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Vehicle Trajectory Prediction by Integrating
Physics- and Maneuver-Based Approaches

Using Interactive Multiple Models
Guotao Xie , Hongbo Gao , Lijun Qian, Bin Huang, Keqiang Li, and Jianqiang Wang

Abstract—Vehicle trajectory prediction helps automated
vehicles and advanced driver-assistance systems have a
better understanding of traffic environment and perform
tasks such as criticality assessment in advance. In this
study, an integrated vehicle trajectory prediction method is
proposed by combining physics- and maneuver-based ap-
proaches. These two methods were combined for the reason
that the physics-based trajectory prediction method could
ensure accuracy in the short term with the consideration
of vehicle running dynamic parameters, and the maneuver-
based prediction approach has a long-term insight into fu-
ture trajectories with maneuver estimation. In this study,
the interactive multiple model trajectory prediction (IMMTP)
method is proposed by combining the two predicting mod-
els. The probability of each model in the interactive multiple
models could recursively adjust according to the predict-
ing variance of each model. In addition, prediction uncer-
tainty is considered by employing unscented Kalman filters
in the physics-based prediction model. To the maneuver-
based method, random elements for uncertainty are intro-
duced to the trajectory of each maneuver inferred by using
the dynamic Bayesian network. The approach is applied and
analyzed in the lane-changing scenario by using naturalistic
driving data. Comparison results indicate that IMMTP could
achieve a more accurate prediction trajectory with a long
prediction horizon.
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I. INTRODUCTION

AUTOMATED vehicles (AVs) and advanced driver-assista
nce systems have received extensive research interest be-

cause they show great potential for use in a more efficient,
safer, and cleaner transportation system [1]. Developments in
the field will evidently increase in both quality and importance
with time [2]. However, an issue to be addressed is why AVs
are not widely used at present. Technically speaking, one of the
crucial reasons is the increasingly complex and highly uncertain
traffic environment [3]. To solve this problem, similar to human
driving skills, AVs should be able to predict the traffic environ-
ment for its future change. This approach could improve the
ability of AVs to understand the traffic environment and helps to
make the trajectory planning [4] and tracking [5]. With the de-
velopment of communication technology [6], vehicle-to-vehicle
(V2V) communication devices could help to obtain additional
information to predict vehicle trajectories in complex traffic
environments.

Physics-based prediction is one of the common techniques to
predict vehicle trajectories in the short term [7], [9]–[12], [20].
Huang and Tan [7] explored vehicle future trajectory prediction
and examined the possible methodologies for trajectory pre-
diction based on the differential global positioning system. In
this paper, different dynamic trajectory prediction models were
compared; results indicated that one of the main error causes is
the changes in driver’s intention. Sorstedt et al. [10] considered
the driver control input parameter to obtain better predictions. In
[9], collision risk estimation between vehicles was realized on
the basis of communication tools by predicting the trajectories
of the surrounding vehicles. Polychronopoulos et al. proposed
a model-based description of the traffic environment for an ac-
curate prediction of vehicle’s path, which is situation adaptive
and calculation dynamic [11]. The dynamic prediction model
using a Kalman filter (KF) was employed [12]. The KF could
obtain the optimal solution to predict in the linear Gaussian
environment. To deal with the nonlinear problems, unscented
Kalman filters (UKFs) were employed to predict in the constant
turn rate and acceleration (CTRA) model [20]. In [19], extensive
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Kalman filters (EKFs) and Monte Carlo methods for the non-
linear problems were introduced and compared. However, this
model can only predict with the sustainable results in the short
term.

For a longer prediction horizon, maneuver-based approaches
are used to predict the vehicle trajectory at a higher level
[13]–[15], [29]. Liu et al. [13] developed a trajectory prediction
approach for lane change considering high-level driving status.
This approach was based on driving behavior estimation and
classification using hidden Markov models. Gindele et al. [14]
presented a filter based on the dynamic Bayesian network that
could estimate the driving behaviors and anticipate the future
trajectories. In [15] and [29], the authors developed an integrated
approach to predict the trajectories based on maneuver estima-
tion. In this paper, the driving maneuvers were inferred for each
vehicle by employing a Bayesian network. Probabilistic trajec-
tory models were proposed to predict the vehicle configuration
forward in time. The maneuver-based trajectory prediction ap-
proach could predict vehicle trajectories at a higher level for
longer prediction. Additionally, some time-series models learn-
ing from data could also predict trajectories such as artificial
neural networks [16] or autoregressive integrated moving aver-
age models [17]. However, these did not consider the vehicle
motion models, which could predict more accurately in the short
term.

Some methods integrate short- and long-term vehicle trajec-
tory prediction approaches [8], [18]. Houenou et al. proposed
a new trajectory prediction approach that combines a trajec-
tory prediction based on the constant yaw rate and acceleration
motion model and a maneuver recognition-based trajectory pre-
diction [8]. A cubic spline function was defined as the weight
function to obtain the final predicted trajectory. Also, in [18],
a hierarchical multiresolution framework called prediction in a
dynamic environment was presented to strengthen the results
of another prediction algorithm. The above-mentioned meth-
ods could hardly adapt to different environments and different
prediction accuracies.

With the aim to acquire accurate trajectory predictions in a
long horizon, it is crucial to consider both the dynamic motion
with physical laws in the short term and the high-level driv-
ing patterns with maneuver estimations in the long term. In
other words, the trajectory prediction model adapting to differ-
ent prediction horizons, namely short-term prediction horizon
and long-term prediction horizon, could predict the vehicle tra-
jectory accurately in a long term.

The objective of this study is to build an integrated approach
by combining physics- and maneuver-based prediction methods,
which could predict accurately in the long term. In this study, the
uncertainty is considered in the nonlinear dynamic prediction
model using the unscented transform (UT). In the maneuver-
based prediction model, the dynamic Bayesian network is used
to estimate driving behaviors by considering sequential infor-
mation. Random elements for uncertainty are introduced to the
maneuver-based prediction models. Moreover, the interactive
multiple model trajectory prediction (IMMTP) method is pro-
posed by integrating the advantages of both prediction models,
which could predict accurately in the long term. This integration
is shown in Fig. 1.

Fig. 1. Integration of physics- and maneuver-based trajectory predic-
tion models.

The remainder of this paper is organized as follows.
Section II compares and introduces the different physics-based
models and methods that deal with uncertainty. The maneuver-
based approach is described in Section III. Section IV analyzes
the integration approach. The integrating approach is applied
in the vehicle lane-change scenario, and the prediction results
are compared and analyzed by using naturalistic driving data in
Section V. Section VI presents concluding remarks.

II. PHYSICS-BASED MODEL FOR TRAJECTORY PREDICTION

This section introduces various physics-based motion models
as well as filtering and prediction algorithms with consideration
of uncertainty. The physics-based models assume that some run-
ning parameters such as velocity and acceleration are constant
in the near future [19]. In this study, the kinematic models are
considered in the physics-based prediction model. Various kine-
matic motion models exists, such as the constant acceleration
model, the CTRA model, and the constant curvature and accel-
eration model [20]. Some methods, such as KFs, EKFs, UKFs,
and particle filters (PF), are employed to deal with uncertainties
[21].

A. Vehicle Kinematic Model

For more accurate prediction, the CTRA model is used in this
study as the physics-based prediction model. The CTRA model
assumes that the turn rate and acceleration are constant. The
state space of the CTRA model can be expressed as follows:

�x = (x, y, θ, v, a, ω) (1)

where (x, y) means the position of the vehicle, θ means the ro-
tation angle of the vehicle, ω is the angle velocity, and v and a
represent the velocity and acceleration of the vehicle in the run-
ning direction, respectively. With the aim to predict trajectories
of other vehicles, the V2V communication technology could be
used to get the information.
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Assume the state transition equation as follows:

�x (t + Δt) = Δf (t) + �x (t) . (2)

Δf(t) in the state transition equation is given by (3), shown at
the bottom of this page, where Δt means the sampling time. In
this study, the sampling time is 0.1 s.

B. Trajectory Prediction Considering Uncertainty

Uncertainty should be considered in the information recursive
update and trajectory prediction because of measurement noise
and processing noise. Various methods could be used to handle
uncertainty online and recursively, such as KF, EKF, UKF, and
PF [21].

In this study, the filtering problem considering uncertainty
could be described as the following equations:

�x (t + Δt) = f (�x (t) , t) + q (t) (4)

�y (t) = h (�x (t) , t) + r (t) (5)

where f is the motion function, q is the system noise defined as
the Gaussian noise in this study, �y is the observation parameters,
h is the observation function, and r is the observation noise.
The prediction could be realized by iterating the system motion
function.

The KF assumes that the posterior density is Gaussian at ev-
ery time step and can obtain the optimal solution to the tracking
problems in the linear Gaussian environment. However, it can-
not handle nonlinear problems. For example, the KF could not
obtain the optimal solution for the CTRA motion model because
the dynamic process exits nonlinear equations, as shown in (3).

To solve the nonlinear problem, extensions of the KF can be
used by defining Gaussian approximations to the joint distribu-
tion. One of the extensions is called EKF based on Taylors series
theory [22]. However, as shown in (3), Jacobian matrices with
the first-order filters or Hessian matrices for the second-order
filters, in this case, can be difficult and complex processes to cal-
culate [23]. In addition, it has been indicated that the linearized
EKF performs nonlinear propagations of probability distribu-
tions less accurately than the UKF [24]. Moreover, with the
high nonlinear (3), the EKF can be sometimes inefficient when
the error propagation cannot be approximated based on the first
or second order of Taylor series and would even diverge after
some recursion. Another extension of the KF is the UKF, which
is based on the UT for the approximation of joint distribution.
The PF is one of the solutions to nonlinear problems by simulat-
ing enough particles [25]. However, simulating many particles is
time-consuming. In this study, the UT is employed to handle the

Fig. 2. Position prediction with a UKF.

uncertainty of the nonlinear system. In the UT, a fixed number
of points from the original distribution are chosen to estimate
the variables transformed from the nonlinear function. It can be
used to approximate the joint distribution of variables, which
captures higher order of moments for the nonlinear function
than the standard EKF [26].

With the use of the UT, the prediction results could be ob-
tained by iterating the motion function with uncertainty. One
example of the prediction results in the lane-changing case is
shown in Fig. 2. The prediction results indicate that the physics-
based prediction model could predict accurately in the short
term. However, in the long term, the prediction is unsustainable
with a significantly large covariance.

III. MANEUVER-BASED TRAJECTORY PREDICTION

In this section, the long-term trajectory prediction will be
introduced based on the maneuver estimation. First, the driv-
ing behavior awareness (DBA) model will be presented based
on the dynamic Bayesian network to infer the driving maneu-
vers. Then, the maneuver-based trajectory prediction will be
introduced by considering the random elements for trajectory
uncertainty.

A. Driving Behavior Awareness

In this study, maneuvers such as following road and lane
changing are estimated by the proposed DBA model. Three
layers exist in this DBA model, namely observation, hidden,

Δf (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v+aΔt
ω sin (θ + ωΔt) + a

ω 2 cos (θ + ωΔt) − v
ω sin (θ) − a

ω 2 cos (θ)

− v+aΔt
ω cos (θ + ωΔt) + a

ω 2 sin (θ + ωΔt) + v
ω cos (θ) − a

ω 2 sin (θ)

ωΔt
aΔt
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3)
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Fig. 3. DBA network. The network is composed of observation, hid-
den, and behavior layers. Y represents the observation parameters, X
means behavior parameters, and M is the hidden parameter, which will
be optimized. t reflects the time causal flow.

and behavior layers. The network is shown in Fig. 3. On the
basis of dynamic Bayesian theory, the DBA model is defined as
a directed acyclic graph, composed of a prior Bayesian network
and a two-slice temporal Bayes net according to the first-order
Markov assumption. The nodes in the network representing vari-
ables, such as driving behaviors, are connected by arcs and
parameters and expressed as conditional probabilistic distribu-
tions.

In this study, the parameters of a certain structure for the
DBA network are learned from realistic driving data by ap-
plying expectation maximization. However, the structure of the
DBA network is difficult to optimize even with the genetic al-
gorithm. In general, searching the global solution accurately in
a limited time is impossible [27]. In this research, a distributed
genetic algorithm, which enhances the rate of DBA evolution
and the performance of the DBA model, is employed to obtain
the optimized structure. This algorithm was discussed in detail
in [28].

B. Trajectory Prediction

On the basis of the DBA model, the long-term vehicle tra-
jectory can be predicted. In this study, environment informa-
tion, such as a road map, is used as evidence for prediction. In
this part, the vehicle trajectory predictions of driving behaviors,
namely, lane keeping and lane changing, are introduced.

The prediction trajectory based on maneuver estimation could
be expressed as follows:

p
(
Xk+kp

|Z1:k
)

=
∑
B0

p
(
Xk+kp

|B = B0
)
p (B = B0 |Z1:k )

(6)
where Z1:k is the observed information sequence, Xk+kp

is
the predicting parameters, such as position and velocity, k is
the starting time of prediction, kp is the length of prediction,
B denotes the maneuvers, and B0 represents one of the exact
maneuvers such as lane changing.

1) Lane Keeping: When the driving behavior is road fol-
lowing, the prediction can be based on the road evidence and
initial dynamic parameters. The longitudinal parameters along
the road X longR are predicted by the discrete Wiener process

acceleration model [29], [30]

X longR =
(
xlongR , vlongR , alongR

)T
(7)

X longR
k+1 = A∗X longR

k + B∗ωa (8)

A =

⎛
⎝

1 Δt 1
2 Δt2

0 1 Δt
0 0 1

⎞
⎠ B =

⎛
⎝

1
2 Δt2

Δt
1

⎞
⎠ (9)

where Δt is the time period, X longR includes longitudinal posi-
tion along the road xlongR , longitudinal velocity along the road
vlongR , and acceleration alongR , and ωa is the process noise
scalar. The covariance is given by

Qk = Bσ2
ΔaBT =

⎛
⎜⎝

1
4 Δt4 1

2 Δt3 1
2 Δt2

1
2 Δt3 Δt2 Δt

1
2 Δt2 Δt 1

⎞
⎟⎠ σ2

Δa . (10)

According to [30], the lateral position along the road can
be described according to the road information by using the
Ornstein–Uhlenbeck process, which can be given by

ẏlatR
t = α

(
μ − ylatR

t

)
+ ωt, α > 0 (11)

where ylatR
t means the lateral position along the road, μ is the

long-term mean, which could be the middle of the lane, ωt is
the white Gaussian noise, and α models the average speed at
which the vehicle returns to the middle of the lane. Considering
the autocorrelation function of ωt as follows:

E [ωt (t) ωt (t + τ)] = 2ασ2
y l a tR

δ (τ) (12)

and an exponentially decaying autocovariance function of ylatR
t

as follows:

E
[(

ylatR
t (t) − ylatR

t (t)
)(

ylatR
t (t + τ) − ylatR

t (t + τ)
)]

= σ2
y l a tR

e−α |τ | (13)

the process could be discretized as

ylatR
k+1 − ylatR

k =
(
1 − e−αΔt

) (
μ − ylatR

k

)
+ ωlatR (14)

ωlatR = σ2
y l a tR

(1 − e−2αΔt) (15)

where ylatR
t (t) = E[ylatR

t (t)]; Tc = 1α is the time constant
that influence the delay rate of the mean evolution; the long
term mean is supposed to be the middle of the lane width wL ,
μ = 0.5wL ; and σ2

(y l a tR ) is the limiting value of variance, which
is also related to the lane width.

The yaw angle of vehicles can be modeled as the deviation of
the middle line of the road as follows:

p
(
ϕF R

k

)
= N (

ϕR
k , σ2

ϕ

)
(16)

where ϕR
k is the road orientation and σ2

ϕ is the variance of the
predicted yaw rate angle.

2) Lane Changing: When the vehicle is estimated to
change lanes, the trajectory could be predicted by a sine function
according to the road. In the road coordinates, the trajectory of
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Fig. 4. Position prediction based on lane changing.

vehicles can be represented as the following functions:

ylatR (
ΔxlongR

)
= −wL

2
cos

(
π

lR
ΔxlongR

)
,

∀ΔxlongR ∈ [0, lR ] (17)

where ΔxlongR is the relative longitudinal distance from the
maneuver start point, wL is the lane width, and lR is the length
of the lane-change maneuver. Uncertainty can be introduced by
modeling the start point of the maneuver as

p
(
ylatR (

ΔxlongR = 0
))

= N
((wL

2

)
, σ2

y l a tR
s

)
. (18)

The yaw angle ϕLC
k is given by

ϕLC
k = arctan

(
πwL

2lR
sin

(
π

lR
ΔxlongR

))
. (19)

Thus, at every estimation period, the trajectory could be
adapted to the current lateral position ylatR

k and yaw angle ϕLC
k .

Then, the remaining trajectory of the maneuver can be obtained
by solving lR and ΔxlongR as follows:

lR =
πwL

2 tan ϕLC
k

sin
(

arccos
(
−2ylatR

k

wL

))
(20)

ΔxlongR =
arccos

(
− 2y l a tR

k

wL

)

π
lR . (21)

When the prediction reaches the end of the lane change, the
trajectory will be predicted based on the road following behavior
[29]. The uncertainty along the curve could be modeled as the
discrete Wiener process acceleration model as shown in the
trajectory prediction based on lane keeping.

The prediction result based on the lane-change maneuver is
shown in Fig. 4; the result indicated that the maneuver-based tra-
jectory prediction could predict in the long term. The predicting
variance does not increase considerably as the prediction time
advances, unlike in the dynamic prediction model. However,

Fig. 5. Vehicle trajectory prediction comparison between physics- and
maneuver-based prediction.

the short-term prediction accuracy is worse than that of the
dynamic prediction models because maneuver-based trajectory
prediction does not consider dynamic vehicle motions.

IV. INTEGRATING PHYSICS- AND MANEUVER-BASED

TRAJECTORY PREDICTION

As described above, physics- and maneuver-based predic-
tion models have different advantages. Physics-based prediction
models could predict the trajectory accurately only in a short
time, whereas maneuver-based prediction has a higher level
ability to look ahead over a longer time; this difference is shown
in Fig. 5. In the long term, the physics-based model predicts the
trajectory poorly, which is shown as the yellow line.

The proposed IMMTP method in this study combined the
physics- and maneuver-based trajectory prediction methods to
predict accurately in the short term and look ahead at a high-level
for long terms. In the IMMTP method, the trajectory prediction
results of physics- and maneuver-based models, including the
predicting uncertainty, were interacted, mixed, combined, and
updated to predict the long-term vehicle trajectory. As far as the
authors’ awareness, this was seldom researched to integrate the
different predicting horizon results using the interactive multiple
model (IMM) method.

This section introduces the algorithm to integrate both trajec-
tory prediction models for more accurate results in long-term
prediction. This section introduces the proposed IMMTP using
IMMs [31].

A. Integrated Trajectory Prediction Method

Fusing and integrating information from multiple models is a
trend because no perfect model exists for a certain problem [34],
[35]. There are various approaches to combine multiple models
mentioned above. The IMM method used in [32] and[33] has
the ability to combine advantages of different models. In this
study, an integrated trajectory prediction method called IMMTP
is proposed on the basis of the IMM method. The probability
of each predicting model in the IMM could recursively adjust
according to the predicting variance of each model.

IMMTP is shown as in Fig. 6. This figure shows four main
parts, namely interaction and mode probability prediction, the
physics-based prediction model, the maneuver-based prediction
model, and combination and model probability update. In this
model, x̂i

k and P i
k are the mean and covariance, respectively, of

input information from the last prediction results of Model i at
time k. x̂∗i

k and P ∗i
k are the mean and covariance, respectively,
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Fig. 6. IMMTP approach.

of input information for the prediction model after interaction
and mode probability prediction. μk represents the weight co-
efficient vector for the two single models at the prediction time
k. Also, μ∗

k+1 is the weight coefficient vector after interaction
and mode probability prediction. x̂k+1 , Pk+1 , and μk+1 are the
final outputs, namely the mean, the covariance, and the weight,
respectively. Moreover, the uncertainty of each model is con-
sidered by adding Q1

k and Q2
k , which represent the uncertainty

of the two single models.
In this study, the integrated method combines the physics-

based model (M 1) and the maneuver-based model (M 2). Thus,
the system can be considered as a discrete set of two models,
which can be represented as

M =
{
M 1 ,M 2} . (22)

Each model is assumed to have its own prior probability
μi

0 = P (Mi
0), i = 1, 2. The varying system could be seen as

Markov switching systems [36], [37]. The transition probability
is denoted by

pij = P
(
Mj

k |Mi
k−1

)
(23)

where k means the prediction time and pij represents the proba-
bility of the transition from Model i to Model j. In other words,
it is a first-order Markov chain system. The transition matrix is
time invariant [38].

The integrating algorithm includes interaction and mixing,
prediction, and combination.

1) Interaction and Mixing: The individual predicting re-
sults are mixed on the basis of the predicted model probability
and the model transition probability. The interaction and mixing
processes could be expressed as follows:

c̄j =
∑

i=1,2

pijμ
i
k (24)

μ
i|j
k =

1
c̄j

pijμ
i
k (25)

where c̄j is the normalization factor and μi
k is the probability of

Model i. Then, the mixed mean and covariance for each model
are as follows:

x̂∗j
k =

∑
i=1,2

μ
i|j
k x̂i

k (26)

P ∗j
k =

∑
i=1,2

μ
i|j
k

(
P i

k + (x̂i
k − x̂∗j

k )
(
x̂i

k − x̂∗j
k

)T
)

(27)

where P i
k and x̂i

k are the final covariance and mean for a single
model i, respectively.

2) Prediction: In this part, the predicting results for the next
step are computed, and the probability of each model could be
calculated. For each model, the prediction can be performed as

(
x̂i

k+1 , P
i
k+1

)
= Predi

(
x̂∗i

k , P ∗i
k

)
(28)

in which Predi is the function of the prediction model i.
The likelihood of the prediction for each model can be ex-

pressed as the function of the covariance of each model. In this
study, the function of the likelihood for each model is designed
as follows:

Λi
k+1 = 1/

(
P

(
xi

k+1
)

+ P
(
yi

k+1
))

(29)

where P (xi
k+1) is the prediction variance for x with the only

model i, and P (yi
k+1) is the prediction variance for y with the

only model i.
Thus, the probability of each model at step k + 1 is

c =
∑

i=1,2

Λi
k+1 c̄i (30)

μi
k+1 =

1
c
Λi

k+1 c̄i . (31)

3) Combination: Now, the prediction for the next step
could be obtained on the basis of the updated probability of each
model. The final predicted mean x̂k+1 and covariance Pk+1 can
be computed as

x̂k+1 =
∑

i=1,2

μi
k+1 x̂

i
k+1 (32)

Pk+1 =
∑

i=1,2

μi
k+1(P

i
k+1 + (x̂i

k+1 − x̂k+1)
(
x̂i

k+1 − x̂k+1
)T ).

(33)

V. APPLICATION AND RESULT ANALYSIS IN

LANE-CHANGE SCENARIOS

In this section, the integrating approach will be employed in
the lane-change scenario. In this part, the platform of naturalis-
tic driving data collection will be introduced. Then, the results
of different trajectory prediction models in the lane-change sce-
nario will be compared and analyzed.

A. Naturalistic Driving Data Collection

To estimate driving behaviors, naturalistic driving data were
collected in Beijing. Some cases that include the information
sequence are used to analyze the performance of the trajectory
prediction methods.
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Fig. 7. Vehicle platform (the vehicle platform includes a 360◦ laser
LIDAR, four external cameras, one internal camera, the CAN information,
and data storing computer).

Fig. 8. Test route (the route includes a highway, ring road, airport ex-
press lane, and a normal city road, with approximately 18 km).

In this experiment, the platform is equipped with a 360◦ laser
LIDAR that can detect neighboring vehicles in the environment.
Four external cameras and one internal camera are equipped to
obtain video information including drivers operation and traffic
environment. Moreover, driving information such as the veloc-
ity of the instrumented vehicle, yaw rate, lateral acceleration,
and steering angle could be obtained from the controller area
network (CAN). The vehicle platform is shown in Fig. 7.

Fifty common participants were asked to drive the vehicle
platform with their own usual driving styles. The driving route
includes a highway, ring road, airport express lane, and a normal
city road in Beijing, covering a distance of approximately 18 km.
The route is shown in Fig. 8.

To process information such as data filtering and label the
cases such as the lane-change cases and some other target traffic
cases, the processing and labeling software was developed. The
information from LIDAR and cameras is displayed by using
this software. Also, the serial information, including the steer-
ing angle and lateral velocity, is represented by different color
curves. These help to determine the start and the end points of
the lane-change cases and other target cases during the manual
labeling process.

B. Trajectory Prediction Result Analysis and Comparison

In this part, with the aim to analyze and compare the predic-
tion results, one case from the naturalistic driving database is
analyzed in detail and the average predicting results based on
the database are presented.

Fig. 9. Yaw rate in the sequential information given in two parts, namely
the lane changing (shown in red dotted line) and lane keeping (shown in
blue solid line).

Fig. 10. Trajectory prediction with different approaches (the prediction
time starts at 0.4 s after the start of lane change) (although the predicting
results of physics-based model are better than that of IMMTP in the short
term, the results of IMMTP are much better in the long term).

1) One Case Analysis: The trajectory sequential informa-
tion, including lane-changing and lane-keeping maneuvers in
one certain case from the naturalistic driving database, is used
in the trajectory prediction comparison and result analysis. As
shown in Fig. 9, the yaw rate in the sequential information is dis-
played. In this case, two parts exist, namely the lane-changing
and lane-keeping parts. The average velocity is 7.9 m/s and the
predicting horizon is 8 s.

The result of vehicle trajectory prediction based on IMMTP in
the lane-change scenario is shown in Figs. 10 and 11. The results
indicate that the physics-based prediction method could evi-
dently obtain better prediction results in the short term, whereas
the maneuver-based approach performs much better in long-
term prediction. The proposed IMMTP approach can integrate
the advantages of the two prediction models. In other words, the
IMMTP model ensures prediction accuracy in the short term by
taking advantage of the dynamic motion model and also predicts
at a higher level for long-time-horizon predictions. Moreover,
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Fig. 11. Trajectory prediction with different approaches (the prediction
time starts at 1.4 s after the start of lane change).

Fig. 12. Probability of each model in the IMMTP approach (the proba-
bility at time 1 ms is the original start value defined based on experience
and the prediction time starts at 0.4 s after the start of lane change).

the two figures clearly show that different prediction results may
be obtained with the proceeding of lane changing. At the begin-
ning of lane changing, the prediction results are worse than the
later ones because the lateral motion information such as yaw
rate is not obvious at that time.

The probability of each model in the IMMTP approach is
shown in Figs. 12 and 13. As we can see, the probability of the
physics-based prediction model decreases with the prediction
time, and the probability of the maneuver-based model increases
as the prediction time advances. This situation coincides with
our everyday experience. The two figures also clearly show that
the functions of the weight coefficient differ with each case.

The predicting uncertainty in the results of different models is
also analyzed and compared in Table I, in which the predicting
uncertainty is estimated using three times standard deviation.
The predicting uncertainty is analyzed in terms of the average
three times standard deviation in the prediction horizon using

Fig. 13. Probability of each model in the IMMTP approach (the proba-
bility at time 1ms is the original start value defined based on experience
and the prediction time starts at 1.4 s after the start of lane change).

TABLE I
ANALYSIS AND COMPARISON OF PREDICTION UNCERTAINTY USING THREE

TIMES STANDARD DEVIATION (M)

Prediction time(s)
Prediction model 0.5 1 3 5 8

Physics-based model 0.28 0.96 7.82 20.89 49.81
Maneuver-based model 0.53 0.66 0.82 0.93 1.08
IMMTP model 0.23 0.46 0.75 0.88 1.05

the case of prediction after 1.4 s of the lane change. The table
indicates that the predicting uncertainty of physics-based model
increases largely with the increase of the prediction horizon,
especially in the long-term prediction horizon. In the short-
term prediction horizon like that less than 0.5 s, the predicting
uncertainty of the maneuver-based model is much larger than
that of the physics-based model. In the IMMTP model, the
predicting uncertainty does not expend much in the long-term
prediction and stays relatively small in the short-term prediction
horizon, which means that the IMMTP model could predict the
vehicle trajectory more confidently than the other two single
models.

2) Average Predicting Results: The accuracy of the pre-
diction results of the physics-based, maneuver-based, and the
IMMTP models is analyzed and compared. The prediction re-
sults of the IMMTP approach are compared with those of an
invariable coefficient model. The invariable coefficient model
integrates the physics- and maneuver-based models with a fixed
coefficient function [8]. The prediction results can be measured
by the average error of prediction position shown as follows:

E =
1
N

N∑
i=1

√
λ1

2(xi,p − xi,r )
2 + λ2

2(yi,p − yi,r )
2 (34)

where N is the number of prediction points and λ1 and λ2 are
the coefficients of the prediction errors. xi,p and yi,p are the
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TABLE II
EVALUATION AND COMPARISON OF PREDICTION RESULTS IN TERMS OF

AVERAGE ERROR (M)

Prediction time (s)
Prediction model 1 3 5 8

Physics-based model 0.05 0.48 1.72 4.80
Maneuver-based model 0.75 1.92 2.49 2.59
Invariable coefficient model 0.12 1.18 2.00 2.28
IMMTP model 0.14 0.69 1.13 1.55

prediction results of the position. xi,r and yi,r are the real value
of the prediction points.

In this experiment, the 40 lane-change cases are used to com-
pute the average error of prediction position, and the average
error of the invariable coefficient model [8] is studied and com-
pared with that of the models mentioned in this paper. As shown
in Table II, with the increase in the prediction time, the aver-
age error of the physics-based model increases considerably. In
other words, the physics-based model performs poorly in long-
term prediction. Also, the prediction results from the invariable
coefficient model and the IMMTP model indicate that the pro-
posed IMMTP model could obtain better prediction results in
the long term. In addition, the average computing time of the
IMMTP method on an Intel Core i7-8.00 GB at 2.2 GHz is 78 ms
when the prediction horizon is 8 s, which proves that IMMTP
could be implemented in real time.

VI. CONCLUSION AND CONTRIBUTIONS

In this study, the physics- and maneuver-based trajectory pre-
diction models were established to predict vehicle trajectories.
The uncertainty in the dynamic trajectory prediction model was
considered by using UT, which could solve nonlinear estimation
and prediction problems. In the maneuver-based trajectory pre-
diction approach, the maneuvers were estimated by employing
the dynamic Bayesian network. The random elements were also
included in the maneuver-based trajectory predicting method.
Then, the two prediction methods were compared, and it is in-
dicated in this paper that the physics-based trajectory predicting
model could predict accurately with the vehicle motion model in
the short term. On the contrary, the maneuver-based trajectory
prediction model can predict the vehicle trajectory in a higher
horizon for a long time. The IMMTP approach was proposed to
predict accurately in the short term and anticipate with a higher
horizon in the long term, combining the advantages of these two
approaches. The probability of each model in the IMMTP ap-
proach could be recursively adapted according to the prediction
variance of each model.

Finally, the IMMTP approach was applied and analyzed in the
lane-changing scenarios by using the naturalistic driving data
collected in Beijing. The average prediction error was proposed
as the evaluation index for the prediction models. The com-
parison indicates that the IMMTP model could predict more
accurately than the single maneuver-based prediction model in
the long run. Also, this integrated method has the ability to
predict in the long term with fewer prediction errors than the

physics-based prediction model. Moreover, the prediction re-
sults from the invariable coefficient and the IMMTP models
indicate that the proposed IMMTP model could obtain better
prediction results by recursively adapting weight coefficients.

In future work, the road geometry would be the additional
information to predict. Moreover, other vehicles or road users
in the traffic will be considered, and their interacting influences
could be taken into account to predict vehicle trajectories.
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