Jianming Liang

Jianming Liang
Arizona State University | ASU · Department of Biomedical Informatics

About

113
Publications
54,945
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17,764
Citations
Introduction

Publications

Publications (113)
Conference Paper
Full-text available
Human anatomy is the foundation of medical imaging and boasts one striking characteristic: its hierarchy in nature, exhibiting two intrinsic properties: (1) locality: each anatomical structure is morphologically distinct from the others; and (2) compositionality: each anatomical structure is an integrated part of a larger whole. We envision a found...
Chapter
Human anatomy is the foundation of medical imaging and boasts one striking characteristic: its hierarchy in nature, exhibiting two intrinsic properties: (1) locality: each anatomical structure is morphologically distinct from the others; and (2) compositionality: each anatomical structure is an integrated part of a larger whole. We envision a found...
Chapter
The interest in artificial intelligence (AI) applications in medical imaging has grown rapidly in the past few years, largely driven by the success of deep learning. Methods ranging from convolutional neural networks to generative adversarial networks have found myriad applications in medical imaging, propelling it forward at a rapid pace. AI excel...
Chapter
Visual transformers have recently gained popularity in the computer vision community as they began to outrank convolutional neural networks (CNNs) in one representative visual benchmark after another. However, the competition between visual transformers and CNNs in medical imaging is rarely studied, leaving many important questions unanswered. As t...
Chapter
Vision transformer-based self-supervised learning (SSL) approaches have recently shown substantial success in learning visual representations from unannotated photographic images. However, their acceptance in medical imaging is still lukewarm, due to the significant discrepancy between medical and photographic images. Consequently, we propose POPAR...
Chapter
Uniting three self-supervised learning (SSL) ingredients (discriminative, restorative, and adversarial learning) enables collaborative representation learning and yields three transferable components: a discriminative encoder, a restorative decoder, and an adversary encoder. To leverage this advantage, we have redesigned five prominent SSL methods,...
Article
Recently, self-supervised instance discrimination methods have achieved significant success in learning visual representations from unlabeled photographic images. However, given the marked differences between photographic and medical images, the efficacy of instance-based objectives, focusing on learning the most discriminative global features in t...
Conference Paper
Full-text available
Discriminative learning, restorative learning, and adversarial learning have proven beneficial for self-supervised learning schemes in computer vision and medical imaging. Existing efforts, however, omit their synergistic effects on each other in a ternary setup, which, we envision, can significantly benefit deep semantic representation learning. T...
Preprint
Discriminative learning, restorative learning, and adversarial learning have proven beneficial for self-supervised learning schemes in computer vision and medical imaging. Existing efforts, however, omit their synergistic effects on each other in a ternary setup, which, we envision, can significantly benefit deep semantic representation learning. T...
Conference Paper
Full-text available
Recently, self-supervised instance discrimination methods have achieved significant success in learning visual representations from unlabeled photographic images. However, given the marked differences between photographic and medical images, the efficacy of instance-based objectives, focusing on learning the most discriminative global features in t...
Preprint
Recently, self-supervised instance discrimination methods have achieved significant success in learning visual representations from unlabeled photographic images. However, given the marked differences between photographic and medical images, the efficacy of instance-based objectives, focusing on learning the most discriminative global features in t...
Article
Annotation-efficient deep learning refers to methods and practices that yield high-performance deep learning models without the use of massive carefully labeled training datasets. This paradigm has recently attracted attention from the medical imaging research community because (1) it is difficult to collect large, representative medical imaging da...
Chapter
Pulmonary embolism (PE) represents a thrombus (“blood clot”), usually originating from a lower extremity vein, that travels to the blood vessels in the lung, causing vascular obstruction and in some patients, death. This disorder is commonly diagnosed using CT pulmonary angiography (CTPA). Deep learning holds great promise for the computer-aided CT...
Preprint
Full-text available
Pulmonary embolism (PE) represents a thrombus ("blood clot"), usually originating from a lower extremity vein, that travels to the blood vessels in the lung, causing vascular obstruction and in some patients, death. This disorder is commonly diagnosed using CT pulmonary angiography (CTPA). Deep learning holds great promise for the computer-aided CT...
Chapter
Full-text available
Transfer learning from supervised ImageNet models has been frequently used in medical image analysis. Yet, no large-scale evaluation has been conducted to benchmark the efficacy of newly-developed pre-training techniques for medical image analysis, leaving several important questions unanswered. As the first step in this direction, we conduct a sys...
Conference Paper
Full-text available
Transfer learning from supervised ImageNet models has been frequently used in medical image analysis. Yet, no large-scale evaluation has been conducted to benchmark the efficacy of newly-developed pre-training techniques for medical image analysis, leaving several important questions unanswered. As the first step in this direction, we conduct a sys...
Conference Paper
Full-text available
Transfer learning from supervised ImageNet models has been frequently used in medical image analysis. Yet, no large-scale evaluation has been conducted to benchmark the efficacy of newly-developed pre-training techniques for medical image analysis, leaving several important questions unanswered. As the first step in this direction, we conduct a sys...
Preprint
Transfer learning from supervised ImageNet models has been frequently used in medical image analysis. Yet, no large-scale evaluation has been conducted to benchmark the efficacy of newly-developed pre-training techniques for medical image analysis, leaving several important questions unanswered. As the first step in this direction, we conduct a sys...
Article
Full-text available
The splendid success of convolutional neural networks (CNNs) in computer vision is largely attributable to the availability of massive annotated datasets, such as ImageNet and Places. However, in medical imaging, it is challenging to create such large annotated datasets, as annotating medical images is not only tedious, laborious, and time consumin...
Article
Full-text available
This paper introduces a new concept called “transferable visual words” (TransVW), aiming to achieve annotation efficiency for deep learning in medical image analysis. Medical imaging—focusing on particular parts of the body for defined clinical purposes—generates images of great similarity in anatomy across patients and yields sophisticated anatomi...
Preprint
This paper introduces a new concept called "transferable visual words" (TransVW), aiming to achieve annotation efficiency for deep learning in medical image analysis. Medical imaging--focusing on particular parts of the body for defined clinical purposes--generates images of great similarity in anatomy across patients and yields sophisticated anato...
Article
Full-text available
Transfer learning from natural image to medical image has been established as one of the most practical paradigms in deep learning for medical image analysis. To fit this paradigm, however, 3D imaging tasks in the most prominent imaging modalities (e.g., CT and MRI) have to be reformulated and solved in 2D, losing rich 3D anatomical information, th...
Chapter
Medical images are naturally associated with rich semantics about the human anatomy, reflected in an abundance of recurring anatomical patterns, offering unique potential to foster deep semantic representation learning and yield semantically more powerful models for different medical applications. But how exactly such strong yet free semantics embe...
Chapter
Contrastive representation learning is the state of the art in computer vision, but requires huge mini-batch sizes, special network design, or memory banks, making it unappealing for 3D medical imaging, while in 3D medical imaging, reconstruction-based self-supervised learning reaches a new height in performance, but lacks mechanisms to learn contr...
Conference Paper
Full-text available
Medical images are naturally associated with rich semantics about the human anatomy, reflected in an abundance of recurring anatomical patterns, offering unique potential to foster deep semantic representation learning and yield semantically more powerful models for different medical applications. But how exactly such strong yet free semantics embe...
Preprint
Full-text available
Medical images are naturally associated with rich semantics about the human anatomy, reflected in an abundance of recurring anatomical patterns, offering unique potential to foster deep semantic representation learning and yield semantically more powerful models for different medical applications. But how exactly such strong yet free semantics embe...
Preprint
Full-text available
Transfer learning from natural image to medical image has been established as one of the most practical paradigms in deep learning for medical image analysis. To fit this paradigm, however, 3D imaging tasks in the most prominent imaging modalities (e.g., CT and MRI) have to be reformulated and solved in 2D, losing rich 3D anatomical information, th...
Preprint
Full-text available
Rationale: Computer aided detection (CAD) algorithms for Pulmonary Embolism (PE) algorithms have been shown to increase radiologists' sensitivity with a small increase in specificity. However, CAD for PE has not been adopted into clinical practice, likely because of the high number of false positives current CAD software produces. Objective: To gen...
Article
Full-text available
The state-of-the-art models for medical image segmentation are variants of U-Net and fully convolutional networks (FCN). Despite their success, these models have two limitations: (1) their optimal depth is apriori unknown, requiring extensive architecture search or inefficient ensemble of models of varying depths; and (2) their skip connections imp...
Preprint
The state-of-the-art models for medical image segmentation are variants of U-Net and fully convolutional networks (FCN). Despite their success, these models have two limitations: (1) their optimal depth is apriori unknown, requiring extensive architecture search or inefficient ensemble of models of varying depths; and (2) their skip connections imp...
Chapter
Transfer learning from natural image to medical image has established as one of the most practical paradigms in deep learning for medical image analysis. However, to fit this paradigm, 3D imaging tasks in the most prominent imaging modalities (e.g., CT and MRI) have to be reformulated and solved in 2D, losing rich 3D anatomical information and inev...
Conference Paper
Full-text available
Generative adversarial networks (GANs) have ushered in a revolution in image-to-image translation. The development and proliferation of GANs raises an interesting question: can we train a GAN to remove an object, if present, from an image while otherwise preserving the image? Specifically, can a GAN "virtually heal" anyone by turning his medical im...
Conference Paper
Full-text available
Transfer learning from natural image to medical image has established as one of the most practical paradigms in deep learning for medical image analysis. However, to fit this paradigm, 3D imaging tasks in the most prominent imaging modalities (e.g., CT and MRI) have to be reformulated and solved in 2D, losing rich 3D anatomical information and inev...
Preprint
Transfer learning from natural image to medical image has established as one of the most practical paradigms in deep learning for medical image analysis. However, to fit this paradigm, 3D imaging tasks in the most prominent imaging modalities (e.g., CT and MRI) have to be reformulated and solved in 2D, losing rich 3D anatomical information and inev...
Preprint
Full-text available
Generative adversarial networks (GANs) have ushered in a revolution in image-to-image translation. The development and proliferation of GANs raises an interesting question: can we train a GAN to remove an object, if present, from an image while otherwise preserving the image? Specifically, can a GAN "virtually heal" anyone by turning his medical im...
Article
Full-text available
Diagnosing pulmonary embolism (PE) and excluding disorders that may clinically and radiologically simulate PE poses a challenging task for both human and machine perception. In this paper, we propose a novel vessel-oriented image representation (VOIR) that can improve the machine perception of PE through a consistent, compact, and discriminative im...
Preprint
We investigate the effectiveness of a simple solution to the common problem of deep learning in medical image analysis with limited quantities of labeled training data. The underlying idea is to assign artificial labels to abundantly available unlabeled medical images and, through a process known as surrogate supervision, pre-train a deep neural ne...
Article
Full-text available
Cardiovascular disease (CVD) is the number one killer in the USA, yet it is largely preventable (World Health Organization 2011). To prevent CVD, carotid intima-media thickness (CIMT) imaging, a noninvasive ultrasonography method, has proven to be clinically valuable in identifying at-risk persons before adverse events. Researchers are developing s...
Chapter
In this paper, we present UNet++, a new, more powerful architecture for medical image segmentation. Our architecture is essentially a deeply-supervised encoder-decoder network where the encoder and decoder sub-networks are connected through a series of nested, dense skip pathways. The re-designed skip pathways aim at reducing the semantic gap betwe...
Conference Paper
Full-text available
In this paper, we present UNet++, a new, more powerful architecture for medical image segmentation. Our architecture is essentially a deeply-supervised encoder-decoder network where the encoder and decoder sub-networks are connected through a series of nested, dense skip pathways. The re-designed skip pathways aim at reducing the semantic gap betwe...
Preprint
In this paper, we present UNet++, a new, more powerful architecture for medical image segmentation. Our architecture is essentially a deeply-supervised encoder-decoder network where the encoder and decoder sub-networks are connected through a series of nested, dense skip pathways. The re-designed skip pathways aim at reducing the semantic gap betwe...
Article
Full-text available
The splendid success of convolutional neural networks (CNNs) in computer vision is largely attributed to the availability of large annotated datasets, such as ImageNet and Places. However, in biomedical imaging, it is very challenging to create such large annotated datasets, as annotating biomedical images is not only tedious, laborious, and time c...
Chapter
Cardiovascular disease (CVD) is the leading cause of death in the United States, yet it is largely preventable. But a critical part of prevention is identification of at-risk persons before adverse events. For predicting individual CVD risk, carotid intima–media thickness (CIMT), a noninvasive ultrasonography method, has proven to be valuable. Howe...
Conference Paper
Full-text available
Intense interest in applying convolutional neural networks (CNNs) in biomedical image analysis is wide spread, but its success is impeded by the lack of large annotated datasets in biomedical imaging. Annotating biomedical images is not only tedious and time consuming, but also demanding of costly, specialty-oriented knowledge and skills , which ar...
Chapter
Thisstudyaimstoaddresstwocentral questions. First, are fine-tuned convolutional neural networks (CNNs) necessary for medical imaging applications? In response, we considered four medical vision tasks from three different medical imaging modalities, and studied the necessity of fine-tuned CNNs under varying amounts of training data. Second, to what...
Article
Full-text available
Cardiovascular disease (CVD) is the leading cause of mortality yet largely preventable, but the key to prevention is to identify at-risk individuals before adverse events. For predicting individual CVD risk, carotid intima-media thickness (CIMT), a noninvasive ultrasound method, has proven to be valuable, offering several advantages over CT coronar...
Article
Full-text available
Colonoscopy is the gold standard for colon cancer screening though still some polyps are missed, thus preventing early disease detection and treatment. Several computational systems have been proposed to assist polyp detection during colonoscopy but so far without consistent evaluation. The lack of publicly available annotated databases has made it...
Article
Full-text available
Training a deep convolutional neural network (CNN) from scratch is difficult because it requires a large amount of labeled training data and a great deal of expertise to ensure proper convergence. A promising alternative is to fine-tune a CNN that has been pre-trained using, for instance, a large set of labeled natural images. However, the substant...
Article
Full-text available
Colorectal cancer is the second leading cause of cancer death in the US. The primary method for screening and prevention of colorectal cancer is colonoscopy. However, during a colonoscopy, a significant fraction of polyps is missed. Computer-aided detection (CAD) can help colonoscopists reduce their polyp miss-rates. This paper presents the culmina...
Conference Paper
Full-text available
Computer-aided detection (CAD) can play a major role in diagnosing pulmonary embolism (PE) at CT pulmonary angiography (CTPA). However, despite their demonstrated utility, to achieve a clinically acceptable sensitivity, existing PE CAD systems generate a high number of false positives, imposing extra burdens on radiologists to adjudicate these supe...
Conference Paper
Full-text available
Computer-aided detection (CAD) can help colonoscopists reduce their polyp miss-rate, but existing CAD systems are handicapped by using either shape, texture, or temporal information for detecting polyps, achieving limited sensitivity and specificity. To overcome this limitation, our key contribution of this paper is to fuse all possible polyp featu...
Article
Full-text available
Computer-aided polyp detection in colonoscopy videos has been the subject of research for over the past decade. However, despite significant advances, automatic polyp detection is still an unsolved problem. In this paper, we propose a new polyp detection method based on a unique 3-way image presentation and convolutional neural networks. Our method...
Conference Paper
Full-text available
This paper presents a new method for detecting polyps in colonoscopy. Its novelty lies in integrating the global geometric constraints of polyps with the local patterns of intensity variation across polyp boundaries: the former drives the detector towards the objects with curvy boundaries, while the latter minimizes the misleading effects of polyp-...
Conference Paper
Optical colonoscopy is the preferred method for colon cancer screening and prevention. The goal of colonoscopy is to find and remove colonic polyps, precursors to colon cancer. However, colonoscopy is not a perfect procedure. Recent clinical studies report a significant polyp miss due to insufficient quality of colonoscopy. To complicate the proble...
Article
The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consumin...
Conference Paper
Full-text available
Colonoscopy is the primary method for detecting and removing polyps — precursors to colon cancer, but during colonoscopy, a significant number of polyps are missed — the pooled miss-rate for all polyps is 22% (95% CI, 19%–26%). This paper presents an automatic polyp detection system for colonoscopy, aiming to alert colonoscopists to possible polyps...
Article
Carotid intima-media thickness (CIMT) has proven to be sensitive for predicting individual risk of cardiovascular diseases (CVD). The CIMT is measured based on region of interest (ROIs) in end-diastolic ultrasound frames (EUFs). To interpret CIMT videos, in the current practice, the EUFs and ROIs must be manually selected, a process that is tedious...
Article
The “Dynamic Chest Image Analysis” project aims to show focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames. An indispensable source of information recorded in the image sequence is the shapes and motions of the lungs and heart. This chapter employs this shape and motion informat...
Article
Full-text available
This paper presents a novel online learning method for automatically detecting anatomic structures in medical images. Conventional off-line learning methods require collecting a complete set of representative samples prior to training a detector. Once the detector is trained, its performance is fixed. To improve the performance, the detector must b...
Conference Paper
Full-text available
Colorectal cancer most often begins as abnormal growth of the colon wall, commonly referred to as polyps. It has been shown that the timely removal of polyps with optical colonoscopy (OC) significantly reduces the incidence and mortality of colorectal cancer. However, a significant number of polyps are missed during OC in clinical practice—the pool...
Article
Acute pulmonary embolism (APE) is the third most common cause of death in the United States. Appearing as a sudden blockage in a major pulmonary artery, APE may cause mild, moderate or severe right ventricular (RV) overload. Although severe RV overload produces diagnostically obvious RV mechanical failure, little progress has been made in gaining a...
Article
Acute pulmonary embolism (APE) is known as one of the major causes of sudden death. However, high level of mortality caused by APE can be reduced, if detected in early stages of development. Hence, biomarkers capable of early detection of APE are of utmost importance. This study investigates how APE affects the biomechanics of the cardiac right ven...