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Introduction

Osteoarthritis (OA) is a multi-factor induced musculoskeletal 
disorder with low self-repairing ability due to its dense 
extracellular matrix (ECM) with sparsely distributing blood 
vessels, nerves, stem cells and highly specialized cells called 
chondrocytes. Among all the risk factors related to OA, 
such as local risk factors (muscle weakness, excess physical 

activities, joint injury, mal-alignment of joint, leg length 
inequality etc.), modifiable systemic risk factors (obesity, 
unhealthy diets), non-modifiable systemic risk factors (age, 
gender, ethnicity, genetics), age is one of the strongest 
predictors of OA (1,2).

In China, the largest developing country with a 
population of 1.3 billion in the world, had already entered 
into the aged society since 2010 with 25.3% of the 
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population comprised individuals aged 50 years or older (3). 
Based on the uniformed inclusion criteria and quantitative 
index, which including 6,218 questionnaires and 5,334 
sample X-ray films, the prevalence rate of primary OA was 
48.7% (1,086/2,230) in 50–59 years, 62.2% (754/1,213) in 
60–69 years and was 62.1% (391/630) in 70 years and over 
in China 2010 (4). It can be foreseen that the prevalence of 
age-related OA will be fast growing in the near future in 
China, and the efficacious preventing and treatment ways 
for OA would be in great demanding in the next decades. 
It urges us to understand the mechanism of age-related OA 
which is still poorly understood. Disturbed biomechanical 
practices and weak muscle strength, with biological changes 
such as enduring inflammation, as well as chondrocytes 
malfunction and inferior self-renewing capability of cartilage 
progenitor cells are likely combined contributing factors in 
age-related OA (5). Nevertheless, very few insights had been 
put into the tissue mineral changes in cartilage metabolism. 
For example, calcium (Ca), magnesium (Mg), sodium (Na), 
potassium (K), selenium (Se), zinc (Zn), copper (Cu), and 
iron (Fe) are well contained in the joint tissue and play 
respective roles in cartilage normal function and progress of 
OA and rheumatoid arthritis (RA) (6,7). Mg is an important 
element which had been overlooked in the musculoskeletal 
disorders for a long time until the significant osteogenic 
effect of Mg is reported in recent years (8-10).

In articular cartilage, it is distributing with some 
tiny minerals in this non-mineralized hard tissue. Mg is 
considered existing in the hyaline cartilage matrix as Mg-
substituted tricalcium phosphate (TCP) commonly named 
whitlockite [(Ca,Mg)3(PO4)2)] (11-13). These cuboid 
crystals have been described in both normal and pathologic 
articular cartilage tissues determined by electron and 
X-ray diffraction. Its frequent existence in cartilage tissue 
bring questions about Mg’s role in cartilage generation, 
physiological cartilage metabolism and pathogenicity in OA 
cartilage (14).

It was reported that Mg-deficiency in young rodents 
elicited an apparent decrease in the number and the 
size of the proximal tibial articular chondrocytes with a 
statistically significant decrease in the width of the articular  
cartilage (15). It also showed a lack of the orderly 
chondrocyte columns arrangement, a reduction in the 
proteoglycans amount and a statistically significant decrease 
of width in growth plate of the proximal tibia, as well as a 
highly significant decrease of the trabecular bone volume 
and a statistically significant decrease of the osteoblastic 
surface in the proximal metaphysis of the tibia (15). 

Some other studies had been found that Mg deficiency 
in immature dogs/rats led to significant cartilage lesions 
with distinct alterations in ultrastructure and chondrocytic 
f ibronect in sta ining (16-18) .  Histomorphometry 
demonstrated significantly decreased distal femur articular 
cartilage chondrocyte density and decreased tibia growth 
plate width in experimental animals compared to controls, 
ECM of both articular cartilage and growth plates in 
experimental animals contained reduced amounts of 
proteoglycans and reduced levels of SOX9 in rats following 
a 6-month dietary Mg restriction (19). Within a relative 
short time of Mg intake restriction (28 days), cartilage 
lesion was observed in juvenile rats rather than in aged rats 
(20,21). In human beings, several epidemiological studies 
reported that serum Mg (Mg intake) was inversely and 
significantly associated with radiographic knee OA, joint 
space narrowing (JSN) and RA (22-25). All the studies 
strongly indicate a potential role of Mg in the genesis and 
prevention of OA.

Here we details the topic about the pivotal role of Mg in 
pathogenesis and prevention of OA by reviewing the main 
published Mg-related studies in OA, RA, cartilage and bone 
metabolism.

Existence of Mg in the cartilage tissue

Ca phosphate crystals, including hydroxyapatite, carbonated 
apatites, octacalcium phosphate and Mg-substituted 
whitlockite have been reported in human articular cartilage 
and synovial fluid (11,26-28). In contrast to Mg-substituted 
whitlockite, the other Ca containing crystals with high Ca/
P ratio in cartilage and periarticular tissue was strongly 
associated with osteoarthritic reaction and degenerative 
joint disease (11,14). For instance, articular deposition of 
basic Ca phosphate [(BCP), a term restricted to various 
mixtures of carbonate substituted apatite, octacalcium 
phosphate, and TCP] is associated with an exaggerated 
form of OA (14,29,30). In addition, Ca pyrophosphate 
dihydrate (CPPD) crystal deposition disease affects articular 
cartilage and is a frequent concomitant of severe OA (30). 
These crystals stimulate synthesis and secretion of cytokines 
and proteases by phagocytic cells like synovial lining cells 
and chondrocytes. They also induce mitogenesis in synovial 
lining cells, thereby increasing the number of cells able to 
secrete cytokines and proteases in response to crystals shed 
into the joint fluid (14).

The Ca moiety in BCP and CPPD crystals appears to 
play the important roles in eliciting biologic responses by 
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phagocytic cells. Particulates that do not contain Ca do not 
stimulate mitogenesis after phagocytosis (14). Whitlockite 
appears to share some of the same biologic properties, 
such as enhancing mitogenesis and synthesis and secretion 
of matrix metalloprotease 1 and 3 (MMP1 and MMP3) 
of phagocytic cells in response to these crystals (14).  
However, the biologic responses to whitlockite are 
attenuated compared with Ca-containing crystals that are 
devoid of Mg. Mitogenesis and proteases synthesis induced 
by whitlockite, which has approximately 9.2% atomic 
substitution of Mg for Ca, is less than that induced by the 
Mg-free β-TCP (14).

Potential explanations for the reduced mitogenesis 
and proteases synthesis of phagocytic cells in response to 
the whitlockite crystals may be due to the interference 
of Mg with the early and rapid cytosolic influx of Ca by 
lessening crystal-membrane interactions, or interference 
with mitogen-activated protein (MAP) kinase induction 
and MAP kinase cascade (14). However, the postulation 
has not been proven by detailed research experiments yet. 
What have been known by now is that Mg ions have direct 
inhibiting effect on aberrant mineralization of Ca rich 
crystals (Figure 1).

Redeeming effect of Mg2+ on chondrotoxicity 
caused by chondrocalcinosis

Researchers have explored the role of the Mg ions in 
biomineralization for decades. In 1984, Nancollas (31) found 
that Mg2+ appreciably retard the OCP growth rate and 
strongly inhibit thermodynamically stable hydroxyapatite 
crystallization (32,33). They further proved that Mg2+ at 
concentrations ranging from 0.0099 to 0.99 mM reduce 
the hydroxyapatite growth rate by 51% and 93% (32). 
After finding that inhibitory effect of Mg2+ is enhanced by 
synergization with CO3 anions, Cao proposed that Mg2+ 
induce a significant inhibitory effect on the larger crystal 
growth of hydroxyapatite by forming a surface complex at 
the active growth site of newly formed small hydroxyapatite 
crystals and bonding to small crystals to prevent unceasing 
precipitation of Ca-P (34,35). It has been suggested that 
Mg2+ kinetically hinders nucleation and subsequent growth 
of hydroxyapatite by competing for structural sites with 
chemically similar but larger Ca2+ (31,36).

Mg deficiency in cartilage tissue would lead to the Ca-
rich BCP, CPPD and finally hydroxyapatite crystallization, 
which is characterized as articular chondrocalcinosis 

Figure 1 Presence magnesium (Mg) whitlockite crystals in cartilage tissue. (A-D) Superficial zone femoral head articular cartilage, processed using 
both the anhydrous and standard TEM techniques and observed unstained. Crystals are distributed both as a band below the articular surface (11-13).
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commonly occur in elderly people with OA (37,38).
Typical observations of Mg deficiency induced cartilage 

lesion includes (I) bundle-shaped, electron-dense aggregates 
on the surface and in the cytoplasm of chondrocytes; (II) 
detachment of the cell membrane from the matrix and 
necrotic chondrocytes; (III) reduction of the ECM; and (IV) 
swelling of cell organelles such as mitochondria (16-18).  
These electron-dense, bundle-like aggregates occurring 
physiologically in the pericellular spaces from proliferating 
chondrocytes is prone to be the Ca containing BCP and 
CPPD crystals (18). The synovial lining cells producing 
inflammation factors such as tumor necrosis factor α 
(TNF-α) which is known to induce interleukin 1 (IL-1) and 
their synergistic effects have been described in the cartilage 
tissue with Mg deficiency may be caused by the BCP and 
CPPD crystals (39,40). The released cytokines cause the 
impairment of proteoglycan synthesis, chondrocytes injury 
and breakdown of cartilaginous matrix by induction of 
MMPs. In accordance with this mechanism, increased 
plasma levels of IL-1 and TNF-α are also observed in Mg-
deficient rats compared to controls (39,40). In Mg deficient 
state, after triggering the inflammatory response cascades, 
elevation of TNF-α would promote the release of IL-6 
and interferons, synthesis of nitric oxide (NO), substance 
P (SP) and IL-4. Immune cells and synovial cells would be 
activated and stimulate the production of prostaglandins 
and several cytokines which synergetically involved in 
inflammation (31,37).

The character of tissue lesion of Mg-deficiency induced 
cartilage is similar with that after cartilage toxicant 
quinolone treatment in rats (18). It is also reported that 
quinolone-induced chondrotoxicity is possibly associated 
with the Mg-chelating properties of quinolones. Mg2+ can 
bind to the drugs of quinolone class, thus reducing the 
concentration of biologically active ionized Mg2+ in the 
cartilage tissue (18). It indicates that Mg2+ concentration 
disturbance in local cartilage tissue could be one of the chief 
pathogenic causes in the arthropathy process.

Mg is the fourth abundant cation in the body and the 
second most common intracellular cation after potassium. 
It plays important roles in animals as a central ion of 
adenosine triphosphatase (ATPase) and making it pivotal for 
numerous physiological functions (41,42). Mg2+ is required 
for a very wide range of cellular reactions, including all 
phosphoryl transfers related to DNA and protein synthesis. 
The increase in cytosolic free Mg2+ which initiated by 
the binding of growth factors to their receptors in the 
cell membrane leads to up regulation of Mg− adenosine 

triphosphate (ATP) 2− which accounts for the downstream 
protein synthesis of the phosphatidylinositol (PI) 3-kinase 
cascade, promotes cell mitosis and proliferation (43). 
The importance of cytosolic Mg2+ for cell proliferation 
is explained via the membrane, cytosolic Mg2+, mitosis 
model (MMM) (44,45). However, cytosolic Mg2+ affects 
chondrocytes and cartilage progenitors not only on the cell 
proliferation and viability, but also on their chondrogenic 
differentiation.

Profitable effect of Mg2+ on chondrocytes 
viability and chondrogenic differentiation

The addition of magnesium sulfate (MgSO4) along with 
local anesthetic agents was found resulted in greater human 
chondrocytes viability than when cells are treated with a 
local anesthetic alone (46). In another study, chondrocytes 
were cultivated in the presence of quinolones and in Mg-
free medium show severe alterations in cytoskeleton 
and decreased ability to adhere to the culture dish (32). 
With Mg2+ supplementation, the number of attached 
cells increased to 40–70% that of control cells in Mg-free 
medium (32). Human chondrocytes viability is greater 
in the presence of Mg2+ than selected local anaesthetics, 
this effect possibly is due to the antagonizing character of 
Mg2+ to chondrocyte NMDA-receptor which mediating 
cytosolic Ca2+ evoking (33,47). In studies of Dou et al., after 
incubating pure metal Mg microspheres with chondrocytes, 
glycosaminoglycans (GAG) content, collagen type I/II/X 
and aggrecan were significantly increased in chondrocytes 
under proper concentration of Mg2+ conditions (48). 
Meanwhile, AH Martínez-Sánchez found that Mg extracts 
could induce human umbilical cord perivascular cells 
(HUCPCs) which exhibiting a high mesenchymal stem 
cell potential, differentiate into chondrocytes with type II 
collagen (COL2A1), aggrecan, SOX9 up regulated, and 
synthesis of cartilage-like ECM (49).

In our study, high concentration of Mg ions (from 2 to 
10 mM) promotes osteogenic and chondrogenic but rather 
than adipogenic differentiation of tendon-derived stem 
cells (TDSCs) and bone marrow stem cells (BMSCs) in 
respective inducing medium in vitro. This phenomenon is 
jointly corporate with high cellular ATP production. To 
be noticed, the stem cell didn’t undergo differentiation 
in simple Mg containing medium (without the inducing 
ingredients in the medium). Our findings are in accordance 
with other groups in certain extent (50-52). For example, 
Feyerabend et al. found Mg concentrations up to 10 mM  
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lead to an increase of the proliferation rate, higher degree 
of chondrocyte differentiation with increased GAG 
production, the absence of collagen type I (COL1A1) gene 
expression and higher melanoma inhibitory activity (MIA) 
expression (51). Yoshizawa et al. also found that osteogenic 
differentiation of BMSCs is enhanced at 5 and 10 mM 
MgSO4, and collagen type X mRNA (COL10A1, an ECM 
protein deposit during bone healing and hypertrophic 
process in chondrocytes) expression is increased at 10 mM  
MgSO4 in both medium with and without osteogenic 
factors (53). It also found that Mg2+ profoundly enhances 
alkaline phosphatase (ALP) gene expression and osteogenic 
differentiation activity in hBMSCs even at a relatively 
low concentration (2.5 mM) (54). In Zheng’s group, 
Mg ions were found to enhance the proliferation and 
redifferentiation of chondrocytes and the osteogenic 
differentiation of osteoblasts at specific concentrations, 
respectively (52). These studies show that besides its 
favorable effect to chondrocyte viability, Mg2+ also performs 
the promoting effect on stem cells differentiation. Overall, 
the predominant action of cellular Mg is related to ATP 
utilization, and thus it exists in all cells primarily as Mg-
ATP (55). Through interaction with universally required 
ATP in cell, Mg may influence most life metabolic processes 
including cartilage and bone modeling (56).

All the effects of Mg ions on stem cells, chondrocytes, 
osteoblast, osteoclasts and other lining cells such as 
fibroblasts and T cells may share a common mechanism 
based on cytosolic Mg2+ actions. We notice that along with 
Mg2+ entering into the cytoplasm, cellular ATP content 
is augmenting in our recent study (57). After incubating 
with high concentration Mg2+, stem cells enhance its 
adhesion to the substrate with focal adhesion kinase (FAK) 
phosphorylated in first 24 hours. Then in the following 1 
to 2 weeks, stem cells are programmed into chondrogenic 
and osteogenic differentiation. In contrast to Ca2+, which is 
responsible for fast cellular reactions, Mg shows gradually 
and very well controlled, long-term influence on many 
cellular reactions (51).

Being different from biochemical molecular which 
inducing chondrogenic and osteogenic differentiation 
on stem cells, the influence of Mg2+ on cell metabolic 
pattern and cell stiffness may dictate the fate of stem cell 
in more basic or downstream way (58,59). Mg2+ has the 
intrinsic capability to co-regulate cell energy metabolism, 
cytoskeleton arrangement, protein synthesis and, indirectly, 
the onset of DNA synthesis. So we postulate that the 
mechanism of chondrogenic effect of Mg2+ on cartilage 

progenitor cells and chondrocytes may be dependent 
on the inner pathway related to ATP production and/or 
cytoskeleton arrangement in these cells.

Intracellular functions of Mg ions

The pathway of Mg2+ transmembrane shipping into 
chondrocytes is not clear yet. Nonetheless, Mg2+ transport 
from extracellular fluid to cytoplasm had been deeply 
studied in the past two decades. Genetic screenings on 
human diseases and microarray-based expression studies 
have resulted in the identification of numerous Mg2+ 
transporting proteins. In eukaryocytes, membrane Mg 
channels are a broad range of transmembrane proteins 
with similar structures and amino sequences. They are 
generally encoded as SLC41A1, SLC41A2, Mrs2, ACDP2, 
Paracellin-1, Claudin 16, TUSC3, MagT1, TRPM6, and 
TRPM7 genes, which have same role in prokaryotic cells 
(60,61). Among them, TRPM7 is ubiquitously expressed 
in all tissues, and it is proved to combine with TRPM6 
to form a TRPM6/TRPM7 heteo-oligomerization and 
create Mg transmembrane conduction in distal convoluted  
tubule (62). Channel MagT1 is also expressed in all tissues 
and is considered responsible for mammalian cell Mg2+ 
uptake (61,63).

Under resting conditions, Mg2+ slowly moves across 
the cell membrane with a turnover of several hours. 
Yet, increasing or decreasing the extracelluar Mg2+ will 
change significantly total intracellular Mg2+ content (64). 
In general, intracellular Mg primarily fulfills various 
intracellular physiological functions as a cofactor of DNA, 
RNA, ATP, and almost all 600 enzymes (55,65). Mg has two 
general types of interaction with an enzyme: (I) binding to 
an enzyme substrate in the reaction of kinases with Mg-
ATP, thereby forming a complex with the enzyme; and (II) 
binding directly to the enzyme, thereby altering its structure 
and/or serving as catalytic player.

Mg2+ affects mitochondria activities

In a typical mammalian cell, 90% of total cytosolic Mg2+ 
is bound to ATP in the cytosol or sequestered within 
nuclei, mitochondria and endoplasmic reticulum (ER) (65). 
Numerous experimental and clinical data have suggested 
that Mg2+ deficiency can induce elevation of intracellular 
Ca2+ concentrations, formation of oxygen radicals such 
as reactive oxide species (ROS), proinflammatory agents 
and changes in membrane permeability and transport 
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processes in cells (66,67). It was found that cardiomyocytes 
are exposed to hypoxia for 1 hour and reoxygenation for 
2 hours, and ROS level is increased 100–130% during 
reoxygenation alone. Yet the ROS level is further down 
regulated to 60% by increasing extracellular Mg2+ 
concentration to 5 mM at reoxygenation (68).

Mitochondria is a major source of intracellular Mg2+, half 
of the mitochondria Mg2+ is localized in the mitochondria 
matrix, 40% of which is present in the intermembrane space 
and the remaining 10% are equally bound at the outer and 
inner membrane level (~5% each) (65). A change in external 
Mg2+ modulates the rate of oxidative phosphorylation 
(OxPhos) and respiratory rate in mitochondria through 
modulation in the activities of the succinate and glutamate 
dehydrogenases in intact rat heart mitochondria (69). The 
myocardial protective effect of Mg2+ is mainly by inhibiting 
intracellular Ca2+ overload through blocking L-type Ca2+ 
channel, and recovering mitochondrial membrane potential 
by opening the mitochondrial KATP channel during  
hypoxia (70).

In studies of stem cells, endogenous ROS generated from 
the mitochondrial electron transport chain (ETC) complex 
III is required to initiate directed adipogenesis of MSCs (71).  
Unlike adipogenesis, osteogenesis cannot tolerate ROS. 
In fact, antioxidant enzymes such as superoxide dismutase 
and catalase are simultaneously up regulated with OxPhos 
in osteoblasts to prevent ROS accumulation (58,72). 
In contrast to adipogenesis and osteogenesis, MSCs 
undergoing chondrogenesis have significantly reduced 
O2 consumption and OxPhos, indicating a shift towards 
increased glycolysis. Furthermore, hypoxia inhibits MSCs 
osteogenesis, whereas chondrogenesis is unaffected (73,74).

Taken together, these studies indicate that subtle 
manipulation of oxidative consumption and energy 
productive ways by intracellular Mg2+ directly influence the 
differentiation of MSCs either into osteoblasts, adipocytes 
or chondroblasts. Actually, Mg2+ is found regulating 
proliferation and differentiation in stem cells by altering 
mitochondria function in latest study (75,76). However, the 
detailed effect of Mg ions on cell energy metabolism and its 
consequences in stem cell fate need to be explored in future 
studies.

Mg affects cytoskeleton arrangement

Besides biochemical signals regulating MSCs commitment, 
biomechanical signals directly and indirectly played 
important roles in regulating a stem cell fate (77).

Cytoskeletal contractility by actin-actomyosin system is 
an important mechanical regulator of directing stem cell 
differentiation. Inhibiting the cytoskeletal contractility 
by reducing Rho-associated kinase (ROCK), nonmuscle 
myosin II and FAK activities lead to adipogenesis (77). 
The chndrogenic and osteogenic differentiation of 
MSCs probably correlates with the FAK activity and the 
cytoskeletal contractility. The contractile cytoskeleton 
consists of actin, myosin, microtubules and intermediate 
filaments (78). Remodeling of the actin cytoskeleton 
through actin dynamics is involved in a number of 
biological processes (79). The cellular contractility induces 
downstream events including the recruitment of adhesion 
molecules and kinases such as the mechanosensitive FAK, 
zyxin and talin, subsequently triggering the activation of 
Rho GTPases (80). In eukaryotic cells, the lipid membrane 
is connected to the actin cortex via the family of members of 
the ezrin-radixin-moesin (ERM) linker proteins, including 
ezrin, radixin and moesin (81).

MSCs exhibit inherent plasticity in terms of their ability 
to differentiate into different lineage including chondrocytes 
and osteoblasts (82,83). MSCs are softer in quiescent state 
than in differentiated state which is likely to influence 
cellular functions including mechano-transduction and 
migration (83). The increased stiffness of differentiated cells 
is resulted from the increased membrane-cortex adhesion, 
and the differentiated cells exhibited greater F-actin 
density and slower actin remodeling (83). Polymerization 
of actin is regulated by a series of kinases, such as GTPase 
RhoA, ROCK, and LIM kinases, which phosphorylates the 
actin depolymerizing protein cofilin and stabilizes actin 
filaments (84). Stabilizing polymerized actin filaments 
increases hMSCs viability and osteoblast and chondroblast 
differentiation (85). Activation of actin depolymerization 
and consequently reducing the cell tension by cytochalasin 
D or inhibition of ROCK activity mimics the phenotype of 
poor spread cells, resulting in adipogenesis (85). This effect 
of cytochalasin D is due to its promotion of ATPase activity 
in cells, which is contrary to effect of Mg2+ in our studies for 
dorsal root ganglia neurons (57).

ATP hydrolysis occurs on F-actin in two subsequent 
reactions, cleavage of ATP followed by the slower release 
of Pi. ATP is hydrolyzed (at the rate of 1/3.3 s−1) following 
the elongation of filaments at the growing end of filaments, 
whereas the Pi release is 100 times slower (86). As a result, 
newly polymerized filaments consist of stable ADP-Pi actin 
(F-ADP-Pi), whereas the older filaments contain mainly 
ADP actin (F-ADP), which disassembles more rapidly (86).  
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Actin dynamics also depends on the identity of the 
bound divalent cation, physiologically Mg2+, associated 
with the bound nucleotide (87). Effect of Mg2+ on actin 
polymerization is not studied thoroughly yet, however, 
the action between Mg2+ and non-muscle myosin is well 
studied.

Previous studies with motor proteins such as myosin 
traditionally focus on Mg2+ as a cofactor in ATP binding, 
hydrolysis, and product release in the force-generating 
mechanochemical cycle (88). In recent studies, Mg2+ inhibit 
class I, II, V myosins and class VII myosins in a Mg2+ 
dependent manner (0.3–9.0 mM free Mg2+) in both ATPase 
and motility assays (88-90). The results demonstrate that 
Mg2+ alters key steps in mechanochemical cycle by coupling 
the nucleotide and actin-binding regions. It alters the 
structural transition that limits ADP dissociation from 
actomyosin. Because the ADP release step is rate-limiting 
in myosin, increasing free Mg2+ concentration slows the 
myosin ATPase activity as well as sliding velocity. The 
mechanism of altering detachment is likely due to Mg2+ 
exchange in the active site, although it is unclear how Mg2+ 
impacts attachment. Higher concentrations of free Mg ions 
stabilize the tension-bearing actin myosin ADP state and 
shift the system from the production of rapid movement 
toward the generation of tension. 

The total tension present in the plasma membrane (i.e., 
the “apparent” membrane tension) has a minor contribution 
from the surface tension of the lipid bilayer and a 
substantial contribution from the molecular contacts that 
afford adhesion to the underlying actin cytoskeleton (88).  
To prevent large changes in tension is the inner request 
of stem cells in quiescent state, and the plasma membrane 
must  mainta in  cont inuous  interact ions  with  the 
cytoskeleton (80). In this process, MSCs are particularly 
susceptible to membrane blebbing, membrane-cytoskeleton 
structure is highly dynamic and continuously remodeling 
in undifferentiated MSCs (83). The increased tension 
indicates the increased critical pressure for membrane-actin 
cortex detachment or bond strength in MSCs following 
differentiation. Meanwhile, this “blebability” is reduced 
during chondrogenic differentiation with significant 
increases in instantaneous and equilibrium moduli (83).

Under quantitative confocal microscopy, the differentiated 
cells have longer recovery times indicative of a more 
stable actin cortex with slower turnover compared to 
hMSCs in review of actin organization and dynamics (91). 
This is in agreement with the observations of increased 
membrane-cortex adhesion which in turn influences cell 

mechanics by reducing bleb formation (83). Here we point 
out the reduced membrane bleb formation along with 
chondrogenic and osteogenic effect of Mg2+ on MSCs is 
a probable mechanism of Mg2+ suppression to osteoclasts 
whose function are mainly dependent formation of blebbing 
and vesicles (92,93).

Interaction between extracellular Mg2+ and integrins

Cells adhere to the underlying ECM substrate by 
employing membrane-bound integrins. A large complex 
network of adhesion molecules has been shown crucial 
for stem cells and force-mediated differentiation, some of 
the important structural proteins in cell adhesion include 
integrin, talin, vinculin and FAK (80). Integrin structurally 
contains three distinct divalent cation-binding sites. Two 
binding sites where integrin interacts with its ligand are 
occupied by Mg2+, presence of Mg2+ is essential for integrin-
ligand binding and their presence is required for cell  
adhesion (59,94).

From in vitro investigations on chondrocytes, it is known 
that several integrins are present on chondrocytes and that 
the cell-matrix interaction is mediated by integrin receptors 
of the β1 subfamily (18). These receptors recently be 
demonstrated to be exist in human cartilage, and they are 
reduced in rat chondrocytes after ofloxacin treatment (95).  
Because binding of integrins and its receptors require 
divalent cations, particularly Mg2+, integrins’ function could 
be impaired in Mg deficiency or by Mg2+-chelating agents 
such as quinolones in cartilage tissue (95,96). So it had 
been speculated that impairment of cell-matrix interaction 
through integrins activation is one of the possible 
mechanism in Mg-deficiency induced arthropathy.

Mg2+ is involved in direct activation and the regulation 
of signal cascades of integrins (97,98). In chondrocytes, at 
least eight different types of integrins are expressed and play 
the important roles in differentiation and the interaction 
of chondrocytes with the ECM (99). Mg2+ is found 
increased adhesion of hMSCs to collagen, and this effect 
is inhibited by neutralizing antibodies for integrin α3 and 
β1. In this study, Mg2+ also promotes synthesis of cartilage 
matrix during in vitro chondrogenesis of synovial MSCs, 
however, the chondrogenic differentiation effect of Mg2+ is 
diminished by neutralizing antibodies for integrin β1 but 
not for integrin α3 (100). It was also reported that high 
concentration of Mg2+ promotes proliferation of human 
bone marrow-derived stromal cells (hBMSCs) via integrins 
α2 and α3, but not β1 (54). It is fascinating that whether 
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intracellular Mg2+ or extracellular Mg2+ which directly 
binding to cell membrane integrin domain which protruding 
out of the cytoplasm (101), is enrolled in the differed 
differentiation pathway in stem cells. In further studies, 
it is pivotal to explore the effect between intracellular/
extracellular Mg2+ and integrin regulation to understand  
the role of Mg2+ on chondrogenic differentiation (51).

Mg in treatment of OA and future direction

Based on its chondrocyte benevolent effects of Mg2+, Mg 
salts have been studied in the OA treatment in recent 
years, actually only in the bench now and still far from 
the bed. CH. Lee et al. firstly intra-articularly injected 
MgSO4 in the OA Wistar rats caused by intra-articular 
injection of collagenase (500 U) in the knee, and Mg2+ 
significantly reduced the severity of cartilage degradation 
in the OA knee (102). OA rats receiving intra-articular 
MgSO4 injections showed a significantly lower degree 
of cartilage degeneration than the rats receiving saline 
injections, synovitis phenomenon was also suppressed after 
MgSO4 treatment (102). Mechanical allodynia and thermal 
hyperalgesia showed significant improvement in the OA + 
MgSO4 group as compared to the OA group (102). It had 
been considered that the inflamed state of arthritic knees is 
characterized by the presence of neural transmitters such 
as SP and glutamate in the inflamed region and synovial  
fluid (103). These neural transmitters in the knee joint 
result in thermal hyperalgesia and mechanical allodynia, 
which conducted through N-methyl-D-aspartic acid 
(NMDA) receptor on synoviocytes and chondrocytes (104). 
Mg2+ acts as an antagonist at the glutamate subtype of 
NMDA receptors and blocks NMDA-induced currents in 
a voltage-dependent manner by blocking receptor channel 
effects (105,106). Dietary restriction of Mg intake lowers 
the mechanical nociceptive thresholds in rats, which can be 
reversed by the NMDA receptor antagonist, MK-801 (102). 
Local intra-articular administration of MgSO4 modulates 
chondrocyte metabolism through inhibition of cell NMDA 
receptor phosphorylation and apoptosis, attenuates 
the development of OA and concomitantly reduces  
nociception (102). Even in normal rat knee joint, intra-
articular injection of MgCl2 solution had no significant 
adverse effect of inflammation and cartilage degeneration 
compared to saline injection (107).

Mg2+ is a potential therapeutic agent in the treatment of 
the OA. Further research is needed not only to better define 
the administration mode of Mg2+ on OA but also to clarify 

the role of Mg2+ as a NMDA antagonist in OA treatment. 
In our recent published work, Mg2+ significantly promotes 
replasticity in sensory neurons, and increases up regulation 
of neural transmitters (e,g., calcitonin gene-related peptide) 
which facilitates osteogenesis and bone fracture healing (57).  
It reminds us that the biological effects of Mg2+ are multi-
systems and far-ranging to neuron, myocyte, osteoblast, 
osteoclast, fibroblast, chondrocyte, epithelial cell, 
progenitor cell and stem cell. In cartilage, there is few 
sensory nerves and neural peptides, the direct effect of 
Mg2+ on chondrocytes and progenitor cells should be well 
studied.

At the present, drug treatments for OA are pain 
alleviating and/or antagonizing to inflammation factors (e.g., 
TNF-α, IL-1β/6/8), most of conservative treatments cannot 
even slow the progression of OA. At the later stage of OA, 
patients usually have to receive total knee/hip replacement 
surgery. So both clinicians and researchers are trying to 
find the efficacious treatment to prevent the progression 
and cure the OA in the early stage. It was found that MSCs 
are recruited and aggregated into the damaged tissue 
site and differentiate into chondrocytes in the beginning 
of OA (108,109). However, the stem cells gradually 
lost their differential capability during the persisting  
inflammation (110). As we review above, Mg ions can 
promote the chondrogenic differentiation on MSCs. 
Meanwhile, Mg ions also perform its significant inhibiting 
effect on the inflammation activities to osteoclasts (93).  
Our previous study showed that the expression of 
nucleostemin (a stem cell nucleus marker which is well 
maintained in quiescence and mitosis and down-regulated 
in differentiation) in cartilage was decreased after Mg 
treatment in rat OA model. It indicates Mg2+ may well keep 
the viability and differential potent of cartilage stem cells. 
That makes Mg a new prospective drug in the conservative 
treatment for OA through locally administrating Mg ions in 
the lesioned cartilage.

The fascinating effect of Mg in musculoskeletal system 
enlightens us to explore the existence of stem cells or 
chondrocyte progenitors in cartilage tissue, and search 
for the cause accounting for the losing capability of these 
cells in cartilage repair. Thoroughly understanding the 
mechanism of Mg ions’ curing effect on OA would inspire 
the new findings for cartilage self-repairing processing, and 
design feasible ways to treat early OA.
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