy of DoA estimation in

UAV-based communications can be improved by using better LO quality configurations
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and shorter UAV flight times. In addition, high SNR and large UAV trajectory sizes also

help in providing better DoA estimation results.

Finally, the thesis is concluded with Chapter 6, where the major results of the previous

chapters are reminded. Some future work directions are also presented.
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CHAPTER 2

AIR-TO-GROUND CHANNEL CHARACTERISTICS

2.1 Motivation

In conventional localization methods, the DoA is usually estimated based on antenna mea-

surements with array processing algorithms (e.g., MUSIC, Beamforming). Nearly all of

these algorithms assume that the source signal arrives at UAV with a discrete, distinct an-

gle. Such assumption leads to a signal subspace of low rank, and the low-rank property

is exploited to find the impinging direction [34]. A more detailed discussion is given in

Chapter 3.

However, multipath propagation is common in real-world cellular networks, i.e., several

signal replicas will generally be incident on the receiver array. If the LoS connection exists

between the transmitter and receiver, most of the incident energy will likely concentrate in

a single plane wave (usually indicating the target DoA). When there is no LoS visibility or

weak LoS visibility, the received signals are mostly multipath components with different

reception angles and propagation delays. If the angle dispersion (i.e., the angular spread)

and delay dispersion (i.e., the delay spread) is severe, the channel will directly degrade

the antenna array correlation and cause large DoA estimation errors, as signals incident on

the receiving array can be seen as distributed sources emitting at different times [57]. In

addition, a large angular spread means that the multipath DoAs deviate significantly from

the power-weighted mean DoA; a small angular spread indicates that the multipath DoA

is concentrated around the power-weighted mean DoA. If the power-weighted mean DoA

is close to the actual bearing DoA, the channel can be considered suitable for DoA-based

localization [58].

Therefore, it is important to properly understand the propagation characteristics (es-
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pecially the spatial and temporal information) of the multipath components (MPCs). The

spread of MPCs in time and angular domains serves as an indicator for the effectiveness of

DoA-based localization methods. For this reason, geometry-based stochastic channel mod-

els have been extensively investigated in the literature for conventional cellular networks

in which a fixed base station (BS) communicates with a mobile terminal (MT). Since geo-

metric channel models inherently establish probabilistic relations between spatial locations

of the transmit (Tx), receive (Rx), and scatterers to model wireless propagation, it is vital

to investigate the distributions of the angular spread and delay spread to gain insights into

the nature of the target channel model [59].

In conventional cellular infrastructures, the BS antennas are usually mounted above

signal towers or rooftops, thereby reducing the near-field scattering. This propagation en-

vironment leads to many investigations into 3D channel characterization and modeling. For

example, azimuth angles at MTs in urban city scenarios are modeled as lognormal distribu-

tion; elevation angles are modeled as laplacian distribution in [60]. Subsequent investiga-

tions have derived the connection between link performance and angular/delay spreads in

different frequencies and environments, e.g., COST2100 [61], WINNER II [62] and 3GPP

[63]. In addition, spatial parameters in 3D models are defined, including the root-mean-

square (RMS) delay spread, the RMS azimuth spread of arrival/departure (ASA/ASD), and

the RMS elevation spread of arrival/departure (ESA/ESD). They are applied to describe the

power dispersion in the azimuth domain of arrival/departure (AOA/AOD) and power dis-

persion in the elevation domain of the arrival/departure (EOA/EOD) domain, respectively.

However, only limited research has thoroughly investigated the spatial and temporal

properties in UAV channels, especially from a localization perspective. The dynamic of

the angular spread for a UAV platform and the effect of the surrounding environments also

require more in-depth investigation to ensure the effectiveness of DoA-based approaches

in localization and communication. The delay spread should also be considered, as large

delay spreads usually imply complex multipath environments that make the localization
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Figure 2.1: Defination of azimuth and elevation

more challenging. Since installing channel sounders on UAVs is very difficult due to on-

board space constraints and payload limitations, we conducted extensive ray tracing (RT)

simulations to study the ATG channel characteristics of an urban city environment. The

ground users serve as mobile terminals (MTs) in our simulation configurations, and the

UAV serves as an aerial receiver. The UAV aims to localize MTs based on their emitted

signal. When the carrier frequency does not change (which is our case), the angular spreads

in the uplink and downlink are equivalent due to the channel reciprocity [64]. Therefore,

although the signal travels from MT to UAV, the channel can still be referred to as the ATG

channel.

Conventions: In this section, azimuth is defined as the angle of the projection of the

vector in the xy-plane w.r.t. the x-axis, and elevation is the angle between the vector and

the xy-plane [60], as shown in Figure 2.1.

2.2 Simulation Setup

The RT is a powerful map-based approach to predict the channel characteristics for a given

environment model and deployment configuration, which has been applied for field pre-

diction in indoor and urban environments since the early 1990s [65]. The RT simulator

applied in this thesis is CloudRT, a 3D ray-tracing software developed by Beijing Jiaotong
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University, which can simulate propagation rays from any arbitrary and reasonable trans-

mitter and receiver positions [66]. Different rays that correspond to different MPCs are

traced from the transmitter to the receiver. Each MPC is characterized by several param-

eters: time of arrival; real part of the field intensity; imaginary part of the field intensity;

angular of arrival; angular of departure; and type of the MPC (including the LoS rays, first

and second-order reflections, diffracted rays along building edges, and diffuse scatterings

from rough surfaces). The validation and calibration of the CloudRT simulator has been

provided in [67, 68, 69], where the parameters of the simulated MPCs are compared with

those of the corresponding MPCs in the channel measurements.

The UAV-communication environment considered in this chapter is a typical 3D urban

city, with 137 buildings under different heights going from 5 m to 70 m, as shown in Figure

2.2a. Its specifications meets the statistical standards of typical urban city model proposed

by the ITU, including the built-up land area ratio, the number of buildings per unit area, and

the buildings heights distribution [70]. The total dimensions of the 3D environment model

are 650 m by 500, with 250 ground mobile terminals (MT) distributed uniformly over the

whole map, and the MT height is set to 2 m above ground. The UAV is equipped with

a downwards-facing patch antenna, and MTs are equipped with vertically-oriented dipole

antennas. It is worth mentioning that the tilts of MTs antenna are randomly distributed but

deviate no more than ± 45 ◦ from the vertical direction. The UAV and MT antenna are

vertically polarized with 0 dBi gain, and the transmission power is set to 0 dBm. The sim-

ulation is conducted by fixing the MT while changing the position of the UAV along four

linear trajectories. Each trajectory has a length of 450 m and contains 50 UAV positions,

with a resolution of 9 m. Figure 2.2b demonstrates the traced rays of a snapshot between a

single MT position and a single UAV position.

Considering that Long-Term Evolution (LTE) is a reliable technology to support the

required link performance of UAV networks [5], we set the carrier frequency at 2.6 GHz,

corresponding to the LTE carrier frequencies. As the ATG channel characteristics are re-
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lated to the altitude of the UAV, simulations are conducted at 60 m, 80m, 100 m, 120 m,

and 140m, respectively. For each snapshot, rays are collected until up to 250 dB loss, and

then a channel impulse response (CIR) is calculated by the software, including received

power strength, phase, propagation time, angle of arrival, and angle of departure (for both

azimuth and elevation). Also, the direct path between the UAV and MTs can be obstructed

by obstacles; thus, we have a collection of the LoS and the NLoS cases. For example, when

the UAV altitude in the simulation is set to 100 m, we collected 250 × 50 × 4 channels in

total, containing 28626 LoS cases and 21374 NLoS cases.
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(a) Ray-tracing simulation scenarios

(b) One example snapshot from ray-tracing simulations

Figure 2.2: The Ray-tracing simulations. (a) The scenario contains 4 linear UAV trajec-
tories, and 250 MTs randomly distributed on the ground. (b) Traced rays of a snapshot in
UAV-based communication. The solid red line represents the line-of-sight path, the blue
lines represent all the multipath components.
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2.3 Derivation of Angular/Delay spread

In this simulation, the ray-tracing results provide detailed information of multipath compo-

nents between the UAV and the MT. The CIR calculated by the software is expressed as:

h (τ,ϕ, θ) =

Nmpc!

k=1

αke
jϕk · δ (τ − τk) δ (φAoD − φAoD,k) δ (θEoD − θEoD,k)

· δ (φAoA − φAoA,k) δ (θEoA − θEoA,k)

(2.1)

where Nmpc is the number of generated paths, αke
jϕk is the complex gain of ray k while

ϕk denotes for the phase; τ is the excess delay; φAoA,AoD and θEoA,EoD are the azimuth and

elevation angle of azimuth/departure. Spatial parameters including ASD, ESD, ASA, and

ESA can be extracted from the simulated multipath information. As angular spreads are

significant indicators related to the DoA estimation accuracy, they are calculated following

the definition in [63]. For example, the RMS azimuth spread at arrival, ASA, quantifies

angular dispersion in the omnidirectional azimuth plane, computed as:

σASA =

"#N
k=1 [mod ((θAoA,k − µm, 2π))]

2 · α2
k#N

l=1 α
2
k

(2.2)

where µm is the power-weighted mean AOA and calculated by:

µm =

"#N
k=1 θAoA,k · α2

k#N
l=1 α

2
k

(2.3)

and ESA is defined similarly by replacing the azimuth angle θAoA with the elevation angle

θEoA.

The RMS delay spread is frequently used to characterize the time dispersion of the

channel. It is a vital parameter for the design of wireless transceivers and localization

applications, including to select transmission bandwidth, digital modulation, equalization
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methods, and ToA estimation [28]. Generally speaking, the Power Delay Profile (PDP)

gives the distribution of signal power received over a multipath channel as a function of

propagation delays. The derivation of RMS delay spread is defined as the square root of

the second central moment of the PDP:

τRMS =

"#N
k=1 (τk − τm)

2 · α2
k#N

l=1 α
2
k

(2.4)

where the mean excess delay τm is defined as the first moment of the PDP:

τm =

"#N
k=1 τk · α2

k#N
l=1 α

2
k

(2.5)

In summary, angular spread and delay spread are measures of the multipath richness of

a communications channel, and they denote the spatial/temporal dispersion of propagated

signals [71]. Based on the definition in equation (2.2) and (2.4), their value depends on

the ratio between the power of the strongest MPC (e.g., the LoS path) and the power of

other MPCs. In principle, when the strongest path is dominant among the received power,

the angular/delay spread will be small; when other scattered MPCs make a considerable

contribution to the total received power, and their angles differ from the LoS path, the

angular spread will be significant.

2.4 Results and Discussions

In this section, we calculate the angular spread, the mean angle, the delay spread and the

mean excess delay from the simulated data. Their variation with the LoS visibility, the UAV

altitude, and the UAV-MT distance is also analyzed with respect to the unique propagation

environment of the ATG channel. By using statistical modeling methods, the analysis and

results for angular and delay spread are presented below.
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2.4.1 Distribution of ASA/ESA

As presented in Section 2.2, we collected 50000 snapshots for ASA and ESA at a given

UAV altitude. Here we take trajectories at 100 m as an illustrative example. The probability

density function (PDF) of the angular spreads in the LoS scenario and the NLoS scenario

are plotted in Figure 2.3. The PDF function is used to specify the probability of an angular

spread falling within a particular range of values.

(a) Empirical distribution of ASA in LoS (b) Empirical distribution of ASA in NLoS

(c) Empirical distribution of ESA in LoS (d) Empirical distribution of ESA in NLoS

Figure 2.3: Distributions of ASA/ESA in LoS scenarios and NLoS scenarios. The super-
imposed red curves are lognormal distributions used to model the PDF.
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To better characterize the distribution of angular spreads at the UAV, we have used the

Akaike information criterion (AIC) method in [64] to evaluate the candidate distribution

functions in fitting the probability histograms, including Normal, Lognormal, Rician, and

weibull, etc. The AIC results have shown that the Lognormal distribution is the most ap-

propriate distribution to describe the PDF of ASA and ESA, where the same observations

are provided in [64]. For example, in LoS scenarios, the PDF of the ASA can be mathe-

matically expressed by:

fASA (x) =
1√

2πxσASA

exp

$
− (ln x− µASA)

2

2σ2
ASA

%
(2.6)

where µASA and σASA are the mean and standard deviation (STD) of the fitting PDF, re-

spectively. The fitting of ESA is similar by replacing parameters µASA, σASA with µESA,

σESA. The value of µ and σ for ASA/ESA spreads in both LoS and NLoS scenarios are

provided in Table 2.1.

Parameters
ASA ESA

LoS NLoS LoS NLoS
µ 0.42 0.52 0.15 0.24
σ 1.01 1.29 0.68 0.91

Table 2.1: Lognormal Distribution Modeling Parameters

By comparing the PDF distribution and the established statistical model, the spatial

multipath propagation characteristics can be observed as follows.

• The first observation from Figure 2.3 is that the ESA and ASA are distributed over a

narrow range of less than 10◦ (with an average angular spread around 2.5◦), for both

LoS and NLoS scenarios. These magnitudes are much smaller than the ESA and

ASA in conventional 3D cellular channels, e.g., average ASA around 9◦ and average

ESA around 15◦ in [64]. Such observations indicate that the spatial dispersion of

received power at the UAV side is very limited, and all the multipath components

arrived at the UAV with similar incident angles. Therefore, the power-weight mean
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AoA/EoA is a good representation of the real bearing to the ground MT.

• In Figure 2.3, the histograms for both ASA and ESA are steeper in the LoS scenarios

than the NLoS scenarios. The µ and σ in LoS are also smaller than NLoS. Therefore,

the angular spread in NLoS scenarios tends to be slightly larger than in the LoS sce-

narios. This phenomenon is expected and can be explained by the fundamentals of

angular spread: When scattered MPCs contribute considerably to the total received

power, the angular spread will be large; When the LoS path is dominant among the

received power, the angular spread will be small. In NLoS scenarios where obsta-

cles have blocked the LoS path, the direct signal will be attenuated; Thus, MPCs

will make more significant contributions in the total received power, caused a bigger

angular spread in both azimuth and elevation domain.

• For both the LoS scenarios and the NLoS scenarios, the histograms of ESA are

steeper than the ASA. The µ and σ of ESA is also smaller than the ASA, under

the same LoS visibility. In other words, the dispersion of ASA is more severe than

ESA. This is because of the lack of scatterers in the air and the MPCs all reach the

UAV from the ground, as shown in Figure 2.2b, which limited the elevation angle at

the UAV to (0◦, 180◦). On the other hand, the azimuth angle of MPCs at the UAV

may come from any direction among (0◦, 360◦), depending on the distribution of

ground scatterers. As a result, the power can spread in a broader range in the azimuth

domain than the elevation, causing a bigger angular spread for ASA.

The analysis above demonstrates that the angular spread at the UAV is minimal, which

means most of the received power at the UAV comes from approximately the same direc-

tion. Such a direction is usually approximated by the power-weighted average angle of

arrival (AOA and EOA) in Eq. (2.3). If these approximate directions are close to the true

bearing directions, the DoA-based estimation usually provides accurate localization results

[58]. Therefore, the cumulative distribution functions (CDFs) of variations between the
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mean angle and the true angle are provided in Figure 2.4. It can be seen from the figure that

the mean AOA and EOA are a good representation of the real bearing to the ground user.

As a result, the DoA-based estimation has a great potential in UAV-based cellular net-

works to localize ground targets since the estimated DoA should be close to the true DoA.

Also, beamforming (or highly directional antennas) can be a simple strategy to achieve ap-

propriate link performance between the UAV and MTs, focusing power towards the target

terminal.

(a) (b)

Figure 2.4: Mean AOA and EOA relative to the true bearing angle

2.4.2 ASA/ESA Variation with UAV Altitude

As introduced earlier, the spatial characteristic of the ATG channel is a function of UAV

altitudes [1]. To investigate the correlation between the ASA/ESA and the UAV altitudes,

we first calculate the median value of the collected ASA/ESA, under different UAV alti-

tudes and LoS visibility. To highlight their variations with altitudes, we use relative me-

dian values rather than absolute values, which is done by considering the median value of
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ASA/ESA at 60 m as a reference and calculating median values relative to it. The angular

spread at 60 m is thus assumed to be zero. Figure 2.5 shows the relative variation of these

median angular spreads at UAV altitudes from 60 m to 140 m.

Figure 2.5: ASA/ESA Variation with UAV Altitude

It can be seen from the figure that the ASA and ESA in LoS scenarios show a decreasing

trend with an increasing UAV height, and this trend is not observable in NLoS scenarios.

The fluctuation of angular spreads in the LoS scenario can be explained as follows: When

the UAV serves at low altitudes, The LoS path is dominant and the MPCs reflected or scat-

tered from surrounding scatterers also contribute considerable power to the total received

signal. When the UAV flies higher above the ground, both the received power through the

LoS path and MPC paths decrease due to a larger path loss [64]. However, the power of

the MPC may decay more quickly and significantly than the LoS path. Therefore, as the

altitude of the UAV increases, the portion of the LoS power among total received power at

the UAV increases monotonically, caused the angular spreads to drop. In the case of NLoS

scenarios, the strongest MPC has a higher impact on the angular spread due to the missing

dominating LOS, and the incident power of MPCs also decreased in higher UAV altitudes.
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However, more scatterers are also observed for the UAV base station, and they provide rich

multipath. As a result, the portion of the strongest MPC power in the total received power

may remain roughly the same; thus, the angular spread variation is not apparent.

2.4.3 Distribution of ASD/ESD

Unlike UAV base stations that serve in altitudes up to hundreds of meters, the antenna

height of ground MTs is expected to be much lower than the surrounding scatterers, e.g.,

buildings, walls, and trees, especially in an urban city scenario. Therefore, the distribution

features for both ASD and ESD may be unique. The PDF of azimuth and elevation spread

with and without LoS connection is calculated and shown in Figure 2.6.

It can be clearly observed from the figure that the PDF of ASD and ESD has different

features compared with ASA and ESA. The difference between the LoS scenarios and

the NLoS scenarios is also apparent. Similar to subsection 2.4.1, we have used the AIC

method to find the most appropriate distribution in fitting the histograms of ASD and ESD.

The results have shown that the Normal distribution is suitable to model the PDF of ASD

and ESD in LoS scenarios. Since all spread values in our simulations are positive, we use

the truncated normal distribution in [72] to model the distribution of ASD and ESD in LoS

scenarios of the urban city channel:

fASDLoS
(x) =

1

σ

φ(x−µ
σ

)

1− Φ(−µ
σ
)

for x > 0 (2.7)

where φ(ξ) is the probability density function of the standard normal distribution, defined

as:

φ(ξ) =
1√
2π

exp(−1

2
ξ2) (2.8)

and Φ(·) is its cumulative distribution function, defined as:

Φ(χ) =
1

2
(1 + erf(

χ√
2
)) (2.9)
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(a) Empirical distribution of ASD in LoS (b) Empirical distribution of ASD in NLoS

(c) Empirical distribution of ESD in LoS (d) Empirical distribution of ESD in NLoS

Figure 2.6: Distributions of ASD/ESD in LoS scenarios and NLoS scenarios

where the value of these parameters are provided in Table 2.2.

ASD in LoS (◦) ESD in LoS (◦)
µ 86.87 30.56
σ 22.76 9.18

Table 2.2: Truncated normal distribution in LoS scenarios

With similar methods, the Nakagami model is found suitable to model the PDF of ASD

and ESD in NLoS scenarios. The general form of the PDF expressed as:

fASDNLoS
(x) =

2mm

Γ (m)Ωm
x2m−1exp

&
−m

Ω
x2
'

(2.10)
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where m is a shape parameter, Γ(m) is the Gamma function and Ω controls the spread of

the distribution. These two parameters are calculated as:

m =
(E [X2])

2

V ar [X2]

Ω = E
(
X2

)
(2.11)

where E denotes the expectation and V ar denotes the variance. Values of m and Ω for the

PDF of ASD and ESD in NLoS scenarios are provided in Table 2.3.

ASD in NLoS (◦) ESD in NLoS (◦)
m 0.58 0.65
Ω 4332.69 483.76

Table 2.3: Distribution parameters for ASD and ESD

By comparing the PDF distribution and the established statistical model, the following

observations can be made:

• For both LoS and NLoS scenarios, the average value of the ASD is obviously larger

than the ESD. Therefore, the power dispersion in the azimuth domain is more severe

than the elevation domain, where similar results are also observed for ASA and ESA.

The reason behind this observation is straightforward: in the ATG channel, the el-

evation angle for UAV and MT mostly depends on the UAV altitudes. Instead, the

azimuth angle depends on the distribution of local scatterers, which potentially al-

lows MPCs to arrive at any azimuth angle. Therefore, the received power is possible

to spread over a larger range in the azimuth domain.

• The difference between the angular spread in LoS scenarios and NLoS scenarios is

clear: most angular spread in the LoS scenarios is larger than the NLoS scenarios

for ASD and ESD. The CDF of angular spreads is provided in Figure 2.9. It can

be seen that the median value of ESD is around 32◦ in LoS scenarios and only 18◦

in NLoS scenarios. Also, the median value of ASD is around 85◦ in LoS scenarios
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and only 46◦ in NLoS scenarios. Such a phenomenon is quite interesting since, in

typical ground channels, the angular spreads in NLOS are usually larger than in LOS

[60]. The physical explanation for this counter-intuitive result is explained in the

following.

Figure 2.7: CDF of ASD and ESD

The angular spread is the metric to characterize the energy spread of the incoming sig-

nal in the spatial domain around its mean direction; it is not concerned with the absolute

amount of incident power, but the angular distribution [64]. In traditional ground com-

munications, the LoS path contains the largest power when compared with other scattered

paths. Therefore, the mean AoD is approximately equal to the angle of the LoS path, thus

caused low angular spreads. However, this is not the case for ATG channels. We isolated

a representative example from our simulation database, then plot local scatterers and mul-

tipath rays. Figure 2.8a and Figure 2.8b shows the multipath components (MPCs) of two

snapshots for two successive UAV locations, one NLoS and one LoS. The LoS path in

both figures is shown in red, while the green lines indicate other MPCs. Figure 2.8c and
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(a) Traced Rays in NLOS (b) Traced Rays in LOS

(c) AoD Distribution in NLOS (d) AoD Distribution in LOS

Figure 2.8: Traced Rays and AoD Distribution. In NLOS, the multipath concentrate in a
close range, caused a small azimuth spread. In LOS, the multipath and LOS path arrived
with different azimuth angle, caused a larger azimuth spread [73].
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Figure 2.8d plots the azimuth angle and received power of MPC paths in an 2D polar grid

(angle/power), for these two UAV positions.

Our explanation below focuses on the reason that caused the azimuth angular spreads

at the MT higher in LoS condition than NLoS, and a similar argument can be made for

elevation spreads. In the NLoS snapshot, it can be seen that most of the strong multipath

are reflected from the buildings located at the west side of the MT, while there is no LoS

path between the UAV and the MT. Therefore, the mean AOA angle is roughly the direction

of the building (west). The azimuth spreads will be relatively small since all strong paths

come from roughly the same azimuth angle. In the LoS snapshot, there are two major

contributions in the AOA domain: 1) the LoS path, with an AOA angle at around 330◦,

directly from the UAV to the MT, and 2) the multipath components, with a mean AOA

angle at around 120◦. The new mean AOA angle will be somewhere between these two

major contributions, near 30◦ (the power of ground scattering paths is relatively small in

this case). The azimuth spreads will then be higher since the power in the AOA domain is

spread due to those two components.

2.4.4 ASD/ESD Variation with UAV Altitude

The distribution of spatial angular spreads at the MT is also affected by the UAV altitude.

Therefore, we calculate the median value of the collected ASD/ESD under different UAV

altitudes. Figure 2.9 shows the relative variation of these median angular spreads with

respect to the value at 60 m, similar to the subsection 2.4.2. The median ASD increased up

to 8◦ between altitudes in the LOS scenarios, while the ESD increased to 4◦. In the NLoS

scenarios, it can be seen that the difference in median ASD spread is up to 14◦, while ESD

values also increase by 4◦. In summary, the value of ASD and ESD increases monotonically

with the UAV altitudes for both LOS and NLOS scenarios. Also, the increase in ASD is

more significant than ESD.

This behavior can be explained as follows. The existing literature has clearly shown
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Figure 2.9: ASD/ESD Variation with UAV Altitude

that the link between ground MTs and UAVs has a higher probability of LoS visibility

[19], due to fewer obstacles at higher altitudes. Additionally, when the UAV is at higher

altitudes, more scatterers between the MT and the UAV are visible. Therefore, when the

altitudes of UAV increases in a reasonable range, two things may happen: 1) the snapshot

changes from NLOS to LOS; 2) the snapshot holds their original LOS visibility, with mew

MPCs appear between the MT and the UAV.

In the first case, similar to subsection 2.4.3, most of the MPCs are came from roughly

the same direction, opposite the UAV, causing a small AOA spread. When the LOS path

appears at a higher UAV altitude, the received power is contributed by two major clus-

ters, the power of the LOS path and the power of scattering paths. Therefore, the AOA

spread at the MT gets higher since the power spreads in the angular domain. In the second

case, the visibility of the LOS path does not change, and some MPCs may vanish due to

path loss. However, there will be new MPCs emerging between the UAV and MT. Those

multipath usually come from border directions due to new scatterers (which is different

from ASA/ESA that MPCs arriving at similar angles), resulting in increased AOA spreads.
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Therefore, the value of ASD/ESD increases monotonically with the UAV altitudes for both

LOS and NLOS scenarios. Again, due to limited scatterers in the air, the power dispersion

in the azimuth domain is also more significant.

2.4.5 Delay spread in ATG channel

To investigate temporal features that characterize the time dispersive nature of the ATG

channel, the RMS delay spread of the urban city model under different UAV altitudes is

calculated from the simulation results. Figure 2.10 shows the CDF distribution of the delay

spread for both LoS and NLoS cases. The subfigure at the bottom right shows the median

value of delay spread as a function of UAV altitudes. As can be seen, there is a difference

between the distributions of the delay spreads in LoS and NLoS scenarios. Up to 90% of

the cases, the delay spreads are less than 21.5 ns for NLoS and 25 ns for LOS scenarios,

respectively. Therefore, the delay spread in LOS scenarios is slightly higher than in NLOS

scenarios compared to conventional ground channels. The second observation is, in LoS

and NLoS scenarios, the delay spread vary substantially with increasing UAV altitudes. In

LoS scenarios, the delay spread shows a decreasing trend with increasing UAV altitudes,

from 17 ns at 60 m to 15.7 ns at 140 m. On the contrary, in the NLoS environment, the

delay spread tends to increase monotonically with increasing UAV altitudes, from 12.6 ns

at 60 m to 14.7 ns at 140 m.

The first observation can be explained by the same phenomenon as explained in subsec-

tion 2.4.3. In the LoS environment, the delay spread is pretty high since the received power

has two main contributions: the LoS path and the MPCs. The MPCs arrive at the receiver

with a longer propagation time, so the total received power dispersed in the time domain,

resulting in a high delay spread. In the NLoS environment, most strong MPCs come from

close clusters, causing a decreasing delay spread due to limited power dispersion. As a

result, at a reasonable UAV altitude, the delay spread of the ATG channel in LoS scenarios

is larger than the delay spread in NLoS scenarios.
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(a) CDF of delay spread in LoS

(b) CDF of delay spread in NLoS

Figure 2.10: CDF of delay spread in both LoS and NLoS scenarios, and the gray dash line
marks the median value of delay spread. The subfigure highlights the variation of these
median value as a function of UAV altitudes.

The second observation is caused by the particular geometry of the ATG channels. In

LoS scenarios, both LoS power and MPC power are attenuated severely due to the higher

path loss at higher UAV altitude. However, the energy loss of the MPC is more significant
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compared to the LoS path. Consequently, the portion of the power from multipath in the

total received power decreased, the LoS component is getting more dominant, leading to

a reduction in delay spread. In NLoS scenarios, the delay spread increases as UAV height

increases since it becomes visible to more scattering objects at greater altitudes. Although

all MPCs suffer from high path loss, the emerging multipath still contributes a significant

amount of energy. Therefore, the portion of scattered power in the total received power

increased, resulting in a higher delay spread.

Noted that the delay spread above corresponds to measurements made with infinite

bandwidth (i.e. each received ray corresponding to a perfect impulse in the time domain).

Since the use of a finite bandwidth in real-world scenarios may introduces some variability

into the measured delay profile, we also compute the delay spread with a finite bandwidth

(for 30 MHz and 100MHz) and displayed in Figure 2.11.

(a) (b)

Figure 2.11: CDF of delay spread with a finite bandwidth

Figure 2.11 shows that in LoS scenarios, the delay spreads with a finite bandwidth

slightly increases than the infinite bandwidth. The median delay spread varies from 16.04

ns at infinite bandwidth to 18.92 ns at 30 MHz. This can be explained by the fact that

the finite bandwidth leads to limited time resolution. Although we see a slight increase
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in the delay spread, this increase remains rather limited. In NLoS scenarios, the delay

spreads with a finite bandwidth does not differ significantly in both their shape and value.

In addition, the delay spreads in LoS scenarios are still larger than the delay spreads in

NLoS scenarios.

2.4.6 Angular/Delay spread versus UAV-MT distance

In conventional cellular networks, the dependence of angular spread and delay spread on

BS-MT distances is well studied in the literature [74, 75, 76]. For example, the delay

spreads vary monotonically with increasing link distance in urban microcells [74]. Mo-

tivated by these observations, we have investigated the correlation between angular/delay

spread on UAV-MT distances. As mentioned in section 2.2, a total of 50000 snapshots have

been collected for a given UAV altitude. Here we take the UAV altitude at 100 m as an ex-

ample: the UAV-MT Euclidean distance varies from 112 m to 644 m. First, we collect the

snapshots under different UAV-MT distances from 120 m to 630 m, with a resolution of 30

m. For both LoS and NLoS scenarios, a total of 18 clusters are created, and all snapshots

in each cluster have the same propagation distance. There is a minimum of 20 snapshots in

each cluster to avoid statistic bias. Next, we calculate the absolute median value of angular

and delay spread for each cluster. The variations with UAV-MT distance, for both LoS and

NLoS scenarios, are plotted in Figure 2.12.

It can be seen from the figure that all curves behave randomly with increasing UAV-MT

distance. Therefore, although a similar consistent correlation between the angular/delay

spread and the UAV-MT distance (or large scale fading such as path loss) is expected, our

simulation results suggest that this correlation in the ATG channel may not be straightfor-

ward as found in ground channels. In other words, the dependence of the angular/delay

spread on the UAV-MT distance is not clear. Moreover, angular spreads at the arrival vary

slightly within the range of [0.5◦ ∼ 3.5◦], where angular spreads at the departure vary much

more significantly, up to ±20◦. These observations are analyzed in the following.
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(a) ASA Variation with Distance (b) ESA Variation with Distance

(c) ASD Variation with Distance (d) ESD Variation with Distance

(e) Delay Spread Variation with Distance

Figure 2.12: Median value of angular/delay spreads with a function of UAV-MT Distance.

For a fixed UAV altitude, a shorter UAV-MT distance usually indicates a higher re-

ceived power intensity due to limited path loss. However, the value of angular spread and
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(a) Ray Distribution under near UAV-MT distance (269.7 m)

(b) Ray Distribution under medium UAV-MT distance (403.8 m)

(c) Ray Distribution under far UAV-MT distance (487.6 m)

Figure 2.13: The change of ray distribution with increasing UAV-MT distance, where the
red solid circle represents the MT and the yellow solid circle represents the UAV. The solid
red line is the simulated line-of-sight path and the blue lines are multipath components
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delay spread represents the angular/delay dispersion and multipath richness of the channel,

which is not concerned with the absolute amount of incident power; The incident angle and

propagation time of individual MPCs are not distance-dependent only but rely on many

complex factors, including the position of scatterers, the height of walls, etc. Thus, the

power distribution of the total received signal in the angular and time domain is dominated

by the propagation environment, and a strong fluctuation of angular spread can occur even

for very similar distances. Therefore, it is difficult to depict the tendency of their variations

with increasing UAV-MT distance.

To explain this observation, Figure 2.13 displayed the simulated snapshot for a fixed

MT position with UAV-MT distance at 269.7 m, 403.8 m and 487.6 m, respectively. When

the UAV serves at a near position, as shown in Figure 2.13a, it can be seen that the multipath

components are received from a broad angular range: a significant amount of MPC is gen-

erated due to scattering from the adjacent wall and ground surface, at the south side of the

transceiver, where some extra MPCs are contributed by the buildings on the north side of

the MT. Since the power of LoS is dominating, the portion of the power from the scattered

MPCs in the total received power is limited, resulting in a relatively small angular spread

at (ASD, ESD) = (95.56◦, 28.85◦). When the UAV serves at 403.8m, as shown in Figure

2.13b, the power arrival through the direct ray decreased due to a larger path loss. Besides,

MPCs provided by buildings on the south side are blocked, and only a handful of paths re-

flected from scatterers on the north side of the MT. These MPCs arrive with less divergent

azimuth directions and create a strong cluster, which spans the power profile into two main

parts among the azimuth domain. Therefore, the MPCs gain a higher relative impact in the

total received power, which caused the ASD to increase to 105.57◦. On the other hand, due

to the distinctive features of the ATG channel geometry, the elevation angle of the MPCs

becomes increasingly close to that of the LoS ray with increasing UAV-MT distance. As

a result, the elevation spread ASD behaved differently and kept a similar value at 28.51◦.

While the UAV-MT distance increases to 487.6 m, the MPCs path becomes longer relative
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to the LOS and is attenuated more, which provides less contribution for the total power and

makes the angular spread drop to (ASD, ESD) = (101.42◦, 14.63◦). Therefore, the variation

of angular/delay spread with increasing distance is significantly affected by local scatterers.

Therefore, the correlation between the spatial/temporal dispersion and UAV-MT distance

does not show a systematic trend.

2.5 Conclusion

In this chapter, we performed a detailed investigation of the ATG channel characteristics

for UAV-based communication networks. To study the spatial and temporal properties

of the urban city environment, we modeled a UAV-based wireless channel by using ray-

tracing simulation tools. We focus on the parameters including angular spreads and delay

spreads (at the UAV and the MT) as functions of LoS visibility, UAV altitudes, and UAV-

MT distances. Some interesting observations are found and are summarized as follows:

1) In urban environments, the angular spread at the UAV is minimal. Also, the weighted

mean AOA and EOA are a good representation of the real bearing to the ground user.

Therefore, DoA-based estimation is suitable for UAVs to locate ground targets since

the estimated DoA is close to the true DoA due to small angular spreads.

2) The PDF of ASA and ESA can be modeled with Lognormal distributions for both

LoS and NLoS scenarios. Also, the value of ASA and ESA in NLoS scenarios is

slightly larger than in the LoS scenarios.

3) In LoS scenarios, the value of ASA and ESA drops with increasing UAV altitudes,

while this trend is not found in NLoS scenarios.

4) Contrary to conventional ground cellular channels, the angular spreads and delay

spread at the MT are larger in LoS than NLoS situations, which could be explained

by the particular geometry of the ATG channels.
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5) The PDF of ASD and ESD in LoS scenarios can be modeled with Truncated nor-

mal distributions, while the ASD and ESD in NLoS scenarios can be modeled with

Nakagami distributions.

6) Contrary to conventional ground cellular channels, the angular spreads and delay

spread at the MT are larger in LoS than NLoS situations, which could be explained

by the particular geometry of the ATG channels.

7) The delay spread in LoS scenarios and NLoS scenarios vary substantially with in-

creasing UAV altitudes. In LoS scenarios, the delay spread shows a decreasing trend

with increasing UAV altitudes. On the contrary, in NLoS scenarios, the delay spread

tends to increase monotonically with the UAV altitudes.

8) The dependence of the angular/delay spread on the UAV-MT distance does not show

a particular trend since the multipath distribution is significantly affected by local

scatterers.

Based on these observations, we consider the DoA estimation has excellent potential

in UAV-based localization. The next chapter proposes a novel DoA-based localization

method without the requirements for multiple antenna arrays. This approach is suitable for

platforms with significant form factor constraints, including UAVs, autonomous cars, and

portable electronic devices.
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CHAPTER 3

VIRTUAL ANTENNA ARRAY SYSTEM FOR DOA ESTIMATION

Estimating the DoAs of impinging wavefronts based on the set of signals received at an

antenna array is important in fields such as radar, sonar, electronic surveillance, and wire-

less communication. Emitter localization based on DoA estimates usually provides good

accuracy when the line-of-sight (LoS) visibility is guaranteed [34]. It also has good po-

tential for feasibility without time synchronization requirements among transceivers [77].

Chapter 2 has shown that the angular spreads at aerial base stations are negligible, which is

promising for applying DoA-based approaches to localize ground users.

Despite numerous attractive applications, accurate DoA estimation is challenging to

realize with commodity mobile RF devices due to its requirement for large antenna arrays.

In principle, an antenna array consists of a group of similar antennas that are spaced in a

regular manner, where the element spacing is usually smaller than half a wavelength [28].

While the resolution of an antenna array increases with the number of antenna elements,

it also leads to higher cost and physical size [78]. In addition, each antenna in an antenna

array needs its own RF front-end and analog-to-digital converters (ADC), which increases

the power consumption of the overall device. However, most commercial mobile devices

are installed with only a limited number of antennas due to form factor limitations, such as

wearable customer electronics, mobile phones, and UAVs, making it impractical to carry

heavy antenna arrays and derive precise phase measurements directly [51, 79].

In this thesis, we propose a novel DoA estimation method called “virtual antenna ar-

ray”. Compared with conventional direction-finding systems relying on physical multi-

antenna arrays, this method only utilizes a single-antenna device to estimate DoA. The

system assumes that an unknown source periodically broadcasts an RF signal while the

receiver antenna moves to various locations and measures the radio signal at those loca-
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tions. Hence a virtual antenna array is implicitly created, and the DoA can be estimated

by analyzing the phase differences along the receiver’s trajectory. A comparison between

the conventional antenna array and the proposed virtual antenna array is depicted in Figure

3.1.

(a)

(b)

Figure 3.1: Comparison between Conventional Array and Virtual Array

The difficulty of the virtual array system is twofold: 1) the relative positions of the

receiver need to be estimated with high accuracy (a fraction of a wavelength) to know
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the location of the virtual antenna elements; 2) the cumulative phase distortions caused

by imperfect oscillators in transmitters and receivers need to be addressed, i.e., the local

oscillator (LO) frequency offset [80]. Detailed explanations and solutions are provided in

Section 3.2.

The concept of virtual arrays has many similarities with Synthetic Aperture Radar

(SAR). The SAR transmitters are mounted on a moving platform, such as an aircraft, or

a satellite, where a static receiver uses the received signal to reconstruct the radar image

of the illuminated environment [81, 82]. The direct signal between the radar transmitter

and the receiver is used to calibrate for the LO frequency offset. Instead of using radar

imaging, the proposed virtual array system aims to implement SAR with cellular technol-

ogy. Another closely related technology is the wireless channel sounding measurements

[56, 83, 84, 85], where the receiver is mounted on linear or rotational stages to create

re-configurable, arbitrary 3D arrays. In these papers, the transmitter and receiver are syn-

chronized through cables to avoid phase drifts due to LO offset, which is unsuitable for

portable electronics. The array movement is precisely performed with dedicated turntables

to get receiver trajectories.

Some prior research on virtual arrays can be found in [79, 86, 78], where arbitrary

movements are considered to create the antenna elements of the virtual array. The rela-

tive coordinates of the virtual array elements are estimated from receiver-embedded IMUs,

similar to what will be proposed in our work. However, the LO offset in these papers is

considered to be a negligible value, resulting in a relatively small phase drift. This as-

sumption can be achieved when both transmitter and receiver are equipped with expensive,

high-stability rubidium local oscillators which are impossible in low-cost consumer elec-

tronics.

Compared with conventional multi-antenna arrays, the virtual array DoA estimation

method presented in this thesis aims at being feasible with cheap, off-the-shelf hardware,

which typically has a significant LO frequency offset between the transmitter and the re-
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ceiver. The proposed approach is suitable for portable electronics and UAV-based commu-

nications as it does not require time synchronization and complex hardware modifications.

The work in this chapter progresses as follows. Section 3.1 introduces the concept

of traditional DoA estimation techniques, including the subspace-based algorithm called

MUSIC (Multiple Signal Classification). The MUSIC algorithm is the DoA estimation

algorithm we use in this thesis, although other methods could be used as well. The sys-

tem design and problem statement for the virtual antenna array system are presented in

Section 3.2. The two main difficulties of the virtual antenna array, i.e., LO frequency off-

set compensation and receiver trajectory reconstruction using IMU sensor measurements,

are discussed in Section 3.2 and Section 3.3, respectively. In Section 3.4, we present a

proof-of-concept model designed in previous publications. The conclusion is summarized

in Section 3.5.

3.1 Principle of DoA Estimation

3.1.1 Problem Formulation

The principle of general DoA estimation problems is to extract DoA information from the

phase response measured by the sensor array [87]. A representative example is depicted

in Figure 3.2, where there are N signal sources and an array with M antenna elements.

The objective is to estimate the azimuth angle of the emitted signal when it arrives on the

array. For simplicity, the signal sources are in far-field; hence the wavefronts generated by

each source arrive at all the elements from an identical direction. The receiver antennas

are assumed to be aligned uniformly along a line. Moreover, we will focus on the narrow-

band case, where the envelope of the signal remains approximately constant as the signal

wavefront propagates through the array. This assumption is often satisfied when the highest

frequency in propagated signals is much less than the carrier frequency [34].

Assuming the plane wave signal generated by the n-th source impinges on the array

at an angle θ and the propagated narrowband signal is s(t). It travels a certain distance to
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Figure 3.2: Model for DoA estimation of N sources with a linear array of the M elements.

reach the leftmost antenna as the reference element. The complex RF signal received at the

reference element can be written as:

r(t) = s(t) · ej·2πfc·t (3.1)

where fc represents the carrier frequency and t represents the propagation time. Since other

array elements are distributed on a line, the signal traveling to the m-th element will take

an extra distance ∆m−1 and therefore a corresponding delay. The delay τm is a function

of the source direction θ of the n-th signal and the position of the m-th array element with

respect to the reference element. Therefore, τm can be driven as:

τm =
∆m−1

c
=

dm−1 · cos θ
c

(3.2)

The dm−1 is the spacing between the m-th element and the reference element, which is

usually known when designing the antenna array. By considering the phase of the reference
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antenna to be zero, the τm introduces an additional phase shift ej·2πfc·τm to the received

signal on the m-th element. By taking into account the above assumption, the received

signal at the output of the m-th element can be written as:

xm(t) = r(t) · ej·2πfc·τm

= r(t) · ej· 2πλ ·dm−1cosθ

(3.3)

where the λ is the signal wavelength. Using vector notation, the output from all the M array

elements due to the n-th source can be expressed as:

x(t) = [x1(t), x2(t), · · · , xM(t)]T

= r(t) ·

*

+++++++,

ej·
2π
λ
·d0cosθ

ej·
2π
λ
·d1cosθ

· · ·

ej·
2π
λ
·dM−1cosθ

-

......./

= a(θ) · r(t)

(3.4)

The vector a (θ) is referred as the “array manifold”, which characterizes the array re-

sponse to a unit amplitude signal [88]. It is clear from Eq. (3.5) that the a (θ) contains

information about the geometry of the array and the direction of the incident waves. The

graphical representation of a (θ) with respect to the depicted case is shown in Figure 3.3:

a curve lying in a one-dimensional surface, and the curve returns to its starting point when

θ returns to its initial value [89]. As for cases when there are multiple unknown elements

(e.g., the elevation angle, the signal carrier frequency) that make contributions to the phase

shift, the array manifold will be a continuum which lies in a multiple-dimensional space.

Most subspace-based direction-finding algorithms involve searching over the array man-

ifold for response vectors that satisfy a given criterion. For example, in the case of the

MUSIC algorithm, the manifold is searched to find vectors that are orthogonal to the esti-

59



mated noise subspace [58], which will be explained in subsection 3.1.2.

Figure 3.3: One-dimensional array manifold [89].

With no loss of generality, the total complex output of an M-element array X(t) due to

the N sources can be described by the following equation:

X(t) = [a (θ1), . . . , a (θN)] s(t)

= A (θ)s(t)

(3.5)

and A (θ) is a M × N matrix, which is composed of the array manifolds associated with

N emitters, and often named as “steering vector”.

Based on the structure of Eq. (3.5), it can be seen that when N emitters are present, the

array output xm(t) from the m-th array element is a linear combination of the columns of

A (θ). Figure 3.4 depicted a case where two emitters and an array of four antenna elements

are present. The four array outputs x1(t), · · · , x4(t) both lie in a subspace spanned by

{a (θ1), a (θ2) }. In other words, the array manifold intersects the subspace at only two

points, each corresponding to a response vector of one of the emitters. As indicated in

the figure, the term signal subspace is used to denote this subspace [88]. The description

above can be concluded as follows: for N uncorrelated emitters, the signal component

of the array output is confined to a N dimensional subspace which is determined by the

N emitter positions. The parameter of interest θ can be estimated as long as the signal
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subspace is determined.

Figure 3.4: A Geometric View of Signal Subspace

In real-world applications, the array output X(t) usually contains additional noise in-

troduced through hardware [89] as :

X(t) = A (θ)s(t) + n(t) (3.6)

where n(t) = [n1(t), n2(t), · · · , nM(t)]T . As the noise is usually assumed to possess

energy in all dimensions of the observation space, the matrix X(t) defined above will be

full rank (although the signal components are still restricted to N -dimensional subspaces).

3.1.2 Subspace Estimation and MUSIC algorithm

The estimation of the signal subspace is usually based on the spatial array covariance matrix

with respect to the measured array output [32]. Considering that the noise is spatially white

and statistically independent of the source signals, then the M ×M theoretical covariance

matrix Rxx of the array output vector X(t) can be written as:

Rxx = E
0
X(t)XH(t)

1

= A (θ)RSSA
H(θ) + σ2I

(3.7)
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where the N × N matrix RSS = E
0
s(t)sH(t)

1
is the source covariance matrix, which is

diagonal in the case of uncorrelated signals [87]. The rank of the matrix A (θ)RSSA
H(θ)

is M − N . The σ2 represents the additive noise variance where I is a M × M identity

matrix, E {·} denotes the statistical expectation and (·)H is the Hermitian transpose. The

eigendecomposition of Rxx is provided by:

Rxx =
M!

k=1

λkeke
H
k (3.8)

where λk and ek are the eigenvalues and corresponding eigenvectors of Rxx. Let the eigen-

values λ be sorted in descending order, since the structure of Rxx given in Eq. (3.7) is

bascially a M−N matrix plus a identity matrix scaled by σ2, the M−N smallest eigenval-

ues are approximately repeated, i.e., λN+1 ≈ · · · ≈ λM ≈ σ2. The N largest eigenvalues

λk, 1≤k≤N , are referred to as the signal eigenvalues where the rest λk, N + 1≤k≤M ,

are refered to as the noise eigenvalues [34]. We define ES = [e1, e2, · · · , eN ] and EN =

[eN+1, eN+2, · · · , eM ]. In this case, the column span of ES is the signal space eigenvectors,

and the EN is the noise subspace eigenvectors which are orthogonal to ES [88, 58].

The target DoA is determined by searching over the array manifold vectors to find θ̂

which allows A(θ̂) belonging to the estimated signal space (or orthogonal to the estimated

noise subspace) [32]. The Multiple Signal Classification (MUSIC) estimator is one of the

most well-known methods to find the parameter estimate θ̂, with the advantage of high-

resolution capability and robustness to array geometry [90]. More specifically, MUSIC is a

scalar measure of the distance between the array manifold and the estimated noise subspace

[87]. The reciprocal of this distance can be written as:

PMUSIC (θ) =
1

AH (θ)ENEH
NA (θ)

=
1

AH (θ) (I− ESEH
S )A (θ)

(3.9)

and the locations of the N largest peaks of the so called MUSIC spectrum PMUSIC give the
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best estimates for the target θ̂:

θ̂ = argmax
AH (θ)ESE

H
S A (θ)

AH (θ)A (θ)
(3.10)

In summary, the solution for the parameters of interest (e.g., θ) can be found as the

intersection of the array manifold and the determined subspace, as depicted in Figure 3.4. In

practical scenarios where the noise is present, the fundamental principle of DoA estimation

becomes searching over the array manifold A (θ) to find a vector that is orthogonal to

the estimated noise subspace. The accuracy of the DOA estimates is dependent on how

accurately the signal/noise subspace is estimated [58]. For the sake of clarity, the approach

taken by conventional subspace-based DoA estimation algorithms can be concluded as a

three-step procedure:

(1) Construct a suitable parametrization steering vector A for all parameters of interest

(e.g., θ) based on the knowledge of the array geometry;

(2) Estimate the signal subspace and the noise subspace based on the array output.

(3) Estimate θ based on the MUSIC spectrum.

3.2 System Design of Virtual Antenna Arrays

In this section, we present the system model used for DoA estimation with the virtual

antenna array. We briefly cover the different algorithms used for DoA estimation proposed

in [80, 91] that will be used in this thesis.

3.2.1 System model

The system model of the virtual antenna array is the following. We consider a simple case

where a single source broadcasts an RF signal periodically while the receiver is moving

along a linear trajectory, as shown in Figure 3.5. The source is located far from the receiver,
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and the signal impinges on the virtual array elements at an equal direction θ (far-field

approximation). The periodically transmitted signal is in the form of digital data packets.

Both the source and the receiver know the preamble of these packets. Those preambles are

defined by common communication standards, e.g., the Primary Synchronization Signal

(PSS) broadcast by the base stations in Long-Term Evolution (LTE) standard [92]. The

receiver can correlate its received baseband samples with the known preamble sequence to

determine the boundaries and the phase of the received packets.

Figure 3.5: Virtual array concept for DoA estimation. A single receiver moves along its tra-
jectory (e.g., from ,r [0] to ,r [n]) and captures multiple transmitted signals, thereby creating
a virtual array.

Let us denote s
(
m
)

the baseband representation of the transmitted packet preamble

(for m = 1, ...,M ) and r
(
n,m

)
the m-th baseband sample of the n-th received packet

(for n = 1, ..., N ). We take the receiver position when receiving the initial packet as the

reference array element ,r [0]; the position of the receiver (xn, yn) when receiving the n-th

packet depends on the movement of the receiver, denoted as the array element ,r [n].

For simplicity, we focus on a narrowband, line-of-sight (LoS) channel, therefore the
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received signal at the reference element can be represented as:

r[0,m] = α · s [m] · ejψ0 + ω [n,m] (3.11)

where α is complex amplitude of the channel; ψ0 is the phase of the first received packet

and remains constant between multiple received packets; ω
(
n,m

)
is an independent and

identically distributed Gaussian noise with distribution ω
(
n,m

)
∼ CN (0, σ2). As shown

in Figure 3.5, when the receiver moves from ,r [0] to ,r [n], the signal will experience an

extra distance ∆n, as well as an additional delay τn = ∆n

c
. The additional delay leads to a

phase shift for the received signal as:

r[n,m] = α · s [m] · ejψ0 · ej·2πfc·
∆n
c + ω [n,m]

= α · s [m] · ej(ψ0+
2π
λ
·∆n) + ω [n,m]

(3.12)

where λ = c/fc denotes the wavelength corresponding to the carrier frequency fc.

Ideally, the phase difference of the observed signal between each virtual array element

is equal to the phase shift due to ∆n in Eq.(3.12). In other words, the DoA could be

estimated by measuring the phase difference of the received signal if ∆n is known. In

conventional DoA estimation systems, antenna positions are fixed and ∆n can be easily

calculated according to the array geometry [93]. For example, antenna elements in Figure

3.5 are arranged in a straight line, the extra distance ∆n can be calculated as:

∆n = xncos(θ) + ynsin(θ) (3.13)

As for the virtual array system, the array does not have a constant geometry and the ∆n

depends on the movement of the receiver. Therefore, it is necessary to estimate the relative

position of the receiver with high accuracy (usually a fraction of a wavelength), which is

the first difficulty of our proposed system.
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The other difficulty is the actual phase difference measured on the virtual array element

includes not only the phase shift as described above. The transmitter and the moving re-

ceiver obtain their RF carrier signal from a separate local oscillator. These two oscillators

usually have a non-zero frequency offset f0 with respect to each other due to manufac-

turing tolerances and temperature variations. In addition, all oscillators undergo random

phase and frequency drifts over time. Therefore, with the presence of f0, the real output at

the virtual array element in realistic scenarios is expressed as:

r [n,m] =α · s [m] · ej(ψ0+
2π
λ
·∆n+2πf0·(tn+mTs)) + ω [n,m] (3.14)

where tn is the elapsed time between the initial packet and the n-th packet, Ts is the receiver

sample period.

Our system assumes that the value of f0 does not change over time, which is approx-

imately true for only short periods: a few seconds for low-quality temperature-controlled

crystal oscillators (TCXO) and a few tens of seconds for high-quality oven-controlled crys-

tal oscillators (OCXO) [80]. Moreover, the effect of LO phase noise is negligible compared

to the LO frequency offset (LO phase offset can be dozens or hundreds of times higher

than LO phase noise) [94]. As a result, the main difference between the received signal

in a virtual array system and the received signal in a conventional antenna array is the LO

frequency offset f0 and its corresponding phase distortion.

To summarize, the goal of the proposed virtual array system is to leverage conventional

DoA estimation techniques that are readily available for conventional multi-antenna arrays.

Therefore, two main difficulties need to be addressed:

1. The relative position of the receiver needs to be estimated with an accuracy of a few

fractions of a wavelength.

2. The frequency offset f0 needs to be estimated and compensated for the received

signal.
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The algorithms and techniques to deal with these two challenges are provided in the

following subsections. Note that while we use the MUSIC algorithm in this thesis, the

virtual array signal model could be applied to a number of other DoA estimation algorithms,

such as beamforming, root-MUSIC, etc.

3.2.2 Local Oscillator Frequency Offset Compensation Methods

To estimate and compensate the LO frequency offset in Eq. (3.14), we proposed two meth-

ods, based on our previous research in [80]. The first method is the Stop-and-Start (SaS)

approach, where the receiver first stands still before moving. During standstill, only the

LO frequency offset causes the phase in Eq. (3.14) to change with time and can therefore

be easily estimated. This estimated value f0 is then used during the movement of the re-

ceiver to compensate the LO frequency offset, where each received subsequent packet can

be expressed as follows:

r′ [n,m] = r [n,m] e−j2πf0·(tn+mTs) (3.15)

The compensated signal r′ [n,m] contains the phase interferometry and can be used directly

in conventional DoA estimation techniques. Although the SaS approach is straightforward

and easy to implement, it suffers from two disadvantages. The most obvious disadvantage

is that the SaS approach restricts the movement of the receiver, as the receiver first needs to

stand still before moving. The second disadvantage is that the LO frequency offset should

not change too much between the moment the receiver stands still and the moment the

receiver moves, which might not always be verified in practice (especially for low-quality

LOs).

The other method is called the joint estimation approach, which has more advantages in

practical applications for providing higher usage flexibility and no need to stop the receiver

before the movement. In this method, we apply the MUSIC algorithm with an adapted
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signal model by including the LO phase offset into the array manifold of the virtual array.

Let us rewrite Eq. (3.14) by stacking the N received packets in a column vector:

r [m] = a (f0, θ)X [m] + ω [m] (3.16)

with the array manifold lies in a two-dimensional space over f0 and θ and defined as:

a (f0, θ) =

*

+++++++,

ej(2πf0t1+
2π
λ
(x[1] cos(θ)+y[1] sin(θ))))

ej(2πf0t2+
2π
λ
(x[2] cos(θ)+y[2] sin(θ))))

...

ej(2πf0tN+ 2π
λ
(x[M ] cos(θ)+y[M ] sin(θ))))

-

......./

(3.17)

and X
(
m
)

is constant for all virtual antennas, defined as

X [m] = α0 · s [m] · ej(ψ0+2πf0mTs) (3.18)

By developing the eigen-decomposition of the covariance matrix of r [m], we can find the

corresponding noise subspace ES and define the MUSIC spectrum as:

PMU (f0, θ) =
1

aH (f0, θ)ESES
Ha (f0, θ)

(3.19)

then the nominal DoA and frequency offset
&
f̂0, θ̂

'
can be estimated with a two-dimensional

MUSIC search. The major drawback of the joint estimation is that certain receiver trajecto-

ries do not allow to estimate DoA jointly with LO offset f0, as will be investigated in more

detail in Chapter 4.

3.2.3 Receiver Trajectory Reconstruction Methods

The second challenge of virtual antenna arrays lies in estimating the relative position of the

receiver along its trajectory, which requires an accuracy of a fraction of a wavelength. The
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orientation of the receiver also needs to be estimated to account for non-isotropic antenna

radiation patterns. Such limitations rule out conventional GNSS systems, which do not

meet the required accuracy and do not provide orientation information. In this thesis, we

use a 3D inertial measurement unit (IMU) to estimate the position and orientation of the

receiver.

IMUs are basic components commonly found in modern electronic devices (e.g., smart-

phones, vehicles, UAVs). The integration of IMUs is essential for application areas in

which orientation information is indispensable and rapid collection of geographic infor-

mation is required [95]. A typical commercial IMU consists of a triaxial accelerometer,

a triaxial gyroscope, and sometimes a magnetometer. The triaxial accelerometer measure

three-dimension linear accelerations (change of velocity) of an object. The gyroscopes

measure the three-dimension angular rate of the object. The magnetometer measures the

earth’s gravitational and magnetic fields and can be fused in conjunction with accelerom-

eter and gyroscope data to determine absolute heading [96]. With the knowledge of these

inertial sensor measurements, the traveled distance and direction of the IMU can be de-

termined by applying basic kinematics equations, and therefore the new position can be

estimated [97]. Then the trajectory of the IMU can be reconstructed by integrating these

estimated positions. The detailed IMU processing methods are illustrated in Section 3.3.

The major drawback of the IMU-based position estimation is the accumulation of sen-

sor biases during processing, which makes the navigation solution obtained from sensor

measurements drift from the real trajectory, i.e., the error of the navigation solution will

increase over time. However, the movement range (and hence duration) for the virtual ar-

ray should be quite limited to stay in the Wide-Sense Stationary Uncorrelated Scattering

(WSSUS) assumptions required for multi-antenna array processing (typically less than ten

wavelengths) [98]. As a result, for the WSSUS assumptions to hold, the time over which

the receiver forms the virtual array should be short so that the navigation error incurred by

the IMU is also limited. For typical pedestrian or vehicular speed, the movement duration
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is typically limited to a few seconds.

3.2.4 Receiver Movement Constraints

Similar to conventional multi-antenna arrays, the virtual array systems also need to satisfy

the spatial aliasing criterion, i.e., the distance between the two adjacent array elements (dn

in Figure 3.5) must be no larger than λ/2 to avoid DoA ambiguity [99]. By considering

the signal model (3.14) in the proposed virtual multi-antenna system, the distance traveled

by the receiver between two successive packets must be smaller than λ/2 as well. This

translates to the velocity constraint for receiver as vn (tn − tn−1) ≤ λ/2, where vn is the

speed of the receiver and (tn − tn−1) indicates the broadcast period for the transmitted

packets. In that case, the constraint becomes:

vn ≤ λ

2 (tn − tn−1)
(3.20)

As an illustration, when a 3G base station sends a PSS sequence every 0.667 ms under

a carrier frequency of 2.1 GHz [100], the maximum receiver speed is up to 385 km/h.

When it comes to 5G millimeter-wave spectrum, e.g., 28 GHz defined by 3GPP-band-

n257 with reduced wavelength at around 10 mm [101], the maximum receiver speed is

around 29 km/h. Finally, note that non-stationary channels will cause distortion of the

multipath components, which cannot be recovered with a virtual array. However, as long

as the transmitter remains static during the receiver movement and only the transmitter’s

direction is estimated, this should not cause severe problems for the proposed system.

In summary, the DoA estimation in the virtual array is only feasible after the LO phase

offset caused by f0 is eliminated, and the relative array element positions xn are known.

The block diagram of the entire system structure is summarized in Figure 3.6. The algo-

rithms and techniques to reconstruct trajectories and to estimate xn are provided in the next

section.
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Figure 3.6: The flow diagram of the virtual antenna array system [91].

3.3 IMU processing with Non-linear Kalman Filter

The fundamental idea of IMU processing is to provide accurate and precise estimations

of hidden variables (i.e., the relative position) in the presence of system uncertainty [95].

The uncertainty includes hardware biases (e.g., sensor calibration errors) and stochastic

measurement errors (e.g., noisy sensor measurements) [102]. The hardware biases can be

measured and accurately calibrated before the movement; the stochastic errors are difficult

to compensate but can be considered as random processes [103]. Due to the accumulation

of these errors, the reliability of the IMU decreases significantly over time. As a result,

the Kalman Filter (KF) is widely used in IMU processing as an important estimation algo-

rithm that estimates hidden variables based on inaccurate and uncertain measurements and

reduces uncertainty or noise [104].

The KF is first proposed by Rudolph E. Kalman in 1960 [105] and is described as a re-

cursive solution to the discrete data linear filtering problem. Its first implementation in the

inertial navigation system is with a military aircraft [106]. After that, the KF has been used

extensively for tracking and data fusion problems [104]. However, while the standard KF

serves as the optimal linear estimator for linear system models, the system dynamics and

observation equations in many real-world applications of interest are nonlinear. Thus, two

extensions to the KF with respect to nonlinear systems have been proposed: the Extended
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Kalman Filter (EKF) [107] and the Unscented Kalman Filter (UKF) [108]. The EKF ap-

plies the KF to nonlinear systems by simply linearizing all the nonlinear models so that

the traditional linear Kalman filter algorithms can be applied [107]. The UKF uses a deter-

ministic sampling approach to capture the mean and covariance estimates with a minimal

set of sample points. It also provides superior performance at an equivalent computational

complexity than the EKF [109, 110]. In the virtual array systems, the IMU measurements

are converted to a relative position by using a UKF. The basic system concept of KF and

the UKF derivation is given in the following subsections.

3.3.1 Basic concept of Kalman Filter

Derive System State Space Model

Assume that we want to estimate a hidden state of a system by observing some other in-

formation, e.g., estimating the position of a vehicle by observing the measurements of an

IMU. Without loss of generality, the system should be able to be described by a discrete-

time linear state space model as [105]:

xk = Fk−1xk−1 +Gk−1uk−1 +wk−1 (3.21)

where xk is the state vector of the system at time k, which contains states that will be

estimated by the KF [111]. The state vector includes the states of interest (e.g., the position)

and other states that may be necessary to describe the system (e.g., the acceleration and

orientation). The matrix F is the state transition matrix applied to the previous state vector

xk−1 that represents the dynamic behavior of the system (is usually assumed stationary

over time). The matrix G is the control-input matrix applied to the control vector uk−1;

wk−1 is the uncertainty of the state space model, also called the process noise vector, and

is assumed to be zero-mean Gaussian with the covariance matrix Q [97]. In other words,

wk−1 represents the level of confidence that we have regards the state space model since
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modeling errors are inevitable when deriving physical principles in equations.

Estimating the state of interest are based on observing the measurements of the sensors,

and the measurements can be described by:

yk = Hkxk + vk (3.22)

where yk is the measurement vector that are able to measure; Hk is the measurement ma-

trix, and vk is the measurement noise vector that is assumed to be zero-mean Gaussian with

the covariance R, which can be used to include the errors due to the sensor measurements

[109].

The system state space model in Eq. (3.21) defines the dynamic of the states from time

k−1 to time k. The output model in Eq. (3.22) describes the relationship between the states

and the measurements at the current time k. Once the system state space model has been

derived, it is ready to implement the KF system. Note that w and v are only used in the

state space model to describe the statistics of the noises, and they typically do not appear

directly in KF. Instead, the covariance matrices Q and R are used in KF to represent the

process and measurement uncertainty.

Kalman Filter Algorithm

The goal of the KF is to take a probabilistic estimate of states and update them in real-time

using two steps: prediction and correction. For the prediction process, the KF uses the

previously estimated state x̂k−1 and the previous measurement yk−1 to predict the state in

time k, named as x̂k|k−1 and calculated by:

x̂k|k−1 = Fk−1x̂k−1 +Gk−1uk−1 (3.23)

where the x̂k|k−1 is called the prior estimate [105]. The subscript k|k − 1 indicates the

corresponding estimate is made for the time k based on owned information at the time
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k − 1.

The error of the prior estimate x̂k|k−1 compared to the true state xk is represented by

a new term Pk|k−1. It encrypts the error covariance that the filter thinks the prior estimate

has [111]. Again, the subscript k|k − 1 is indicating that the Pk|k−1 is the expected error

covariance matrix at k based on the system model and the covariance at k − 1. The Pk|k−1

can be computed during the prediction step by:

Pk|k−1 = Fk−1Pk−1F
T
k−1 +Qk−1 (3.24)

After the prediction process, the system performs measurement at time k and gets the

measurement yk. The yk contains some uncertainty due to imperfect sensors, with the mea-

surement noise covariance R defined in Eq. (3.22). Now the KF can evaluate how “wrong”

the previous estimated state x̂k|k−1 is, by calculating the difference between the expected

output Hkx̂k|k−1 and the true measured output yk (this difference is called “innovation”)

[110]. Then, the KF corrects the previously estimated state x̂k|k−1 by adding it with the

innovation (scaled by a vector Kk) as:

x̂k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1) (3.25)

where the x̂k is the corrected estimate for time k (is also called posterior estimate); the

scale vector Kk is called the Kalman Gain and determined by:

Kk =
Pk|k−1H

T
k

HkPk|k−1HT
k +Rk

(3.26)

Based on its definition, the Kalman gain is the ratio between the uncertainty of the estimate

and the uncertainty of the whole system, which determines how the filter wants to “cor-

rect” the prior estimate. When the measurement uncertainty is significant and the estimate

uncertainty is limited, the Kalman Gain is close to zero. Hence the KF gives more trust to
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the estimate and less trust to the measurement. In contrast, when the measurement uncer-

tainty is negligible and the estimate uncertainty is significant, the Kalman Gain is close to

one, and the KF gives bigger weight to the measurement [105]. The last step during the

correction is to update the state error covariance after the gain Kk is confirmed:

Pk = (I−KkHk)Pk|k−1 (3.27)

where I is an identity matrix. The updated Pk and x̂k are both used as input for the next

filter iterations.

Figure 3.7: Kalman Filter Diagram

To summarize, the KF performs as a “prediction-correction” loop. It is first assumed

that the initial state, x̂0, is known with corresponding uncertainty given by the initial er-

ror covariance matrix P0. Once initialized, the KF predicts the system state based on the

system state space model and provides the uncertainty of this prediction. Then, the sys-

tem performs a measurement. After the KF received the measurement, it compares the

measurement uncertainty and the estimate uncertainty, then figures out how to correct the

prior estimate (put more weight on the measurement or the estimate, depending on the

Kalman Gain). After that, the KF updates the estimate uncertainty of the corrected pos-
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terior estimate, then puts the updated uncertainty and corrected estimate as inputs for the

next prediction. In principle, the estimate uncertainty is getting smaller with each filter iter-

ation, since (I−KkHk) < 1, and the designed KF is becoming unbiased when the estimate

uncertainty converges to zero. The diagram of the standard KF is provided in Figure 3.7.

3.3.2 Extended Kalman Filter (EKF)

The IMU processing generally requires the estimation of nonlinear quantities, such as the

pose, position, and orientation. However, the standard KF applies only to linear systems.

In order to use the KF in nonlinear systems, the first approach is the EKF method, which

linearizes the nonlinear system, i.e., find a linear system that is approximately equal to the

nonlinear system.

Same as the standard KF, the first step in implementing an EKF model is to describe the

discrete-time nonlinear system in terms of a state space model and a measurement model:

xk = f(xk−1,uk−1,wk−1)

yk = h(xk,vk)
(3.28)

where f(·) is the vector-valued nonlinear state dynamic function and h(·) is the vector-

valued nonlinear output function; w and v again represent the process and measurement

noise, with covariance Q and R, respectively [112]. The EKF is also consists of two steps:

prediction and correction, except the model in Eq. (3.28) should be linearized.

Mathematically, the linearization of a nonlinear function, e.g., g(x), around an operat-

ing point a requires a first-order Taylor series expansion [113]:

g(x) ≈ g(a) +
∂g(x)

∂x

2222
x=a

(x− a) +
1

2!

∂2g(x)

∂x2

2222
x=a

(x− a)2 + · · ·

≈ g(a) + T (x− a)

(3.29)

where T is the matrix defined by ∂g(x)
∂x

|x=a and the higher-order terms are considered
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negligible. Therefore, the linerarization of the nonlinear state space function f(·) at time

k shoule be the first-order taylor expansion of f(·) around its operating point xk. Since

the term xk is an unknown vector to be estimated, the best substitute is the most recent

posterior estimate x̂k−1 at time k − 1 [109]. As a result, the linearized state space model is

approximated as:

xk ≈ fk−1(x̂k−1,uk−1, 0) +
∂fk−1

∂xk−1

2222
x̂k−1,uk−1,03 45 6
Fk−1

(xk−1 − x̂k−1) +
∂fk−1

∂wk−1

2222
x̂k−1,uk−1,03 45 6

Lk−1

wk−1

(3.30)

and the output model is linearized as:

yk ≈ hk(x̂k|k−1, 0) +
∂hk

∂xk

2222
x̂k|k−1,03 45 6
Hk

(xk − x̂k|k−1) +
∂hk

∂vk

2222
x̂k|k−1,03 45 6
Mk

vk
(3.31)

where the matrices Fk−1, Lk−1, Hk and Mk are called the Jacobian matrices of the sys-

tem [114]. The matrices Fk−1 and Hk are differentiated with respect to the state estimate,

and Lk−1 and Mk are differentiated with respect to the process and measurement uncer-

tainty, respectively [112]. Once the Jacobian matrices have been calculated, the operation

of the EKF technique is nearly the same as the linear KF algorithms, with its complete

diagram shown in Figure 3.8. The biggest difference is the prior estimate x̂k|k−1 and the

measurement innovation yk − hk(x̂k|k−1,uk−1, 0) are calculated by propagating the mean

of x̂k−1 through the original nonlinear model in Eq. (3.28) rather than the linearized model

in Eq. (3.30).

Although the EKF is straightforward and easy to implement, it suffers from the costly

calculation of Jacobian matrices [114]. Moreover, an EKF is not suitable for highly non-

linear systems since the covariance is calculated through the first-order linearization of the

system model, which may introduce significant errors in the updated posterior error covari-

ance and severely degrade the filter performance [109]. In the following sections, the UKF
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Figure 3.8: Extended Kalman Filter Diagram

is applied to overcome the disadvantages of EKF.

3.3.3 Unscented Kalman Filter (UKF)

The UKF is a common alternative to the EKF, also referred to as the Sigma-Point Kalman

Filter (SPKF). The UKF uses an Unscented Transformation (UT) to computes the statistics

of a random variable undergoing nonlinear transformation [110]. Instead of linearizing the

Jacobean matrices to handle the nonlinearity in the system, the UKF captures the mean and

covariance of the state vector xk with a minimal set of 2L+1 chosen sample points (L is the

number of states in xk) [113]. These chosen sample points are called “sigma points,” and

they are calculated based on a square-root decomposition of the prior mean and covariance.

Once produced, these sigma points are propagated through the nonlinear function to find

the mean and covariance of the posterior state estimates [114]. The concept of UT and its

implementation on UKF are explained in the following two subsections.

Unscented Transformation

Considering propagating a random variable x with mean x̄ and covariance Px through a

nonlinear function g(x). The objective of the UT algorithm is to estimate the statistics of
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the transformed variable. The intuition behind the UT is straightforward: it is much easier

to approximate a probability distribution than approximate an arbitrary nonlinear function

[108].

The first step is to approximate the variable x with 2L+1 weighted sigma points given

by:

χ0 = x̄

χi = x̄+ (
7

(L+ κ)Px) i = 1, · · · , L

χi+L = x̄− (
7

(L+ κ)Px) i = 1, · · · , L

(3.32)

where the term κ is a scaling parameter to change the higher order moments of the ap-

proximation with respect to the distribution of xk [110]. When xk is assumed gaussian, a

suitable argument is to set L + κ = 3 [115]. To calculate the matrix square root
√
Px, a

promising method is using the Cholesky Decomposition approach [114]. Let S ∈ ℜL×L

satisfy SST = Px and S is a lower triangular matrix, the si is the ith column of S for all

i = 1, · · · , L. Therefore, the sigma points in Eq. (3.32) transformed to:

χ0 = x̄

χi = x̄+
7

(L+ κ)si i = 1, · · · , L

χi+L = x̄−
7

(L+ κ)si i = 1, · · · , L

(3.33)

Once the 2L + 1 sigma points have been generated from the prior statistics as shown

above, each point is propagated through the nonlinear function:

yi = h(χi) i = 0, · · · , 2L (3.34)

and then compute the mean and covariance of the transformed sigma points [116]. Each of
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the sigma points gets a specific weight during the calculation, as:

ȳ =
2L!

i=0

ωiyi

Py =
2L!

i=0

ωi(yi − ȳ)(yi − ȳ)T

ωi =

8
99:

99;

κ
L+κ

i = 0

1
2

κ
L+κ

i = 1, · · · , 2L

(3.35)

where ȳ is the estimated mean of y and Py is the estimated covariance matrix of y [115].

These two parameters represent the posterior statistics of x after the nonlinear transforma-

tion.

UKF Implementation

The UKF can be implemented using UT by expanding the nonlinear system to include the

noise component. Similar to Eq. (3.28), the first step to design a UKF is to describe the

nonlinear system in terms of a state space model and a measurement model:

xk = f(xk−1,uk−1,wk−1), x ∈ ℜL

yk = h(xk,vk)
(3.36)

where L is the dimension of the state vector. The UKF also operates under the “prediction-

correction” pattern. Starting with an assumed initial guess x̂0 and P0, the UKF is executed

recursively. For the prediction process, the UKF uses the previous posterior state estimate
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x̂k−1 and covariance estimate Pk−1 to generate the 2L+ 1 sigma points as [114]:

Sk−1S
T
k−1 = Pk−1

χ0
k−1 = x̂k−1

χi
k−1 = x̂k−1 +

7
(L+ κ)coli(Sk−1) i = 1, · · · , L

χi+L
k−1 = x̂k−1 −

7
(L+ κ)coli(Sk−1) i = 1, · · · , L

χk−1 = [χ0
k−1 χi

k−1 χi+L
k−1]

(3.37)

Then, each sigma point in χk−1 is propagated through the nonlinear function, and the trans-

formed sigma points χk|k−1 are calculated as in:

χi
k|k−1 = f(χi

k−1,uk−1, 0) i = 0, · · · , 2L (3.38)

where the process noise is omitted during the propagation process. The mean and covari-

ance for the propagated sigma points are calculated following the weighting equations in

Eq. (3.35). In other words, the predicted mean and covariance for state xk is:

x̂k|k−1 =
2L!

i=0

ωiχ
i
k|k−1

Pk|k−1 = Qk−1 +
2L!

i=0

ωi(χ
i
k|k−1 − x̂k|k−1)(χ

i
k|k−1 − x̂k|k−1)

T

ωi =

8
99:

99;

κ
L+κ

i = 0

1
2

κ
L+κ

i = 1, · · · , 2L

(3.39)

Now the process noise covariance matrix Q is added to the predicted error covariance

matrix Pk|k−1 as the additive process noise component [95]. By far, the prediction process

is finished, and the system performs measurement at time k and gets the measurement

vectors yk.

To correct the prior state estimate x̂k|k−1 using measurements yk, the transformed sigma
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points are propagated through the output function to predict the measurements:

ŷi
k = h(χi

k|k−1, 0) i = 0, · · · , 2L (3.40)

where the measurement noise is omitted for the prediction. The mean and covariance of

these predicted measurements are calculated using:

ŷk =
2L!

i=0

ωiŷ
i
k

Pyy
k = Rk +

2L!

i=0

ωi(ŷ
i
k − ŷk)(ŷ

i
k − ŷk)

T

(3.41)

where Rk is the additive measurement noise assumption. The Kalman Gain Kk in UKF

is calculated based on the cross-covariance between the predicted states x̂k|k−1 and the

predicted measurements ŷi
k as:

Pxy
k =

2L!

i=0

ωi(χ
i
k|k−1 − x̂k|k−1)(ŷ

i
k − ŷk)

T

Kk = Pxy
k (Pyy

k )−1

(3.42)

The UKF Kalman Gain is then applied to correct the prior state estimates and to update the

covariance estimates, as:

x̂k = x̂k|k−1 +Kk(yk − ŷk)

Pk = Pk|k−1 −KkP
yy
k KT

k

(3.43)

where the updated Pk and the corrected x̂k are the posterior vectors for the next UKF

iterations. The diagram of the UKF is provided in Figure 3.9.
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Figure 3.9: Unscented Kalman Filter Diagram

3.3.4 IMU Trajectory Reconstruction with UKF

The trajectory reconstruction in the virtual array system is realized by integrating IMU mea-

surements with an UKF. An IMU is typically composed of gyroscopes and accelerometers,

while the gyroscopes measure angular rotation rates and the accelerometers measure lin-

ear accelerations [112]. All inertial measurements are measured in the sensor body frame

(b-frame), which is a frame rigidly attached to the sensor with its origin at the center of

mass of the sensor [115]. For practical navigation and positioning applications, these mea-

surements should be projected onto the local NED (North-East-Down) navigation frame

(n-frame), which is a fixed reference frame relative to the ground [115].

By applying the dead-reckoning integration methods through a UKF tool, the position

of the mobile receiver is estimated by accumulating the transformed inertial measurements.

Note that using an UKF requires knowing the initial orientation of the receiver, as well as

the initial velocity of the receiver [80]. In this thesis, these are available through contin-

uous tracking from an initial stand-still position with accelerometers. The origins of the
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coordinate system are considered to be the initial position, as only the relative position is

required. Besides, a calibration procedure is also required to compensate gyroscope and

accelerometer biases, which may result in an unbounded accumulation of errors.

Figure 3.10: The Flow Diagram of the IMU Processing

Therefore, trajectory reconstruction using IMU readings could be considered as a four-

step process: 1) calibrate IMU biases before measurement; 2) project measured accelera-

tions and angular rates from the body frame to the navigation frame; 3) estimate the gravity

vector and remove it from accelerometer measurements; 4) determine initial orientation

and speed of the receiver; 5) trajectory reconstruction by integrating the transformed an-

gular rates and linear acceleration through the UKF. The whole diagram of the UKF with

respect to the IMU processing is summarized in Figure 3.10, and each step is explained in

more detail following.

IMU Sensor Biases Calibration

The imperfect nature of accelerometers and gyroscopes will introduce biases and noises

into their measurements and degrade the performance of UKF [117]. The calibration pro-

cess aims at finding the bias vector so that true accelerations and angular rates can be found

for any movement.
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For typical gyroscopes, the measurement model can be defined by:

ωb(t) = ω(t) + bgyro(t) + ngyro(t) (3.44)

where ωb(t) is the measured angular rates in body frame, ω(t) is the true angular rates

of the sensor expressed in the sensor frame, bgyro(t) is the bias vector, and ngyro(t) is

the additive measurement noise. The gyroscope bias is temperature-dependent and slowly

evolves over time [118]. As the virtual array system only involves motion over short periods

of time, the gyroscope bias in this chapter is considered to be a constant. The calibration of

gyroscopes is straightforward since when an IMU is standing still, the angular velocity on

each axis is zero, so the measured values should be zero. The bias is defined as the average

value of raw gyroscope measurement during a standstill.

As for accelerometers, they measure the specific force relative to free-fall, i.e., non-

gravitational force per unit mass [119]. Theoretically, the acceleration measured by an IMU

during a standstill should be 1g (pointing up, as the opposite of gravitational acceleration g).

The measurement model for accelerometers have similar noise and bias terms as Eq. (3.44),

expressed by:

ab(t) = a(t) + bacce(t) + nacce(t) (3.45)

where ab(t) is the acceleration measurements in body frame, a(t) is the true acceleration

(with the effect of gravity), bacce(t) is the acceleration bias vector and nacce(t) is the

additive noise vector. To calibrate static biases in accelerometers, a spherical motion fit

method is applied by using approaches in [120]. By taking many static measurements

with the IMU at different random orientations, as only the gravity vector is present in the

accelerometer measurements, the biases can be determined by solving the following set of
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equations: 8
9999999:

9999999;

(ab
x1

− bx)
2 + (ab

y1
− by)

2 + (ab
z1
− bz)

2 = g2

(ab
x2

− bx)
2 + (ab

y2
− by)

2 + (ab
z2
− bz)

2 = g2

...

(ab
xN

− bx)
2 + (ab

yN
− by)

2 + (ab
zN

− bz)
2 = g2

(3.46)

where N is the number of measurements during calibration, [ab
xn
, ab

yn , a
b
zn ] are the ac-

celerometer outputs along IMU body frame at the n-th measurement, and [bx, by, bz] are

the estimated biases. The solution of equations Eq. (3.46) is equivalent to determining the

least square error (LSE) centroid and radius of a sphere, as illustrated in Figure 3.11.

Figure 3.11: Example for IMU Accelerometers Calibration

Frame Transformation

Assuming the calibrated IMU measurements from the triaxial accelerometer and gyroscope

are
(
abx, a

b
y, a

b
z

)
and

(
ωb
x,ω

b
y,ω

b
z

)
. The outputs of IMU are in the body frame and should be

transferred to the navigation frame. For acceleration measurements, the transformation can

be mathematically described by multiplying the rotation matrix Cn
b as:

(
anx, a

n
y , a

n
z

)T
= Cn

b ·
(
abx, a

b
y, a

b
z

)T
(3.47)
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where
(
abx, a

b
y, a

b
z

)
are transformed accelerations in the navigation frame [97]. The rotation

matrix is defined by the Euler angles (θ, ψ, γ) where θ represents pitch, ψ represents yaw

and γ represents roll, expressed by:

Cn
b =

*

++++,

cosθ cosψ − cosγ sinψ + sinγ sinθ cosψ sinγ sinψ + cosγ sinθ cosψ

cosθ sinψ cosγ cosψ + sinγ sinθ sinψ − sinγ cosψ + cosγ sinθ sinψ

− sinθ sinγ cosθ cosγ cosθ

-

..../

(3.48)

where the initial value of (θ, ψ, γ) is determined by the initial orientation of the receiver.

Sketch map of the transformation between the navigation frame and the body frame is

shown in Figure 3.12.

Figure 3.12: The transformation between the navigation frame and the body frame. The
navigation frame is fixed and is represented by the North, East, and Down axes. The body
frame is aligned with the kinematic axes of the object. The rotation angle around the x, y
and z axis is represented by pitch θ, roll γ and yaw ψ.

Gravity Estimation and Removal

In inertial navigation systems, the raw measurements of the accelerometer usually include

components due to gravity, which are not part of the actual receiver accelerations. There-
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fore, these gravity components must be manually removed from accelerations in Eq. (3.47).

Considering the gravity vector g is constant parallel to the D axis, the compensated accel-

erations
(
an−x , an−y , an−z

)T are calculated by:

(
an−x , an−y , an−z

)T
= Cn

b ·
(
abx, a

b
y, a

b
z

)T − [0, 0, g]T (3.49)

After the gravity removal process, the compensated accelerations are processed through the

designed UKF and the distance and velocity are then calculated.

Initial Orientation Determination

It is extremely important to accurately estimate the initial orientation of the receiver, as a

slight misalignment can integrate into significant trajectory errors. The initial orientation

is also used to update the frame transformation matrix in Eq. (3.48). In our proposed

virtual array systems, the initial pitch and roll of the IMU are estimated using the technique

proposed in [121], which uses observations that during standstill (the accelerometers have

measured only the gravitation vector g). The initial state satisfies the following initialization

equation: *

++++,

abx

aby

abz

-

..../
= (Cn

b )
T

*

++++,

0

0

g

-

..../
(3.50)

By combine Eq. (3.48) and Eq. (3.50), the initial roll γn
0 and pitch θn

0 in the navigation

frame can be determined by:

8
9:

9;

γn
0 = arctan(

aby
abz
)

αn
0 = arctan( abx!

(aby)
2
+(abz)

2 )
(3.51)

The initial yaw cannot be measured using accelerations alone and is manually set to zero

in our configuration. Therefore, all yaw expressions are relative to the initial yaw of the
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receiver.

UKF Implementation

The trajectory reconstruction formulation considered for this study has states defined by

relative positions, relative velocities, and orientations (all in navigation frame). Therefore,

the state vector is expressed by:

xk =

*

,PN , PE, PD,3 45 6
Pk

VN , VE, VD,3 45 6
Vk

θ,ψ,γ

-

/
T

(3.52)

and the corresponding state space model is:

xk = f(xk−1,uk−1) (3.53)

where uk−1 is the control vector as noisy inputs of the system, defined by:

uk =

*

+,(abx)k, (aby)k, (abz)k,3 45 6
(ab)k

(ωb
x)k, (ω

b
y)k, (ω

b
z)k,3 45 6

(ωb)k

-

./

T

(3.54)

For the prediction process, the position is calculated by double integrating the acceler-

ations (after the gravity components removal). The orientation is calculated based on the

kinematic relationship, i.e., integrates the angular rates ωb to derive the relative orientation

as IMU begins to move (the rotation of the earth is negligible). The full state equations for
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receiver movement can now be expressed as:

Ṗk = Vk

V̇k = Cn
b · [(ab)k]− [0, 0, g]T

θ̇k = (ωb
y)k · cosγ − (ωb

z)k · sinγ

ψ̇k =
(ωb

y)k · sinγ + (ωb
z)k · cosγ

cosθ

γ̇k = (ωb
x)k + ((ωb

y)k · sinγ + (ωb
z)k · cosγ)tanθ

(3.55)

where Cn
b is updated by previously estimated orientations. These state equations enable the

estimate of the state x from an initial state x0 and corresponding sensor measurements ab

and ωb.

For the correction process, the virtual array system does not implement external sources

to get confident observations yk to calculate the innovation in Eq. (3.43). In this case,

we directly apply the previous predicted state x̂k|k−1 and the previously predicted error

covariance matrix Pk|k−1 as the updated posterior vectors as:

x̂k = x̂k|k−1

Pk = Pk|k−1

(3.56)

where the rest of the systems are the same as the standard UKF algorithms.

3.4 The First Proof-of-concept implementation

This section briefly presents the first proof-of-concept implementation of the virtual an-

tenna array system that published in [80]. Figures and results in this section are re-processed

based on the original data provided in [80].
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3.4.1 Experimental Setup

The proposed architecture is implemented on a software-defined radio (SDR) testbed and

tested in an anechoic chamber. Both the transmitter and receiver are equipped with a USRP-

N210 SDR and a high-quality OCXO. The transmitter is connected with a horn antenna,

and the receiver is connected with a linear antenna. The inertial sensor used in this ex-

periment is a high-accuracy automotive-grade IMU. The receiver antenna and the IMU are

attached to the turntable of the anechoic chamber, and the layout of the chamber is shown

in Figure 3.13.

The proof-of-concept experimental implementation of the virtual array is shown fol-

lowing: the transmitter sends a periodic 3G PSS sequence every 0.667 ms, and the carrier

frequency is set to 1 GHz; the receiver is moved along a semicircular trajectory by using

the turntable. The radius of the semicircular trajectory was set to 30, 40, and 50 cm, and

10 measurements were taken for each radius. During each experimental run, the receiver

was first standing still for 30 seconds. After the standstill phase, the turntable (also thus

the receiver and IMU) rotates 180◦, which takes about 5 seconds. The receiver records its

received baseband signal packets and the corresponding IMU measurements into a data file

for subsequent signal processing. The SNR of the system is around 20 dB.

Figure 3.13: Top View of the Experimental Setup in the Anaechoic Chamber
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3.4.2 IMU Processing Results

The IMU measurements are transformed to relative positions by using the UKF. The UKF

implements the steps illustrated in subsection 3.3.3 and 3.3.4. The initial pitch and roll of

the receiver were estimated based on observations during standstill where only the grav-

itation is measured. The static biases of the accelerometers were estimated before the

experiment, and the biases of the gyroscopes were estimated during the standstill phase.

Figure 3.14: Reconstructed Trajectories in Chamber Experiment

Figure 3.14 presents the five trajectories reconstructed using UKF when the radius is set

to 50 cm. It is observed that the navigation solution (blue curve) stays close to the ground

truth (back curve) at the beginning of the movement but drifts off towards the end of the

movement. Similar results were found in other experiments. These drifts are mostly caused

by imperfections in the bias calibration or initial orientation determination.

3.4.3 DoA Estimation Results

The two LO frequency offset compensation methods provided in subsection 3.2.2 are im-

plemented in chamber experiments. In this section, we present the DoA estimation results

by applying these two methods, respectively.
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(a) Phase measurements before compensation (b) Phase measurements after compensation

(c) Recontructed trajectory (d) Estimated DoA in MUSIC spectrum

Figure 3.15: Chamber experiment results of the SaS approach [80].

Figure 3.15 presents the results of the SaS approach for one realization of the exper-

iment. The measured raw phase, containing the LO offset distortion, is shown in Figure

3.15a, where the phase shift corresponding to the movement cannot be observed. However,

after compensating for the frequency offset, the phase shift due to the movement can clearly

be observed, as shown in 3.15b. The phase variations when the receiver standstill (0∼30s)

roughly keeps stable and the phase shift due to movement can be observed (30∼35s) after

the compensation. The UKF solution for this experiment realization is shown in Figure

3.15c and the MUSIC spectrum is shown in Figure 3.15d. A maximum peak is observed at

85 ◦, which is close to the true DoA of 90 ◦.

Figure 3.16 presents the result of the joint estimation approach for one realization of

the experiment. In this experiment, the system performs a 2D MUSIC spectrum search

(over the LO frequency offset f0 and the DoA θ) by using the received packets during the

movement. A clear peak can be found at 82◦, which is close to the true DoA at 90◦; the LO

frequency offset is simulated simultaneously from the same MUSIC spectrum search.
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Figure 3.16: Chamber Experiment Results of the Joint Estimation Approach

To summarize, the proof-of-concept implementation and chamber experiments pro-

vided in [80] proved the feasibility of the virtual array system. However, this experiment

still relies on high-quality OCXO and a high-quality IMU, and the performance of the

system when using common, low-quality hardware requires further investigation and ex-

perimental verification.

3.5 Conclusion

In this chapter, a novelty DoA estimation method was proposed. Compared with conven-

tional DoA estimation using physical multi-antenna arrays, this method utilized a mobile,

single-antenna receiver device to estimate DoA. While the receiver is moving and continu-

ously receiving signals, the DoA can be determined by measuring the intercepted signals at

several positions along the receiver’s trajectory. The difficulty lies in estimating the relative

coordinates of the receiver, and eliminating the phase distortion caused by the imperfect os-

cillators in both signal source and receiver. The proposed system is implemented and tested

in an anechoic chamber by using high-quality IMUs and oscillators. The measurement re-

sults proved the feasibility of the virtual array system.

However, the current system remains several main drawbacks: 1) some receiver move-
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ments are not able to estimate the DoA, without a theoretical basis to screen feasible tra-

jectories; 2) the virtual array requires precise, relative coordinates of the receiver, which

is challenging in reality. In the next chapter, we focus on evaluating and improving the

robustness of the virtual array system regarding its drawbacks to account for low-grade

IMUs, low-quality LOs, and more flexible trajectories.
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CHAPTER 4

OBSERVABILITY ANALYSIS AND EXPERIMENTAL VALIDATION

The previous virtual array system utilized a mobile, single-antenna receiver device to es-

timate the DoA of an unknown signal source. The system is also implemented and tested

in an anechoic chamber which provides satisfying DoA estimation accuracy. However, the

system still has two main drawbacks

• The receiver’s coordinates are estimated by an embedded inertial measurement unit

(IMU), and the accuracy required for trajectory reconstruction is a fraction of the

wavelength. Such accuracy is only achievable with high-quality IMUs, as we did in

the previous chapter. Thus the feasibility for low-quality IMUs commonly found in

commercial mobile devices is questionable.

• The receiver trajectory performed in the chamber is a semicircle, which is challeng-

ing to operate without turntables. Discussions in [80] also show that some types of

receiver trajectories do not allow to use virtual arrays for DoA estimation, without

providing a theoretical basis. Therefore, a theoretical foundation is required to design

both feasible and user-friendly trajectories.

In this chapter, we focus on investigating the potential of the virtual array system and

improving its robustness by solving the problems above. By studying the observability of

the system, we prove that the DoA estimation is not critically dependent on the receiver

positions but rather on its acceleration profile. A theoretical basis is also provided for

designing effective receiver trajectories. Simulations are conducted to validate these the-

oretical predictions. The experimental results demonstrate the feasibility of virtual arrays

for indoor experiments, with a sufficient number of realistic system uncertainties being

taken into account (e.g., LO frequency offsets, IMU errors, manual errors). Note that the
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technique in this chapter is assuming a single antenna device, but the approach can also be

transferred to multiple-antenna devices. The contributions of this chapter can be summa-

rized as follows:

• An observability analysis is conducted to investigate the potential of the virtual ar-

ray system and providing the theoretical foundation to determine the set of feasible

trajectories.

• The DoA is proven to be observable with naive receiver trajectories, as long as the

receiver moves with at least one acceleration. Moreover, if the receiver’s initial state

and exact position is unknown, the DoA can still be estimated by measuring acceler-

ations only.

• Extensive simulations are conducted by modelling realistic levels of imperfections,

to investigate 1) the effect of different measurement functions (to confirm our the-

oretical predictions), 2) the feasibility to estimate DoA with significant LO phase

offsets and multipath.

• The proposed system is implemented and tested on a software-defined radio testbed

and serves as the proof of concept. Experiment results in an indoor multipath en-

vironment show that good DoA estimation accuracy can be achieved with low-cost

off-the-shelf hardware. The complexity and cost of the system are also significantly

reduced.

Compared with the conventional virtual array in Chapter 3, the improved system pre-

sented in this chapter aims at being feasible with cheap, off-the-shelf hardware (e.g., TCXO),

which typically has significant LO frequency offset. The DoA estimation is feasible with

user-friendly and simple receiver trajectories without requirements for turntables. Those

trajectories can be reconstructed with low-quality IMUs and are thus suitable for portable

electronics.
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4.1 Concept of Observability

Observability is a notion in control theory that plays a significant role in the field of es-

timation [122]. A model is observable if it is theoretically possible to infer its internal

state by observing its output for an estimation system. The observability serves to deter-

mine the existence of relations that bind the state-variables to the inputs, outputs and their

time derivatives of a dynamic system, thus uniquely defining them in terms of measur-

able quantities without the need to know the initial conditions [123]. The observability of

linear systems is well defined in [124], and the observability of nonlinear systems is ex-

plained in [125]. The concept of locally observable is introduced for the nonlinear system

to distinguish two neighbouring states instantaneously. If an estimation system is locally

observable, it means that the parameter can be estimated with bounded error.

To investigate the local observability property of the virtual array system, the first mis-

sion is to design the system dynamic model, i.e., a set of time-domain formulations that

can be utilized to describe the system. In principle, a dynamic model consists of the input,

the output, the state variable and the measurement. The input denotes the external forces

affecting the system, which is not enabled here; The output is parameters that can be ob-

served directly, e.g., the phase of the received baseband signal φ; The state variable is the

set of variables used to describe the change of the system, e.g., positions of the receiver

array elements; The measurement refers to the variables among state vectors that can be

measured with instruments and is usually used to update system parameters, e.g., the ac-

celeration measured by IMU. The second step is to define the state variable model, which

comprises first-order ordinary differential equations (ODEs) that describe time derivatives

of the state variables [93]. The number of state variables represents the order of the system.

Then, the local observability and so-called observability matrix can be determined by the

rank criteria described in [126], i.e. the system is locally observable if its observability

matrix is full column rank. One thing to note is, in principle, the observability of a system

98



is irrelevant to the measurement noise. Therefore, the state variable model in observability

analysis is usually derived under the noise-free model.

In localization systems with mobile transceivers, some papers showed that the transceivers

movements (velocity, acceleration, etc.) impact the observability and, thus, the estimation

performance [127, 128, 129]. In some cases, the proper trajectory choice can even change

the system from unobservable to observable. Since linear arrays are widely applied in

ground direction finding systems, we discuss the case when the receiver moves along a lin-

ear trajectory along the x-axis with a constant acceleration and a constant heading, which

is easy and naive to perform for most moving objects. Extensions to linear trajectories that

are not parallel to the x-axis can be derived by performing a reference frame rotation. In

this paper, the objective of observability analysis is twofold: 1) determine whether the lo-

calization system is locally observable for different receiver trajectories, especially in the

case where the receiver cannot stands still, and the LO frequency offset cannot be estimated

separately; and 2) when the system is not observable, determine the observable states if any.

Note that the observability theory can also be applied to nonlinear trajectories.

4.2 Observability Analysis Implementation

4.2.1 System dynamic model

Let rx (t), vx (t) and a (t) denote the relative position, velocity and acceleration of the

receiver along the x axis at time t, as the first three state variables. Then, we can write:

rx (t) = rx (t0) + (t− t0) vx (t0) +
1
2
(t− t0)

2a (t0)

vx (t) = vx (t0) + (t− t0) a (t0)
(4.1)

where rx (t0) and vx (t0) denote the initial position and initial velocity vector at initial

timestamp t0. According to (3.14), if the transmitter broadcasts a periodic signal with
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period T0, the phase of the received packets at time t+ T0 can be expressed as follows:

ψ (t+ T0) = ψ (t) + ω (t)T0 +
2π

λ
· cos [θ (t)] ·∆rx (4.2)

with

∆rx = vx(t) · T0 +
1

2
· a(t) · T 2

0 (4.3)

being the displacement when the receiver moves from position rx(t) at time t to position

rx(t + T0) at time t + T0; ω (t) = 2πf0 remains constant and it denotes the angular

LO frequency offset caused by the frequency mismatch f0; ψ (t) here denotes the overall

phase offset, including the phase shift due to movement and the time-accumulated phase

offset due to ω (t). By doing this, the state θ is introduced for tracking the DoA along the

trajectory and the state ω is introduced for recording the LO phase offset.

Now we have full state variables to describe the virtual array system. The 6-element

state vector x, composed of the observed phase φ, the angular velocity for LO phase offset

ω, the DoA of the arrived signal θ, the relative position rx, the relative velocity vx and the

constant acceleration a, given as:

x = [ψ,ω, θ, rx, vx, a]
T (4.4)

Based on (4.1)-(4.3), we have a complete description of x, and they are referred to as the

full dynamical model of the system. The state variable model, consisting of the first-order

100



differential equations for the vectors in x, is therefore defined as:

8
99999999999999:

99999999999999;

ψ̇(t) = ω(t) + 2π
λ
cos [θ (t)] · vx(t)

∆
= ẋ1

ω̇(t) = 0
∆
= ẋ2

˙cos [θ (t)] = 0
∆
= ẋ3

ṙx(t) = vx(t)
∆
= ẋ4

v̇x(t) = a(t)
∆
= ẋ5

ȧ(t) = 0
∆
= ẋ6

(4.5)

From a control theory perspective, the objective of the virtual array is to estimate the

DoA state θ by observing the received phase while updating the measurements. The mea-

surement function, besides the phase vector ψ, can be chosen among the relative position-

related vectors rx (t), vx (t) and a(t), depending on the available instrument. The phase

vector ψ can be measured by correlating the received baseband samples with the known

preamble sequence; Precise measurement of the rx (t) requires a high-quality IMU with

a known initial velocity, which is difficult to achieve with common sensors, or cannot be

obtained with sufficient accuracy. Measurement of the linear acceleration a(t), however, is

often available with low-cost IMUs that common in commercial electronics.

Therefore, in the following sections, we will discuss these two situations: 1) we in-

clude rx(t) as the measurement; 2) we include a(t) as the measurement. The first case

corresponds to scenarios where location information can be measured in the system. For

example, the system applies a high-accuracy GPS unit or uses other high-accuracy local-

ization methods (e.g., the ultra-wideband localization). The second case corresponds to

scenarios where only IMU data is available.
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4.2.2 Measuring the receiver position

We first consider that we can measure the position vector rx (t) and the observed phase

ψ (t), so the measurement function can be written as follows:

8
9:

9;

h1(x) = ψ(t) = x1

h2(x) = rx (t) = x4

(4.6)

and the continuous-time nonlinear dynamic systems usually have the general form written

as:
!

NL :

8
9:

9;

ẋ (t) = f [x (t)]

y (t) = h [x (t)]
(4.7)

where y ∈ IRm is the output, f is the analytic vector function and h is the output mea-

surement equation. For nonlinear systems, unlike for linear time-invariant systems, the

derivatives of the output cannot be expressed in terms of the arrays [124]. To this end, it is

necessary to construct the observability matrix by using the Lie derivatives in [130]. Based

on (4.5), we first rewrite the vector-valued function fi:

8
99999999999999:

99999999999999;

f1(x) = x2 + αx3x5

f2(x) = 0

f3(x) = 0

f4(x) = x5

f5(x) = x6

f6(x) = 0

(4.8)

where α = 2π
λ

. By definition, the zero-order Lie derivative of the scalar measurement h is

the function itself, i.e.: 8
9:

9;

£0
fh1 (x) = h1 (x) = x1

£0
fh2 (x) = h2 (x) = x4

(4.9)
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The first-order Lie derivative of the measurement function with respect to fi is defined as:

8
99:

99;

£1
fh1 (x) =

n=5#
i=1

∂h1(x)
∂xi

· fi (x) = x2 + αx3x5

£1
fh2 (x) =

n=5#
i=1

∂h2(x)
∂xi

· fi (x) = x5

(4.10)

where similar calculations hold for higher-order derivatives along with the vector fields.

For our model, which has six states, the higher-order Lie derivatives starting from the third

derivative are entirely zero vectors.

Given above preliminaries, the vector G can be constructed with the Lie derivatives up

to the M -1 order (where M equals to the number of states):

G
∆
=

*

+++++++++++++++++,

x1

x4

x2 + αx3x5

x5

αx3x6

x6

06×1

-

................./

(4.11)

The observability matrix O is defined from the observability Lie algebra by taking the

gradient of G (w.r.t. x1, ...,xM) as:

ONL1 =

*

+++++++++++++++++,

1 0 0 0 0 0

0 0 0 1 0 0

0 1 αx5 0 αx3 0

0 0 0 0 1 0

0 0 αx6 0 0 αx3

0 0 0 0 0 1

O6×6

-

................./

(4.12)
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If ONL1 is full column rank, then the system is said to satisfy the observability rank

condition, which means the system is locally observable. In this case, it is obvious that

rank(ONL1) = rank(ONL1 [1 : 6; 1 : 6]), where ONL1 [1 : 6; 1 : 6] represents the first 6 × 6

sub-matrix of ONL1 . Matrix ONL1 [1 : 6; 1 : 6] is full-rank when it’s determinant is not

equal to zero. The determinant of ONL1 [1 : 6; 1 : 6] is given by

det(ONL1 [1 : 6; 1 : 6]) = −ax6 (4.13)

Therefore, as long as the acceleration of the system is not zero, ONL1 has a rank of 6, and

the system is locally observable. This finding agrees with our intuition of a virtual antenna

array: when the receiver has constant linear velocity, the phase difference in (4.2) does not

allow to separate the phase drift caused by the LO offset from the phase shift due to receiver

movement. For the system to be observable, the acceleration can be both constant or time-

varying, and the direction of acceleration does not have to be parallel to the heading of

the receiver. Linear trajectories with non-zero acceleration and any non-linear trajectories

caused by unparalleled acceleration all satisfy this requirement.

4.2.3 Measuring the receiver’s acceleration

In this case, we will discuss the situation where the position vector rx (t) cannot be mea-

sured and the acceleration measurement is available. Therefore, the measurement function

in (4.6) changes to: 8
9:

9;

h1(x) = φ(t) = x1

h2(x) = ax (t) = x6

(4.14)
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Following a similar approach, we can easily determine all block elements of observability

matrix ONL2 as:

ONL2 =

*

+++++++++++++++++,

1 0 0 0 0 0

0 0 0 0 0 1

0 1 αx5 0 αx3 0

0 0 0 0 0 0

0 0 αx6 0 0 αx3

0 0 0 0 0 0

O6×6

-

................./

(4.15)

Obviously, the matrix ONL2 has rank four and is not full column rank, thus the affine

control system with measurement function (4.14) is not locally observable.

While the notion of local observability is a binary property, i.e., it specifies whether

the system is observable or not, the question of which state is not unobservable is still of

considerable importance. As long as the unobservable state is not the target parameter,

i.e., the θ in our case, the system under the current configuration is still functional. In the

next section, we develop a methodology for determining the unobservable direction of non-

linear systems by applying the concept of the unobservable space (also called null space)

[117, 131].

4.2.4 Finding the unobservable states

When the observability matrix O is rank deficient, the deficiency is equal to the dimension

of its unobservable space NO. In our case, the observability matrix ONL2 has column

rank n0 = 4 and column dimension n = 6, so the rank deficiency is n− n0 = 2, as well

as the dimension of NO. This result indicates that there are only two vectors satisfying

ONL2 · q = 0, where q consists of the basis of NO. We then design a n× n transformation

matrix as:

Qn×n =

<
q1 . . . qn−n0 pn−n0+1 pn

=
(4.16)
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where {qi, i = 1, . . . , n− n0} are linearly independent vectors in the unobservable space

of the observability matrix ONL2 and {pj, j = n− n0 + 1, . . . , n} are arbitrary vectors to

keep matrix Qn×n invertible. The vectors qi form a basis set of the unobservable subspace

of the system. The remaining columns pj form a basis set of the observable subspace. The

transformation matrix allows us to separate the observable subspace from the unobservable

subspace and indicate which state is not locally observable as detailed below:

ONL2 · NO = 0 (4.17)

thus, the calculation of qi is following:

[q1, q2] =

*

+,
0 −αx3 0 0 1 0

0 0 0 1 0 0

-

./

T

(4.18)

hence the basis vector indicates that x1, x3 and x6 (corresponding to ψ, θ and a) lie within

the observable subspace, while x2, x4 and x5 (corresponding to ω, vx and rx) span the

non-observable subspace. This result indicates that even without the knowledge of initial

velocity and the exact position of receiver, we can still extract DoA from the observed

phase of the virtual array by measuring the acceleration a only.

The intuition behind this conclusion is the following: DoA is estimated by analysing the

phase shift caused by the receiver displacement. Since the displacement in (4.3) is related to

the initial velocity vx and acceleration a, the phase shifts contributed by the initial velocity

vx in (4.2) will be grouped with the LO phase offset 2πf0T0. In other words, combining

(4.2) and (4.3), the observed phase of the received signal is:

ψ (t+ T0) = ψ (t) + 2πf0T0 +
2π

λ
· cos [θ (t)] ·∆rx

= ψ (t) + 2π

>
f0 +

cos [θ (t)]

λ
· vx

?
T0

+

>
2π

λ
cos [θ (t)] · a

2

2

?
· T 2

0

(4.19)
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thus it will be impossible to distinguish vx from f0 by measuring a only. However, the last

term in (4.19) can still be distinguished as the only quadratic function of T0, where the DoA

θ is the only unknown variable in this term. A joint estimation of DoA and LO frequency

offset (as proposed in Chapter 3) will provide the correct DoA, but a fake frequency offset

f́0 (it is barely the sum of f0 and vx, i.e. f́0 = f0 +
cos[θ(t)]

λ
· vx). We verify this theoretical

prediction with simulations in Section 4.3 and measurements in Section 4.4, and it could

serve as guidelines for trajectory design problems in virtual array systems.

The observability analysis results above can provide two guidelines about the trajectory

design in the virtual array, as shown below. Verification of these guidelines are performed

with simulations and present in the next section:

1. If the receiver moves with a constant linear velocity, the DoA can only be estimated

with the SAS approach. To estimate the DoA with the joint estimation method,

the receiver has to have at least one acceleration to make the system observable.

Linear trajectories with non-zero acceleration and any non-linear trajectories caused

by unparalleled acceleration all satisfy this requirement.

2. In a virtual array system, when the receiver moves with a constant acceleration, even

when perfect position information is not available, or we do not know the initial

velocity, the DoA can still be estimated as long as we can measure the acceleration

of the receiver.

4.3 Validation of Observability-deduced Principles Through Simulation

In this section, we perform simulations to verify the feasibility of the virtual array. We

conducted Monte-Carlo simulations to evaluate the DoA estimation performance of the

virtual array system under simple linear trajectories with/without knowledge of receiver

position and initial velocity. Specifically, we calculated the root mean square error (RMSE)

for 5000 trials as a criterion to evaluate the DoA estimation performance. The simulation
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configuration also considered real-world system imperfections (e.g., multipath, low-quality

LO).

4.3.1 Simulation setup

Simulation of the proposed system is conducted in Matlab. To design the virtual array, we

simulate a linear receiver movement with a constant acceleration of 0.95 m/s2. The initial

velocity is set to zero. The receiver’s movement lasts for 0.8 seconds, so the length of the

linear trajectory is 0.3 m. We consider that the relative positions of the receiver can be

calculated from IMU readings and the IMU readings are unbiased. Thus, we have perfect

knowledge of the receiver’s positions and accelerations. The carrier frequency is set to 1

GHz, and the number of virtual arrays is set to 10. Hence, the array spacing is 0.03 m,

which meets the requirement of less than half of the wavelength (0.15 m).

We consider the transmitter is sending periodic packets, i.e., a PSS sequence, every

0.667 ms. The receiver captures the signal and performs correlation between the received

baseband signal and the known preamble. The principle of the simulation is to model the

received phase and estimate the corresponding DoA. The direct path always exists between

the transmitter and the receiver, and the DoA θ of the LoS path is set to a random angle

between 0◦ and 180◦. Although the system model in Chapter 3 only considered the LoS

propagation, the array measurements in real-world propagation are likely to be corrupted

by the multipath component [132]. Therefore, to include the possible multipath distortion,

a Rician propagation model is applied to describe the channel condition: in addition to

the LoS path, there are a number of multipath paths that arrive at the receiver at different

angles. In this case, the channel amplitude is described by the simulated Rician channel

impulse response (CIR). The CIR is expressed as follows:

h
(
n,m

)
= ej

+β·+r[n] +

Nmpc!

k=1

αke
j(ψk+ +βk·+r[n]) (4.20)
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where the LoS component is assumed to have a unit amplitude; αk is the relative amplitude

of the k-th multipath component, distributed uniformly over [0,αmax]; Nmpc is the number

of multipath path and set to 10 in the simulations; φk is a random phase term distributed

uniformly over [0, 2π] and ,βk is the wave vector of the k-th multipath component (corre-

sponding to an incident angle that is distributed uniformly over [0, 2π]). This corresponds

to the worst case, showing that the multipath comes from all directions. Also, the total mul-

tipath power is set within 10 dB lower of the LoS power. The received signal is considered

to contain a zero-mean, additive white-noise with a signal-to-noise ratio (SNR) of 30 dB.

As the propagation scenario is fully characterized, the next step is to simulate the LO

phase offset due to the transceiver frequency mismatch f0 and also the fluctuation of f0

itself. In principle, the value of f0 varies continuously with time, and the lower the quality

of the oscillator, the more drastic the variation will be. To simulate the received signal

distorted by the LO phase shift, we use a discrete two-state state-space model to simulate

f0 between the transmitter and the receiver [133, 134]. The dynamic of the LO is described

as xk = [ψk,ωk]
T , where ψk is the LO frequency offset and ωk is the accumulated angular

frequency offset at the time-slot k. The LO offsets of each transmit node relative to the

receiver can be modelled as:

xk = Fxk−1 + nk (Q) (4.21)

where the state update matrix F is defined as

F =

*

+,
1 T0

0 1

-

./ (4.22)

and nk (Q) is the noise vector that causes the LO phase and frequency drifts from their
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nominal value, which is defined as:

Q = q21

*

+,
T0 0

0 0

-

./+ q22

*

+,
T 2
0

3

T 2
0

2

T 2
0

2
T0

-

./ (4.23)

where q21 and q22 are the process noise parameters that correspond to white frequency noise

and random walk frequency noise, respectively [134, 94]. For the DoA estimation with vir-

tual array in our simulations and experimental setups, transceivers are generally equipped

with low-cost oscillators which contain significant LO phase drift, i.e. TCXO, typical val-

ues are q21 = 8.47× 10−22 and q22 = 5.51× 10−18.

Finally, the received signal with LO phase drift and channel distortion is calculated and

the DoA can be simulated after the effect of LO frequency mismatch is eliminated. The

first method is the SAS approach, where the LO phase offset is measured externally. In

simulations, we use the average value of f0 0.8 s before the receiver movement to com-

pensate for the phase shift during the movement; the DoA estimation results are presented.

The second method is the joint estimation approach, which separates the phase offset due

to LO and the phase shift due to the receiver movement in a 2D MUSIC spectrum search.

The feasibility of the joint estimation approach under different measurement information

is presented in the next section.

4.3.2 Verification of the observability analysis

One of the objectives of our simulations is to validate the two predictions provided by the

observability analysis in Section 4.2.4. The first prediction can be proved easily with simu-

lations. We simulate the condition when the receiver performs a uniform linear motion, and

the corresponding MUSIC spectrum is presented in Figure 4.1. Since the phase shift due to

receiver movement cannot be separated from the phase shift due to LO offset, the MUSIC

algorithm failed to calculate the right noise eigenvalues and reconstruct the corresponding

noise subspace. As shown in the figure, the MUSIC spectrum is a diagonal line between
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the frequency and angular domains and is also symmetric about 90◦ due to the DoA ambi-

guity in uniform linear arrays. Therefore, it does not yield any peaks and leads to incorrect

DoA estimates. As a result, if the receiver can only move with a constant linear velocity,

the DoA in the virtual array can only be estimated with the SAS approach, as the estimated

term f0 can be considered an extra input into the system.

Figure 4.1: MUSIC Spectrum with Uniform Linear Movement

The second prediction is focused on the type of measurement function, i.e., the system

is observable when taking position measurements and unobservable when taking accel-

eration measurements. However, the DoA is observable in both cases. Here we take one

realization with [θ, f0] = [45◦, 12.2Hz], generated in our simulation, as an example. When

taking the position vector as a measurement function, the steering vector is calculated with

unbiased receiver coordinates. The MUSIC spectrum in Figure 4.2a is calculated under this

configuration, and the highest main peak indicates the estimated θ and f0.

When taking accelerations as measurement, the joint approach still needs receiver co-

ordinates to calculate the steering vector. Since the true initial velocity is unknown, we

will give a random initial velocity and combine it with the true acceleration value obtained

from IMU measurements to create a “fake” receiver trajectory. This trajectory deviates

from the real position of the receiver. However, it can be applied in the signal model of

(4.19) to separate the phase shift caused by the receiver movement as long as the WSSUS

assumption and spatial aliasing criterion are still satisfied.
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In this case, we assume the initial velocity for the fake trajectory is 0.5 m/s instead

of zero (its true initial velocity). With the “fake” relative receiver coordinates, the 2D

MUSIC search result with this virtual trajectory is shown in Figure 4.2b. It can be seen

that the peak of the spectrum still tracked the roughly correct DoA around 46◦, where

the estimated LO offset is wrong (0.9 Hz drifts from the correct LO offset). This result

verifies our predictions in Section 4.2.4, which states that the DoA is observable when

the receiver’s acceleration parameters are measured, even though the observability matrix

is rank deficient. The estimated LO offset is wrong due to the term f0, which lies in an

unobservable direction.

(a) Joint estimation with knowledge of receiver position

(b) Joint estimation with knowledge of acceleration

Figure 4.2: Simulation for the Joint estimation with different measurement [91].
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4.3.3 Verification of the spatial aliasing criterion

Another subject of the simulations in this chapter is to verify the spatial aliasing criterion

in the virtual array system. As explained in Section 3.2.4, the distance between the two ad-

jacent array elements must be no larger than λ/2 to avoid DoA ambiguity, which leads to

significant velocity constraints for the receiver. To verify this statement, we perform simu-

lations by observing the corresponding MUSIC spectrum under different element spacing

configurations. The results are shown in Figure 4.3.

Figure 4.3: MUSIC Spectrum versus Array Element Spacing

It is clear from the figure that additional peaks appear in the MUSIC spectrum when

the array elements are spaced more than half a wavelength, which meet our expectations.

The reason is straightforward: the objective of estimating a DoA (i.e., θ in Eq.(3.12)) is to

extract the spatial frequency (i.e., the term µ=j 2π
λ
∆n in Eq.(3.12)) from the signals received

by the array; to determine θ uniquely from the spatial frequency µ, the one-to-one corre-

spondence is desired [34]. As a result, it requires the element spacing satisfies ∆n ≤ λ
2
.

When the element spacing does not satisfy this criterion, there will be an ambiguity in

DoA determination, i.e., multiple solutions for the angles from a specific value of µ. Such
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phenomenon will resulting in the MUSIC spectrum having multiple extra lobes other than

the main lobe, as shown in Figure 4.3. When the oscillator stability is good and the ele-

ment spacing is no more than 0.75λ, the extra lobes are lower than the main lobe, and the

right DoA is still possible to be determined. However, if the oscillator stability is bad (e.g.,

TCXOs), it will add great uncertainty to the system and the DoA is difficult to be recovered

from the MUSIC spectrum.

4.3.4 Monte-Carlo simulations

To evaluate the DoA estimation performance for these predictions in a more general case,

we performed Monte-Carlo simulations with 5000 independent runs under the configura-

tions above. The time consumption of the simulation is around 50 runs per minute. The

DoA θ estimation error and the LO frequency estimation f0 error are zero-mean for both

the SAS approach and the joint estimation approach with true receiver positions. As for

the case when applying the joint estimation with unknown receiver positions, the DoA θ

estimation error is zero-mean; the estimation RMSE error of f0 is around 1.35 Hz. This

observation confirms to our expectation since the estimated value is actually a combination

of the LO frequency offset and the receiver speed.

The simulation results are summarized in Table 4.1. It can be clearly seen from the

table that for the joint estimation approach, the position measurement and the acceleration

measurement provide very similar DoA estimation accuracy. The virtual array system is

feasible to estimate the right DoA as long as the acceleration can be measured. Besides,

the joint estimation provides slightly better accuracy than the SAS approach, which can

be explained by the fact that, for low-quality oscillators, f0 changes too much during the

receiver’s state from stationary to moving.

4.4 Implementation on Software-Defined Radios and Results

Our previous experiments in [80] were performed in an anechoic chamber, where both
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Table 4.1: DoA Estimation Simulation Results over 5000 Runs

LO Compensation RMSE f0 error RMSE θ error
Joint (with rx) 0.32 Hz 8.04◦

Joint (with ax) 1.35 Hz 8.52◦

SAS approach 0.34 Hz 9.17◦

the transmitter and receiver were equipped with OCXOs containing less LO frequency

offset. Also, the receiving antenna was moved by a mechanical turntable with a precise

semicircular trajectory. Such a configuration is a luxury in many real-world scenarios, such

as portable electronics. Therefore, the objective of experiments in this chapter is to test the

feasibility of a virtual array under more realistic conditions. The transmitter and receiver

are both equipped with low-quality LOs and off-the-shelf IMUs, which contain significant

imperfection. The movement of the receiver was performed manually, following a linear

trajectory. The measurement layout is an indoor environment with multipath components.

The whole experiment serves as a proof-of-concept, providing DoA estimation results by

tracking the positions or accelerations of the receiver.

4.4.1 Measurement setup

We validate the proposed algorithm by conducting experiments on a software defined radio

(SDR) testbed. The transmitter is composed of a USRP-B205 SDR, while the receiver is

composed of a USRP-E310 SDR. The transmitter is connected to a host laptop, and the

receiver USRP contains a field-programmable gate array (FPGA). Both transmitter and

receiver are equipped with an omnidirectional antenna VERT900 and a TCXO local os-

cillator, which will cause a LO frequency offset in the order of 5∼50 Hz. The receiver

is embedded with a low-cost IMU chip, model MPU-9150, which combines a triple-axis

accelerometer, triple-axis gyroscope, and triple-axis magnetometer. The transmitter sends

a periodic PSS sequence every 0.667 ms at a carrier frequency of 1 GHz (similarly to our

simulations). The receiver correlates its received baseband signal with the transmitted se-

quence and detects the peaks in the correlation function, thereby finding the boundaries of

115



the received packet. This is done in real-time on the receiver’s FPGA. Finally, the received

packets are recorded by the USRP-E310 embedded microcontroller system for offline pro-

cessing. The IMU measurement data is recorded in the same data file as the received

packets by a separate thread.

Figure 4.4: The layout of the measurement scenario. The transmitter position is fixed, and
the receiver moves along a linear trajectory (0.3 m). The measurements are taken in 3
positions; for each position, the measurement is repeated 15 times [91].

The measurement was performed in a room whose layout is depicted in Figure 4.4.

The dimension of the laboratory is approximately 10 m long and 7 m wide. The labora-

tory is equipped with hardware such as metal cabinets, tables and chairs, which will lead

to multipath propagation as scatters. The transmitter is located at a height of 0.5 m. The

receiver is placed at three different locations on the other side of the room at the height

of 0.1 m, corresponding to the following DoAs: [θ1, θ2, θ3] = [74, 92, 112]◦. The exper-

iment was repeated 15 times for each receiver position. The LoS visibility holds during

the measurements and the SNR is around 30 dB. In each experiment run, the transmitter

broadcasts the periodic sequences continuously. The receiver is first standing still for 15

s to avoid possible hardware instability. After 15 s, the receiver starts to receive packets,

and the USRP is manually moved along a linear trajectory. The trajectory length is around
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0.3 m, and the moving process lasts around 0.8 s. The acceleration is provided manually

and therefore varies throughout the measurements. The receiver-embedded IMU records

its movement states for later reconstruction of the trajectory. The number of the virtual

array element is set to 10, so the WSSUS assumption and the spatial aliasing criterion are

satisfied. We installed the receiver on a toy-sized trolley. A slide rail is also used to ensure a

stable orientation and a consistent ground truth in each experimental run. Besides, although

the receiver is moved manually, the corresponding manual errors would not significantly

degrade the DoA estimation performance due to limited movement time.

4.4.2 Data Processing

In our experiments, the data processing consists of the trajectory reconstruction (with/without

knowing the initial movement state), the LO phase offset compensation and the DoA esti-

mation. For the trajectory reconstruction, the actual initial velocity is zero as the receiver is

stationary before moving. In principle, the trajectory can be reconstructed through a UKF

with the initial velocity as input. First, we investigate the case where we know the initial

velocity. It is observed that some of the estimated trajectories drift off from the ground

truth towards the end of the movement, as shown in Figure 4.5, with an RMSE error of

3.2 cm. This error is small enough to be neglected in further processing, since most of

the drifts occur at the end of the movements. As for the case where the initial velocity is

unknown, we reconstructed a “fake” trajectory by giving UKF a false initial velocity of 0.5

m/s and then integrating it with the real measured acceleration. The trajectory length error

came to more than 20 cm, as we expected. Both trajectories satisfy the aforementioned

motion constraints and will be verified in the DoA estimation. One thing to mention is

that when using off-the-shelf IMUs (such as this paper), the movement time should be kept

short (about 1∼2 s) to avoid large integration errors due to sensor bias.

Two techniques are proposed for eliminating the effect of the LO phase offset: the SAS

approach and the joint estimation approach. The LO frequency offset f0 varies continu-
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Figure 4.5: Comparisons between the real ground truth and the estimated IMU trajecto-
ries. The black dashed line indicates for the ground truth. The 15 blue dashed lines are
estimation results of 15 measurements.

ously and independently with time. If the receiver can be stopped before moving, both

methods can be applied to estimate the f0. Otherwise, the joint estimate is more appropri-

ate. For the SAS approach, the f0 is estimated during the stationary process (0.8 s before

moving) and then used for compensation; for the joint estimation approach, the f0 and

the θ are simulated simultaneously in a 2D MUSIC search. The measurement results are

presented in the next section.

4.4.3 Results Analysis

Figure 4.6 shows the measured LO phase offset and the phase of the received signal (after

compensation) when using the SAS approach. It can be seen in Figure 4.6a that the average

LO frequency offset (which can only be estimated at standstill) changes consistently at the

moments before and after the receiver moves. The consequence of this LO drift is evident

in the observed phase in Figure 4.6b. Towards the end of the movement, it can be seen
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that there is a linear drift in the observed phase due to the change in the LO frequency

offset. Nevertheless, applying the MUSIC algorithm on the LO offset compensated signals

provides an RMSE up to 13◦.

(a) Measured LO offset in real time

(b) Compensated phase in standstill and movement

Figure 4.6: Experiment results for the SAS approach. (a) LO phase offset measurements
during standstill are used for LO offset compensation. (b) Phase variation during stand-
still after compensation is nearly negligible, and phase variation during movement after
compensation can be observed [91].

Figure 4.7a shows an example of a 2D MUSIC spectrum when applying the joint es-

timation with the true IMU-reconstructed trajectory. A clear peak can be observed at a

roughly true DoA of 73◦ and true f0 at 14.8 Hz. As for the joint estimation with the fake

trajectory, Figure 4.7b indicates a very similar DoA estimation result of 75◦ with a drifted

f0, which fits our simulation results. Therefore, both measurement and simulation results

confirmed that the joint estimation could be applied to any virtual array user cases without
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the receiver being at standstill. The DoA estimation is feasible even without knowing the

initial movement states (velocity vx, position rx, etc.).

(a) Joint estimation with knowledge of initial velocity

(b) Joint estimation without knowledge of initial velocity

Figure 4.7: Experimental results of the joint estimation approach (a) DoA is estimated with
knowledge of receiver position, measured with IMU; (b) DoA is estimated by measuring
the acceleration only [91].

The DoA estimation results of the SAS approach and the joint estimation approach are

summarized in Table 4.2. First, it can be seen that in the joint approach, DoA estimation

with knowledge of the receiver’s initial motion state has higher accuracy, as inaccurate

coordinates inherently introduce bias into the estimator. Secondly, the accuracy of the

joint estimation (with rx) is higher than in the case of the SAS approach, which also fits

our simulation results. This can be attributed to the fact that, for low-quality oscillators,

the frequency mismatch f0 changes too much between the moment where the receiver is
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standing still and where the receiver starts moving, which degrades the performance of the

SAS compensation method.

Table 4.2: Measurement Errors over 15 Experiment Runs

Compensation
Method Position 1 Position 2 Position 3

RMSE in SAS 11.6◦ 12.9◦ 5.9◦

RMSE in Joint (with rx) 8.7◦ 12.1◦ 4.2◦

RMSE in Joint (with ax) 9.2◦ 13.5◦ 4.9◦

While the measurement error can be considered high with respect to conventional phys-

ical multi-antenna arrays, it needs to be reminded that the experiment serves as a proof-of-

concept to test the feasibility of the virtual array with real-world imperfections (LO offsets,

manual errors, multipath distortions, etc.). The proposed system is a fundamental shift from

conventional DoA estimation methods: We are trying to estimate the DoA with an off-the-

shelf single-antenna device, which requires self-identifying receiver positions/accelerations

and compensating LO frequency offsets. In that respect, performance degradation can be

expected. We believe that further optimization of the LO frequency offset elimination is

possible; better measuring/processing of the IMU data and a larger size of the receiver tra-

jectory can also improve the DoA estimation performances. These will be investigated in

our future work.

4.5 Conclusion

In this chapter, we have investigated the feasibility of the virtual multi-antenna array sys-

tem and improve its robustness to account for real-world applications. We performed a

comprehensive nonlinear observability analysis for the system and then provided two the-

oretical observations: The DoA and the LO frequency offset can be jointly estimated if

the receiver’s movement contains a certain acceleration; The DoA can be estimated by

measuring the receiver’s acceleration only, without the knowledge of precise receiver posi-

tions. Simulations were conducted to confirm both of these theoretical observations. These
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theoretical foundations provide guidance for designing feasible and user-friendly receiver

trajectories to meet specific application requirements. Finally, the proposed system was

implemented on a software-defined radio that integrates off-the-shelf components such as

a low-cost oscillator TCXO and a generic IMU. The experiments show that the DoA can

still be estimated with DoA RMSE between 5◦ and 13◦ in the presence of hardware biases.

Both simulations and experimental results show that the virtual array can be an alterna-

tive for DoA estimation by dispensing with cumbersome and expensive multi-antenna ar-

rays, which simultaneously reduces the cost and increases the practicability of conventional

direction finding systems. The proposed technology has great potential in applications with

high cost or form-factor constraints, including portable electronics, NB-IoT networks, and

indoor localization. As the virtual array exploits the mobility of transmitters, it can also be

applied for target tracking in vehicle-to-Everything (V2X) networks, especially for aerial

vehicles that more likely to maintain the LoS visibility with ground targets. In the next

chapter, we will evaluate the performance of the proposed virtual array system in UAV-

based communication scenarios.
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CHAPTER 5

VIRTUAL MULTIANTENNA ARRAY IN UAV-ASSISTED NETWORKS

The aim of this chapter is to demonstrate the feasibility and potential benefits of the vir-

tual antenna array systems presented in Chapters 3 and 4 by examining its application in

UAV-based communication networks. The two local oscillator frequency offset compensa-

tion algorithms are applied to UAV scenarios to explore their performance under different

oscillator qualities. Detailed simulations are performed to evaluate some of the channel

parameters that may affect the accuracy of the DoA estimation methods. Different types of

trajectories have also been investigated to compare their performance.

5.1 Virtual aray system model in UAV communications

Unlike conventional one-dimensional DoA estimation in terrestrial networks (azimuth only),

the direction of signals in aerial networks is usually expressed by the azimuth angle φ and

the elevation angle θ. In general, two-dimensional arrays are required to estimate the az-

imuth and elevation of a source. Commonly used 2D array geometry includes the uniform

circular arrays (UCAs), uniform rectangular arrays (URAs), and uniform planar arrays

(UPAs), where detailed information can be found in [135]. For simplicity, the MUSIC al-

gorithm is applied in this chapter for corresponding 2D-DoA estimation problems, where

other 2D-DoA estimation algorithms can be found in [136, 137].

The requirement of the 2D array geometry also applies in the proposed UAV-based

virtual array systems, i.e., the UAV receiver needs to move along 2D trajectories to estimate

azimuth and elevation simultaneously. A simplified diagram of the virtual array system

in UAV-based communication networks is shown in Figure 5.1a, and an illustration of

directions for the incoming signal is provided in Figure 5.1b.

By reusing the data model described in Chapter 3, we consider that a narrowband signal
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(a) UAV-based virtual antenna array (b) Angular relationship

Figure 5.1: Diagram of the UAV-based virtual array [138].

of wavelength λ is emitted by the ground transmitter. The UAV is equipped with a single

omnidirectional antenna and moves along a 2D path when receiving signals. Assume that

the position of the UAV when it receives the first packet is the initial position ,r [0]; the

relative position of the UAV is represented by [xn, yn, zn] for n = 0, . . . , N when the UAV

moves from ,r [0] to ,r [n]. Also, since the signal arrives at the UAV from the far-field, the

DOA is considered constant at each UAV position. We still denote s
(
m
)

the baseband

representation of the transmitted signal (for m = 1, ...,M ) and r
(
n,m

)
the m-th baseband

sample of the received signal when the UAV moves to ,r [n] (with sample period Ts). As a

result, the received signal r
(
n,m

)
can be written as:

r
(
n,m

)
= h

(
n,m

)
∗ s

(
m
)
· ej(ψ0+2πf0(tn+mTs)) + ω

(
n,m

)
(5.1)

where h
(
n,m

)
is the CIR and the ej(2πf0(tn+mTs)) is the phase drift introduced by the LO

frequency offset f0.

In general, the impulse response h
(
n,m

)
provides details about the temporal, spatial

and energy information of multipath components of the channel. We consider that the CIR

remains constant from tn to tn+1, thus h
(
n,m

)
is simplified to h

(
n
)

in the following. When
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we consider a LoS channel for simplicity, the h
(
n
)

can be written as:

h[n] = α · ej+β(φ,θ)·+r[n] (5.2)

where α is amplitude of the channel and ,β(φ, θ) is the wave vector. The term ej
+β(φ,θ)·+r[n] is

the corresponding phase drift due to UAV movement, i.e, the phase drift used to perform

2D-DOA estimation in the virtual array system. In the target aerial space, the term ,β(φ, θ) ·

,r [n] can be developed as

,β(φ, θ) · ,r [n] =2π

λ
(x [n] cos(φ)cos(θ) + y [n] sin(φ)cos(θ) + z [n] sin(θ)) (5.3)

where [xn, yn, zn] should be measured by our system.

In practice, phase distortion caused by the LO frequency offset and phase drifts caused

by the UAV movement are difficult to separate, although only the latter is useful in virtual

arrays. To address this challenge, two LO offset compensation methods are provided in

Chapter 3. However, as the signal model expands to a high dimension, both methods need

to be modified accordingly.

For the SAS approach, the UAV receiver needs to stand still before moving, then using

the estimated f0 to compensate the phase distortion. As for UAV scenarios, the SAS algo-

rithm needs to perform a 2D MUSIC spectrum search in the azimuth and elevation domains

for the compensated signal.

The joint estimation approach needs to rewrite the output of the array in Eq.(5.1) by

stacking the N received packets in a column vector as:

r [m] = a (f0,φ, θ)X [m] + ω [m] (5.4)

where a (f0,φ, θ) is the 3D steering vector and X
(
m
)

is constant for all virtual antennas,
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expressed by:

X [m] = α · s [m] · ej(ψ0+2πf0mTs) (5.5)

and the steering vector a (f0,φ, θ) represents parameter of interest that causing the phase

to change. As a result, the steering vector a (f0,φ, θ) can be expressed by:

a (f0,φ, θ) =

*

+++++++,

ej(2πf0t0+
2π
λ
·(x0cosφcosθ+y0sinφcosθ+z0sinθ))

ej(2πf0t1+
2π
λ
·(x1cosφcosθ+y1sinφcosθ+z1sinθ))

...

ej(2πf0tN−1+
2π
λ
·(xN−1cosφcosθ+yN−1sinφcosθ+zN−1sinθ))

-

......./

(5.6)

Similarly to the previous case in (3.19), the noise subspace ES is determined by developing

the eigen-decomposition for the covariance matrix of r [m], and the corresponding MUSIC

spectrum is defined as:

PMU (f0,φ, θ) =
1

aH (f0,ϕ, θ)ESES
Ha (f0,φ, θ)

(5.7)

where the target parameter can be estiamted simultaneously with a three-dimensional search:

&
f̂0, φ̂, θ̂

'
= argmax

(f0,φ,θ)

{PMU (f0,φ, θ)} (5.8)

To summarize, although the SAS approach and the joint estimation approach can theo-

retically eliminate the effects of LO frequency offsets in aerial networks, their performance

should still be tested and evaluated for the UAV-based scenarios. In addition, the feasibility

of the UAV-based virtual array system needs to be investigated by considering the impact

of more realistic factors, including LO quality, ATG channel characteristics, SNR levels,

and the shape of UAV trajectories.
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5.2 Simulation Implementation

5.2.1 Simulation Configuration

Experiments with real aerial platforms are generally time-consuming and costly. Therefore,

this chapter investigates the performance of the UAV-based virtual array through detailed

simulations. First of all, we consider the problem of interest is to estimate the DoA of a

ground transmitter by analyzing the received signal at the UAV-based virtual array under

an urban city environment. The received signal follows the description in Eq. (5.1) and is

generated by simulating the channel and the LO frequency offset simultaneously.

More specifically, the CIR is provided by the Ray-tracing simulator in Chapter 2.

Therefore, the effect of ATG channel characteristics on the accuracy of virtual arrays (e.g.,

unique multipath distribution, limited angular spread) can be investigated. The phase offset

ej(2πf0(tn+mTs)) due to the LO frequency offset are simulated by applying the state-space

model in Chapter 4. Simulations are performed for both TCXO and OCXO configurations

to evaluate the performance of the system with respect to different LO qualities. Addi-

tional noise is manually added to the signal model, while the effect of the signal-to-noise

ratio (SNR) has also been investigated. The SNR in this chapter is defined as the ratio of

the total received multipath power to the power of background noise. In addition, the shape

and size of the 2D UAV trajectory may also affect the accuracy of the estimation, so we

evaluated the performance of four differently shapes of trajectories. We assumed that the

UAV coordinates in all four trajectories were known. The carrier frequency is set as 2.4

GHz and the half wavelength is around 0.06 m.

One example from the simulation is depicted in Figure 5.2 where the UAV is flying

over the center of a 3D urban city map at an altitude of 80m. The figure shows that the

UAV receiver moves in a circular trajectory and implicitly creates a circular array. The

array contains 80 antenna elements and each separated by half a wavelength (6 cm) so that

the total length of the trajectory is around 4.74 m. There are also 2000 ground transmitters
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Figure 5.2: One example snapshot from the UAV-based virtual array simulation [138].

distributed over the ground, and half of them have the LoS visibility. For each transmitter,

the ray-tracing simulator computes the impulse response h[n] (for n = 0, 1, ..., 79) and

records the direction and power for each ray. After the received signal is calculated as Eq.

(5.1), the 2D virtual array algorithms are applied to estimate the corresponding DOA.

5.2.2 2D-DOA Estimation Result

This subsection provides one DoA estimation realization of the simulated 2D UAV-based

virtual array algorithm. In this example, the receiver and transmitter are equipped with

an OCXO; the LoS visibility holds and the SNR is 20 dB. Two LO frequency offset com-

pensation techniques are both applied. Similar processes are performed for all the 2000

transmitters under each SNR configuration.

The result of the SAS method is shown in Figure 5.3. In this case, received signals after

the frequency offset compensation are used to estimate the azimuth and the elevation angle

simultaneously via a 2D MUSIC search. As shown in the figure, a clear peak is observed at

azimuth 8◦ and elevation 56◦, which is very close to the true DOA of 12◦ for azimuth and

52◦ for elevation.

The result of the Joint Estimation method for the same snapshot is shown in Figure 5.4.
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(a) Azimuth estimation for 2D Virtual array (b) Elevation estimation for 2D Virtual array

Figure 5.3: SAS Estimation for the 2D Virtual Array

(a) Joint estimation (LO offset & Azimuth) (b) Joint estimation (LO offset & Elevation)

Figure 5.4: Joint Estimation for the 2D Virtual Array

In this case, only the received packets during the UAV movement were used for processing.

The peak of the spectrum indicates the estimated LO frequency offset f0, and also the

estimated DOA (azimuth and elevation) corresponding to the peak. A clear peak can be

identified at 10◦ for azimuth and 55◦ for elevation, close to the true DOA of 12◦ for azimuth

and 52◦ for elevation.
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5.3 UAV-based Virtual Array Performance Evaluation

This section evaluates the performance of the proposed UAV-based virtual array system

based on extensive simulation results by considering parameters such as the LoS visibility,

LO quality, LO frequency offset compensation method, SNR level, and the impacts of dif-

ferent UAV trajectories. Comparisons between different simulation setups and their effects

on the estimation accuracy are discussed in following subsections.

5.3.1 Comparison between different LO qualities

The magnitude and frequency stability of the LO frequency offset between transceivers

depends on the quality of their embedded LO oscillators. Low-quality oscillators may

cause significant phase distortions that may fail the DoA estimation process. In general,

the configuration of LOs in the UAV-based virtual array system can be divided into three

categories: 1) both transmitters and receivers are equipped with high-quality LO oscilla-

tors, e.g., OCXOs; 2) both transmitters and receivers are equipped with low-quality LO

oscillators, e.g., TCXOs; 3) the receiver oscillator is designed to meet the specification of

the localization system, thus with good frequency stability; the transmitter to be located

are using oscillators that suit their own needs and therefore are not guaranteed to be stable.

The last category can be considered as the most common case in real-world applications.

The subject of this subsection is to verify the feasibility of the UAV virtual array system

regarding different LO quality conditions.

Therefore, we perform extensive simulations by modeling the above three LO quality

configurations. The LO frequency offset in different oscillator setups are simulated by

using the state-space model described in Eq.(4.21), where the process noise parameters

are (q21 = 8.47 × 10−22; q22 = 5.51 × 10−18) for TCXOs and (q21 = 5.25 × 10−24; q22 =

1.77 × 10−21) for OCXOs [134, 94]. The trajectory considered in this subsection is the

uniform circle in Figure 5.2 and the movement time is 2s. The SNR is set to 20 dB, and the
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joint estimation method is applied to resolve the phase distortion due to the LO frequency

offset. Simulations are performed for the 1000 ground transmitters with LoS visibilities

and the 1000 ground transmitters without LoS visibilities.

(a) (b)

(c) (d)

Figure 5.5: Estimation Error versus LO Qualities

Figure 5.5 presents the CDF of the estimated error under different LO quality configu-

rations for the joint estimation in all simulation runs. We have also calculated the RMSE
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for each configuration, which are summarized in Table 5.1. It is clear from the figure and

the table that the estimation accuracy of the virtual array system degrades with worse LO

quality configurations. The significant LO frequency offset caused by imperfect oscillators

can not be fully compensated, leading to higher estimation errors. However, even in the

worst-case scenarios (NLoS propagation, both equipped with TCXOs), the RMSE for both

AOA and EOA are still lower than 10◦, which means the system remains applicable.

Table 5.1: 2D-DOA RMSE versus LO Qualities

LO quality
AOA EOA

LoS NLoS LoS NLoS

Good LO 3.39◦ 5.81◦ 4.58◦ 6.01◦

Medium LO 4.44◦ 6.51◦ 5.92◦ 6.68◦

Bad LO 7.41◦ 8.83◦ 9.21◦ 9.73◦

The other observation from the simulation results is that the estimation errors in the

NLoS scenarios are more significant than in the LoS scenarios since the absence of a LoS

path degrades the system performance. However, such DoA estimation accuracy is still

satisfying compared to typical DoA estimation techniques in terrestrial NLoS communica-

tion scenarios. This observation can be explained by the conclusion in Chapter 2, i.e., the

angular spreads at UAV platforms are minimal for both LoS and NLoS scenarios, which

has an excellent benefit for DoA-based localizations.

Therefore, simulation results in this subsection proved the feasibility of the UAV-based

virtual array system for both LoS and NLoS scenarios. The performance of the proposed

DoA estimator improves or degrades with a better or worse LO quality conguration. These

results indicate that the UAV-based virtual array system can be feasible with cheap, off-the-

shelf hardware, which typically has significant LO frequency offsets.
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5.3.2 Comparison between LO offset compensation methods

Two methods are provided in this thesis to address the phase distortion in the virtual array

system: the SAS method and the joint estimation method. The feasibility of these two

methods relies on a fundamental assumption: the LO frequency offset does not change

significantly with time, which is theoretically true if the movement lasts in a few seconds.

In this subsection, we aim to evaluate the performance of the SAS method and the joint

estimation method in UAV communication scenarios, especially for cases when the motion

duration keeps longer and results in the LO frequency offset drifts.

The simulation applies these two LO compensation methods for all 2000 ground trans-

mitters. We consider the transmitter is equipped with a TCXO, and the UAV receiver is

equipped with an OCXO. The UAV moves along the circular trajectory with 80 elements,

and the movement time is set to 2s, 5s, 8s, respectively. The drift of the LO frequency

offset becomes severer over time and is also modeled by the state-space model. The SNR

is set to 20 dB. Figure 5.6 presents the CDF of the estimated error for all simulation runs;

the RMSEs of both methods with respect to the different movement times are also provided

in the figure.

The first observation from Figure 5.6 is that when the UAV movement time is limited to

2s, both the SAS method and the joint estimation method provides pretty good estimation

performance. The estimation accuracy of the joint estimation method is slightly better than

the SAS method for both LoS and NLoS scenarios. This result can be explained by the fact

that the LO frequency offset changes too much when the UAV moves from being standstill,

thus reducing its estimation performance. On the contrary, the joint estimation directly

applies the received packets during movement to estimate the target DoA, thus provides

better estimation accuracy.
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(a) (b)

(c) (d)

Figure 5.6: Estimation Error versus LO Offset Compensation Methods
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When the movement time extended to 5s and 8s, apparent performance degradations

are observed for both the SAS and the joint estimation method. Such performance degra-

dations are expected since the oscillators considered in this subsection have poor frequency

stability, which makes the LO frequency offset drift with time. As a result, the phase dis-

tortion in Eq.(5.1) does not accumulate linearly over time, which makes it impossible to be

fully compensated with the SAS method. Similarly, the phase of received packets cannot

be characterized by the adapted steering vector in Eq.(5.6), which leads to worse DoA es-

timation accuracy for the joint estimation method. In addition, the degradation of the SAS

method becomes more severe over time, which makes it less suitable for DoA estimation

when flying UAVs for long periods.

In summary, in the UAV-based virtual array system, both the SAS method and the joint

estimation method provide good 2D-DoA estimation performance in a short movement

time, where the joint estimation method provides slightly better accuracy. The performance

of both methods degrades over longer periods of UAV movement as the LO frequency off-

set fluctuates over time and cannot be considered as a constant. Therefore, the choice of

compensation methods in real-life applications first depends on the movement time. The

joint estimation is recommended for systems with longer movement time. If the movement

time is short enough to keep the LO frequency offset constant, the choice of compensa-

tion methods depends more on the task to be performed by the UAV. The SAS method is

straightforward to design and apply; However, it requires the UAV receiver to stand still

before the movement, which leads to extra constraints on the UAV flight. The joint esti-

mation method does not require the UAV to stop before moving, but such usage flexibility

comes at the cost of more computation power to perform 3D MUSIC searches.

5.3.3 Comparison between different SNR

The performance of conventional subspace-based DoA estimation algorithms is easily af-

fected by the SNR of environments. More specifically, a high SNR leads to more apparent
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differences between the signal eigenvalues and the noise eigenvalues, which usually im-

proves the MUSIC estimation performance [139]. On the contrary, a low SNR can lead

to misrecognition of the signal source, making it difficult for MUSIC algorithms to esti-

mate DoAs, especially where multiple incident signals come from close directions [87].

To investigate the effect of the SNR on the performance of the virtual array system, we

performed extensive simulations in a wide range of SNR conditions (from 0 dB to 35 dB).

(a) (b)

Figure 5.7: Estimation Error versus SNR

Figure 5.9 compares the RMSE values of the estimated AOA and EOA versus the SNR

of the system. According to Figure 5.7a and Figure 5.7b, we can see that for both LoS

and NLoS scenarios, the RMSE first decreases as the SNR increases; the estimation per-

formance stabilizes when the SNR reaches a certain threshold (at around 15 dB). When the

SNR exceeds 15 dB, the RMSE fluctuates without a clear tendency.

The observations above can be explained as follows: At low SNRs, the noise subspace

is very difficult to estimate from the received signal packets, and the performance of the

MUSIC methods is significantly degraded. Therefore, the increases of SNR offer a signif-

icant improvement in DoA estimation accuracy. However, at high SNRs, the error in DoA

estimation is dominated by the imperfections due to the LO frequency offset; the effect of

improving the SNR on DoA estimation is therefore not obvious.

In summary, the simulation results show that the DoA estimation accuracy of the virtual

array system improves as the SNR increases. A high SNR leads to better signal subspace
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reconstruction in the MUSIC algorithm. However, such performance improvement is not

infinite since when the SNR exceeds a certain threshold, the estimation error will be domi-

nated by the LO frequency offset.

5.3.4 Comparison between different UAV trajectories

In above subsections, we consider that the UAV flies along a full circle and thus creates

a uniform circular array, as shown in Figure 5.2. Although the circular array is a widely

used structure in conventional 2D-DoA estimation systems, it is still somewhat unrealistic

to have the UAV fly in circular trajectories for every mission. Therefore, in this subsection,

we investigate the feasibility of the UAV-based virtual array when applying more trajectory

shapes.

(a) Rounded-rectangle shape (b) Rectangle shape (c) Ellipse shape

Figure 5.8: Extra UAV Trajectories in Virtual Array

As shown in Figure 5.8, three types of trajectories are implemented into the simulation

while the rest of the setup stay the same. The SNR is fixed at 20 dB. The RMSE of all four

trajectories (including the original circular trahectory) are summarized in Table 5.2.

It can be seen from Table 5.2 that there is no significant difference between different

trajectories. This phenomenon can be explained by the fundamental effect of the array

geometry in general DoA estimation problems. The array geometry plays a significant role

in determining the shape and properties of the array manifold, and most DoA estimation

algorithms rely on searching for response vectors over the array manifold that satisfies a
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Table 5.2: 2D-DOA RMSE versus UAV Trajectories

LO quality
AOA EOA

LoS NLoS LoS NLoS

Circular
Good LO 3.79◦ 5.81◦ 4.58◦ 6.01◦

Medium LO 4.44◦ 6.51◦ 5.92◦ 6.68◦

Bad LO 7.41◦ 8.83◦ 9.21◦ 9.73◦

Rounded-rectangle
Good LO 4.02◦ 5.54◦ 4.43◦ 6.19◦

Medium LO 4.37◦ 6.36◦ 6.01◦ 8.34◦

Bad LO 6.68◦ 7.94◦ 8.83◦ 9.92◦

Rectangle
Good LO 3.37◦ 5.72◦ 4.45◦ 5.88◦

Medium LO 4.51◦ 6.22◦ 6.03◦ 7.06◦

Bad LO 6.90◦ 8.66◦ 8.82◦ 10.17◦

Ellipse
Good LO 3.51◦ 5.65◦ 4.83◦ 5.93◦

Medium LO 5.02◦ 6.28◦ 5.85◦ 6.94◦

Bad LO 7.55◦ 7.94◦ 8.46◦ 8.67◦

given criterion. For example, in the case of the MUSIC algorithm, the manifold is searched

for vectors that are orthogonal to the estimated noise subspace [89]. In 2D-DoA estimation,

if the array geometry stays in 1D (i.e., linear shape), some vectors in the array manifold

can be written as linear combinations of other vectors, which will result in significant DoA

estimation errors. On the contrary, the four non-linear UAV trajectories discussed in this

subsection all have large sizes on the x-y plane, which results in good resolution of the

corresponding array manifolds. Therefore, the RMSEs provided by these four trajectories

are very similar.

In summary, the performance of the UAV-based virtual array system is not dependent on

specific trajectories as long as the requirements for a two-dimensional shape are met, which

allows users to design customized UAV trajectories for their own needs. The other obser-

vation is that the size of the UAV trajectory on a 2D plane may have significant impacts on

the estimation performance, which will be investigated in the following subsection.
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5.3.5 Comparison between Trajectory sizes

The resolution of conventional DoA estimation algorithms strongly relies on the number

of array elements, as well as the size of the array, as each element is usually spaced apart

by half a wavelength [34]. For the proposed virtual array systems, the size of an array

indicates the length of a 2D UAV trajectory. In the above subsections, the UAV trajectory

length is approximately 5 m, and the number of virtual antenna elements is 80. Such

configuration is almost prohibitive with realistic physical antennas; however, it is easy to

achieve with the UAV platform. Nevertheless, the performance of the UAV-based virtual

array system with less number of antenna elements, i.e., shorter 2D trajectories, still needs

further investigation. The significance of this subject is to find the shortest flight path that

guarantees the accuracy of the DoA estimation, which will save the battery power of the

UAV and reduce the computational burden.

(a) (b)

Figure 5.9: Estimation Error versus Trajectory Size

Figure 5.9 presents the RMSE error of the proposed system for different lengths of UAV

trajectories, by varying the number of antenna elements in a virtual array. We consider

the circular array geometry introduced in subsection 5.2.1. When the number of antenna

elements is set to 10, the trajectory is a short arc (one-eighth of a circle) with a length of
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0.6× 9 = 0.54 m. When the number of antenna elements increases to 80, the trajectory is

a full circle with a length of 0.6× 79 = 4.74 m.

As can be seen from the RMSE curves, the performance of the virtual array system

increases as the number of array elements increases, and the performance improvement

stabilizes after the number of array elements reaches 60. The reason for performance degra-

dation when utilizing fewer elements is that the reduction in array size would broaden the

main lobe in the corresponding MUSIC spectrum, i.e., making the peak difficult to detect,

which significantly degrades the resolution and accuracy of DoA estimation. As a result,

larger UAV trajectory sizes yield lower DoA estimation errors, which is consistent with

conventional multi-antenna array theory, i.e., physically larger array offers better resolu-

tion and improved DoA estimation performance. Therefore, increasing the size of the UAV

trajectory while maintaining the far-field regime is a simple strategy to improve the reso-

lution of the proposed system in real-world applications. However, larger trajectories also

lead to higher flying time, which caused an interesting trade-off. While the maximum UAV

velocity is limited by the spatial aliasing criterion in Eq (3.20), we suggest increasing the

UAV velocities to complete their movement in seconds.

5.4 Conclusion

In this chapter, we proved the feasibility of the virtual array concept in UAV-based scenarios

through extensive simulations. The problem of interest is to provide high-resolution DoA

estimation of a source signal in both the azimuth and elevation planes by creating a virtual

array with a single UAV platform. The major difficulty of DoA estimation in 3D space

is to estimate AOA and EOA simultaneously, which requires nonlinear UAV trajectories,

i.e., creates a 2D virtual antenna array. As the system expands to a higher dimension, extra

modifications are also made for the two LO frequency offset compensation methods. The

performance of these modified methods and other parameters that may affect the accuracy

of the DoA estimates were also evaluated via simulations.
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By analyzing the extensive simulation results, we have revealed several characteris-

tics of the UAV-based virtual array system; some design strategies are also provided for

practical applications. First of all, as angular spreads at the UAV platform are limited, the

system provides good DoA estimation accuracy. The accuracy can be further improved by

applying better LO quality configurations. Secondly, both the SAS method and the joint

estimation method can be used to solve the phase distortion problem caused by the LO fre-

quency offset. The performance of these two methods is related to the movement time of

the UAV. The joint estimation provides more robust accuracy when the movement time of

the UAV exceeds 5 seconds. Next, the performance of the proposed estimator improves as

the SNR increases, until it reaches a certain threshold (around 15 dB). Finally, simulation

results have verified that the proposed method achieves a better accuracy in larger 2D UAV

trajectories. Therefore, when implementing the virtual array system, larger trajectories in

a 2D plane are more recommended, while keeping the flight time of the UAV short. The

advantages and drawbacks of each parameter of interest are summarized in Table 5.3.
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Table 5.3: Discussions of Parameter of Interest

Parameters Description
Recommendations for

UAV at 80 m

Local Oscillator Qualities
Poor LO quality will cause
significant frequency offset
and degrade the estimator

Implement OCXOs on
UAV receivers to ensure
a reasonable accuracy

Duration of UAV movements

Long UAV movement time will
cause the LO frequency offset
drifts and cannot be treated
as a constant

Keep the UAV movement
below 5s is recommended;
Apply the joint estimation
for longer UAV movement

SNR Level
Low SNR level will degrade
the MUSIC algorithm

Keep the SNR level higher
than 15 dB at least

Shape of Trajectories
Perform 2D trajectories for
2D DoA estimation and
remove the azimuth ambiguity

Trajectories should have a
reasonable size (at least 1.5 m)
on both axis in a 2D plane

Size of Trajectories
Larger trajectories lead to better
resolution in DoA estimation, also
requires higher movement time

The 2D Trajectory should
longer than 3m to ensure
the accuracy; The maximum
length is limited by the far-field
constraints and the spatial
aliasing criterion

Frequency Offset
Compensation Methods

The SAS method is straightforward
but requires the UAV to standstill
before moving; the joint estimation
method provides stable accuracy,
but consumes more computation power

Both method works fine in good
LO oscillator configurations and
short movement time; The joint
estimation is recommended for
scenarios with bad LO oscillators
or long movement time
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary

This dissertation has proposed a novelty localization method for aerial platforms in UAV

communication networks to localize unknown ground emitters by considering the unique

air-to-ground channel characteristics and communication requirements. Different from

conventional passive localization technologies that require complex time-synchronization

or multi-antenna array, this proposed “virtual antenna array” method utilizes the mobility

of UAV to estimate the DoA of ground targets, which is both convenient and saves a lot of

payloads.

There are multiple challenges in implementing virtual array systems in UAV commu-

nication scenarios. First of all, the characteristics of the ATG channel differ significantly

from conventional terrestrial channels, thus the efficiency of such DoA-based localization

schemes is questionable. The second challenge comes from the phase distortion due to the

LO frequency offset between the transmitter and the receiver, which is an inherent limita-

tion of the virtual array system. The last main challenge is to reconstruct the trajectory of

the receiver with high accuracy, as the position information is necessary for conventional

array processing algorithms.

In response to the first challenge, we have performed detailed Ray-tracing simulations

to study the spatial and temporal properties of the ATG channel. Results indicated that

signals emitted from ground transmitters would reach the UAV with a very limited angular

spread. Most of the received power also comes from the direction near where the transmit-

ter is located. Therefore, DoA-based localization methods are proved to be promising in

UAV communication.
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For the second challenge, two methods are provided to deal with phase distortions

caused by the LO frequency offsets: the SAS method and the joint estimation method.

The SAS method requires the receiver to be stationary before moving and then uses the

estimated LO frequency offset at stationary to compensate for phase distortion when mov-

ing. The joint estimation considers the LO frequency offset and the receiver movement

as two independent sources of phase variation, then separates them by a multidimensional

MUSIC spectrum search, which offers higher usage flexibility as it does not require stop-

ping the receiver before movement. These two methods are proved to be feasible in both

ground-based virtual array systems and UAV virtual array systems.

The third challenge regarding trajectory reconstruction is addressed by using inertial

sensors found in many modern electronic devices. Relative positions of the receiver are cal-

culated through dead-reckoning integration algorithms implemented by a nonlinear Kalman

filter. By performing a comprehensive nonlinear observability analysis of the system, we

have also proved that, even though the system is unobservable without knowing the initial

velocity, the DoA can still be estimated by measuring accelerations only. On the other hand,

the observability analysis also provides detailed guidelines to design feasible and efficient

receiver trajectories, which significantly improved the robustness of the proposed system.

We have validated the proposed virtual array systems by conducting experiments on a

software-defined radio testbed. The trajectories are reconstructed using measurements from

inertial sensors. Phase distortions due to the LO frequency shift are solved by using the

SAS method and the joint estimation method, respectively. The designed proof of concept

provides satisfying DoA estimation accuracy in the presence of significant hardware biases.

Finally, since the feasibility and robustness of the proposed virtual array in the ground

channel have been proved, we started to apply the system to UAV communication scenarios.

As the elevation angle needs to be taken into account for localization in 3D space, both the

signal model and the LO frequency offset compensation methods are expanded to a higher

dimension. In the end, the performance of the virtual array system in UAV communication
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scenarios is evaluated through detailed simulations. Consistent with our conclusions from

the ray-tracing simulations, i.e., the ATG channel is beneficial for DOA-based localiza-

tion approaches, the virtual array system provides excellent estimation accuracy in UAV

communication scenarios. We have also provided many designing strategies when imple-

menting the proposed system in real-world UAV communication scenarios by evaluating

the simulation results.

In summary, the proposed virtual array system is an alternative for conventional DoA

estimation technologies by dispensing with cumbersome and expensive multi-antenna ar-

rays, which simultaneously reduces the cost and increases the practicability of conventional

direction finding systems. Therefore, the virtual array system has great potential in appli-

cations with high cost or form-factor constraints, especially for UAV platforms with great

mobility and payload limitations.

6.2 Future Directions

During this research, we have discovered many interesting questions and research direc-

tions. Recommended topics for future directions on UAV virtual array systems to follow

up on the work in this thesis are provided in the following.

The first exciting direction is to design a proof-of-concept prototype for the UAV vir-

tual array system and to test its performance in real test flights. We have already done

some prior work on this subject: the UAV virtual array is built by installing a USRP E310

SDR receiver module on a DJI Matrix-100 platform; the transmitter is consists of a USRP

B205 and a host computer. The UAV receiver converts the received RF signal and the IMU

measurements into a data file, then transmits the data file to the host computer through a

portable hotspot. By performing some prior flight tests, we found that due to the excel-

lent visibility between the UAV and the satellite, the UAV-embedded GPS sensors provide

accurate coordinate measurements. In this case, we are able to design a trajectory recon-

struction method by applying data fusion from the various sensors, i.e., reset the IMU
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position estimate periodically with an absolute position estimate from the GPS to alleviate

accumulated bias in conventional dead reckoning methods. However, we also found that

several new challenges emerged. Firstly, the UAV platform is subject to some mechanical

vibrations in flight, and these vibrations will interfere with the IMU measurements. In ad-

dition, the three radio signals in the virtual array system (the message signal, the remote

control signal, and the hotspot signal) all operate in the same 2.4 GHz frequency band,

which may cause mutual interference.

Another direction for research is to re-examine the nonlinear observability analysis re-

sult that motivates the possibility to estimate DoA by measuring accelerations only. As the

virtual array model expands to a higher dimension in UAV communications, its observ-

ability properties may also change and provide more information to be investigated, for

example, a guideline to design efficient 2D UAV trajectories.

One additional direction to explore is the application of the “virtual MIMO array” to

improve the performance of the DoA estimation system. Instead of using a single an-

tenna, the UAV carries multiple antennas to create a mixed real-virtual antenna array. The

difficulty lies in estimating both positions and orientations of the UAV, to identify phase

shifts between different embedded antennas. Although magnetometers provide some solu-

tions for orientation estimation, their performance also suffers heavily from the influence of

electromagnetic fields. Another possible solution is to use the polarization of the received

packet to track the orientation of the receiver.

In addition, it is also exciting to develop more localization technologies for UAV-based

communication networks by applying other parameters than DoA measurements. In partic-

ular, RSS-based methods are promising when the mobility of UAVs can be exploited. For

example, the UAV rotates once to make an RSS estimate, then flies to the direction with

the strongest transmit power. After a few iterations and rotates, the UAV should move to a

better serving position.
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