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Abstract Let R and S be rings and SCR a semidualizing bimodule. We investigate the
relative Tor functors TorMLC

i (−,−) defined via C-level resolutions, and these functors

are exactly the relative Tor functors TorMFC

i (−,−) defined by Salimi, Sather-Wagstaff,
Tavasoli and Yassemi provided that S = R is a commutative Noetherian ring. Vanishing of
these functors characterizes the finiteness of LC(S)-projective dimension. Applications go
in two directions. The first is to characterize when every S-module has a monic (or epic)
C-level precover (or preenvelope). The second is to give some criteria for the isomorphism
TorMLC

i (−,−) ∼= TorMFC

i (−,−) between the bifunctors.

Keywords Level · Proper resolution · Relative homology · Semidualizing bimodule
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1 Introduction

Semidualizing modules originated from the study of various duality theories in commuta-
tive algebra. The study of such modules (under different names) are independently studied
by Foxby, Golod and Vasconcelos (see [8, 10, 27]). Holm and White [13] extended this
notion to arbitrary associative rings, while Christensen [5] and Kubik [16] extended it to
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semidualizing complexes and quasidualizing modules respectively. A semidualizing bimod-
ule SCR gives rise to several distinguished classes of modules. For instance, one has the
classPC(S) (FC(S)) of C-projective (C-flat) S-modules and the class IC(R) ofC-injective
R-modules. Detailed definitions can be found in Section 2.

Recently, Salimi, Sather-Wagstaff, Tavasoli and Yassemi [19] investigated the relative
Tor functors for C-flat R-modules over a commutative Noetherian ring R. These functors
coincide with the classical Tor functors (see, for example [3, Chapter VI]) in case C = R.
As an application, they showed how the vanishing of these functors characterizes the finite-
ness of FC(R)-projective dimension (see [19, Theorem 5.4]). To describe how Gorenstein
homological algebra should work for general rings, the authors of [2] defined the notion
of level modules, which is a natural generalization of flat modules. The main purpose of
this paper is to further study the relative Tor functors for level modules with respect to a
semidualizing bimodule.

In the following, we let R and S be rings and SCR a semidualizing bimodule. All R- or
S-modules are understood to be left R- or S-modules. Right R- or S-modules are identified
with left modules over the opposite rings Rop or Sop. Let LC(S) = {C ⊗R F | RF is
level}. Such modules are called C-level S-modules. It is shown that every S-module M

has a C-level precover (see Proposition 3.7(3)). This lets us give an appropriate definition
of relative Tor functors for level modules with respect to a semidualizing bimodule (see
Definition 3.10). The next result for relative Tor functors is our first main theorem which
characterizes the finiteness of LC(S)-projective dimension. See Theorem 3.14.

Theorem 1.1 Let SCR be a faithfully semidualizing bimodule and n a non-negative integer.
Then the following are equivalent for any S-module N :

(1) LC(S)-pd(N) � n;
(2) TorMLC

i (M,N) = 0 for each (finitely presented) Sop-module M and any i > n;

(3) TorMLC

n+1 (M,N) = 0 for each (finitely presented) Sop-module M .

Note that if S = R is commutative Noetherian, then the above result was known in
[19]. Thus Theorem 1.1 generalizes [19, Theorem 5.4], and provides many more possibil-
ities for constructing an appropriate definition of relative Tor functors. Also, our proof of
Theorem 1.1 is different from that in [19].

The first application of Theorem 1.1 is the next result characterizing when every S-
module has a monic (or epic) C-level precover (or preenvelope). See Theorems 4.1, 4.2, 4.4
and Corollary 4.6.

Theorem 1.2 The following are equivalent for any faithfully semidualizing bimodule SCR:

(1) Every S-module has a monic C-level precover if and only if TorMLC

1 (M,N) = 0 for
any Sop-module M and any S-module N .

(2) Every S-module has an epic C-level precover if and only if
θ : TorMLC

0 (M,N) → M ⊗S N is epic for any Sop-module M and any S-module N .
(3) Every S-module has a monic C-level preenvelope if and only if

TorMLC

1 (M, (SS)+) = 0 for each Sop-module M .

(4) Every S-module has an epic C-level preenvelope if and only if TorMLC

2 (M,N) = 0
for each Sop-module M and any S-module N .
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As a consequence of Theorem 1.2, we give a necessary and sufficient condition for
a semidualizing module C to be projective whenever R is commutative Noetherian (see
Corollary 4.3).

Motivated by the fact that one can compute the homology TorRi (M,N) in terms of a
projective resolution of N or a flat resolution of N , Salimi, Sather-Wagstaff, Tavasoli and
Yassemi [19] compared relative Tor functors TorMFC

i (−, −) and TorMPC

i (−,−) defined
via C-flat and C-projective resolutions whenever C is a semidualizing module over a com-
mutative Noetherian ring R. They proved that TorMFC

i (−,−) ∼= TorMPC

i (−,−) for each
integer i (see [19, Theorem A]). As the second application of Theorem 1.1, the next result
characterizes when TorMLC

i (−,−) ∼= TorMFC

i (−,−) for each integer i. See (4.11) for the
proof.

Theorem 1.3 The following are equivalent for any faithfully semidualizing bimodule SCR:

(1) R is right coherent;
(2) LC(S) = FC(S);
(3) Every C-flat precover over S is a C-level precover;
(4) Every C-level precover over S is a C-flat precover;
(5) TorMLC

i (−, −) ∼= TorMFC

i (−,−) for each integer i.

2 Preliminaries

Throughout this paper, Mod(R) is the class of (left) R-modules. For any R-module M ,
idR(M) is the injective dimension of M and M+ denotes HomZ(M,Q/Z). P , F and C
stand for the classes of projective, flat and cotorsion R-modules, respectively.

Next we recall basic definitions and properties needed in the sequel. For more details the
reader can consult [1, 5, 7], or [23].

Proper Resolutions. Let X be a class of R-modules and M an R-module. A proper left
X -resolution of M [11, 2.1] is a complex of the form X = · · · → Xn → · · · → X1 →
X0 → 0 with each Xi ∈ X , together with a morphism X0 → M , such that X′ := · · · →
Xn → · · · → X1 → X0 → M → 0 is also a complex (not necessarily exact), and such
that the sequence

Hom(X,X′) = · · · → Hom(X,X1) → Hom(X,X0) → Hom(X,M) → 0

is exact for every X ∈ X . We refer to X′ := · · · → Xn → · · · → X0 → M → 0 as an
augmented proper left X -resolution of M . Furthermore, the proper left X -dimension of M ,
denoted by L -dimXM , is defined as inf{n: there is an augmented proper left X -resolution
of M of the form 0 → Xn → Xn−1 → · · · → X0 → M → 0}. The (augmented)
proper right X -resoluion and the proper right X -dimension (denoted by R-dimXM) of an
R-module M are defined dually.

Covers and Envelopes. Let X be a class of R-modules and M an R-module. A homo-
morphism φ : M → C with C ∈ X is called an X -preenvelope of M [6] if for any
homomorphism f : M → C′ with C′ ∈ X , there is a homomorphism g : C → C′ such that
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gφ = f . Moreover, if the only such g are automorphisms of C when C′ = C and f = φ,
theX -preenvelope φ is called anX -envelope of M . The classX is called (pre)enveloping if
every R-module has an X -(pre)envelope. Dually we have the definitions of an X -precover,
an X -cover and a (pre)covering class.

If X is precovering (preenveloping), for any R-module M , one can iteratively take
precovers (preenvelopes) to construct (augmented) proper left (right) X -resolutions of M .

Cotorsion pair. Let X be a class of R-modules. For an R-module M , we write M ∈ ⊥1X
(resp. M ∈ X⊥1 ) if Ext1R(M,X) = 0 (resp. Ext1R(X,M) = 0) for each X ∈ X . Following
Enochs [7], Hovey [14] and Salce [20], a cotorsion pair is a pair of classes (A, B) in ModR
such that A⊥1 = B and ⊥1B = A. If we choose A = Mod(R) for some ring R, the
most obvious example of a cotorsion pair is (P , Mod(R)). Perhaps one of the most useful
cotorsion pair is the flat cotorsion pair (F , C). Here C is the collection of all modules C

such that C ∈ F⊥1 . Such modules are called cotorsion modules.

Complexes. A complex · · · → Xn+1
∂X
n+1→ Xn

∂X
n→ Xn−1 → · · · of R-modules will be

denoted by X. We set Zn(X) = ker(∂X
n ), Bn(X) = im(∂X

n+1) and Cn(X) = coker(∂X
n+1).

The nth homology module of X is the module Hn(X) = Zn(X)/Bn(X). If X and Y are both
complexes, then by a morphism α : X → Y we mean a sequence αn : Xn → Yn such that
αn−1∂

X
n = ∂Y

n αn for each integer n. A quasi-isomorphism, indicated by the symbol “�”, is
a morphism of complexes that induces an isomorphism in homology.

Let X be a class of R-modules. A complex L is HomR(X ,−) exact if the complex
HomR(X,L) is exact for each X ∈ X . Dually, the complex L is HomR(−,X ) exact if
HomR(L,X) is exact for each X ∈ X .

We say that X is closed under extensions when, for every exact sequence

0 → M ′ → M → M ′′ → 0

of R-modules, if M ′, M ′′ ∈ X , then M ∈ X . We say that X is closed under cokernels of
monomorphisms when, for every exact sequence above, if M ′, M ∈ X , then M ′′ ∈ X . We
say that X is closed under kernels of epimorphisms when, for every exact sequence above,
if M , M ′′ ∈ X , then M ′ ∈ X .

Definition 2.1 ([22]) Let X be a class of R-modules and M an R-module. Then the
X -injective dimension of M , denoted by X -id(M), is defined as inf{n: there is an exact
sequence of the form 0 → M → X0 → X1 → · · · → Xn → 0 with each Xi ∈ X }.
The X -projective dimension X -pd(M) of M is defined dually. Note that the modules of
X -projective dimension 0 are exactly the modules of X .

Definition 2.2 ([13]) An (S, R)-bimodule SCR is semidualizing if

(a1) SC admits a degreewise finite S-projective resolution.
(a2) CR admits a degreewise finite Rop-projective resolution.

(b1) The homothety map SSS
Sγ−→ HomRop(C,C) is an isomorphism.

(b2) The homothety map RRR
γR−→ HomS(C,C) is an isomorphism.

(c1) Ext�1
S (C, C) = 0.

(c2) Ext�1
Rop (C,C) = 0.



Relative Tor functors for level modules with respect to a semidualizing

A semidualizing bimodule SCR is faithfully semidualizing if it satisfies the following
conditions for all modules SN and MR .

(a) If HomS(C,N) = 0, then N = 0.
(b) If HomRop(C,M) = 0, then M = 0.

Some nice introductions to the basic theory of semidualizing modules can be found in
[4, 21].

Definition 2.3 ([13]) The Auslander classAC(R) (AC(Sop)) with respect to a semidualiz-
ing bimodule SCR consists of all R-modules M (Sop-modules N) satisfying

(1) TorR�1(C,M) = 0 (TorS�1(N,C) = 0),

(2) Ext�1
S (C,C ⊗R M) = 0 (Ext�1

Rop(C,N ⊗S C) = 0), and
(3) The natural evaluation homomorphism μM : M → HomS(C, C ⊗R M)

(μ′
N : N → HomRop(C,N ⊗S C)) is an isomorphism of R-modules (Sop-modules).

The Bass class BC(S) (BC(Rop))with respect to a semidualizing bimodule SCR consists
of all S-modules N (Rop-modules M) satisfying

1. Ext�1
S (C, N) = 0 (Ext�1

Rop(C, M) = 0),
2. TorR�1(C,HomS(C,N)) = 0 (TorS�1(HomRop(C,M), C) = 0), and
3. The natural evaluation homomorphism νN : C ⊗R HomS(C,N) → N

(ν′
M : HomRop(C,M) ⊗S C → M) is an isomorphism of S-modules (Rop-modules).

Facts 2.4 Let SCR be a semidualizing bimodule.

(1) The classesAC(R) andBC(S) are closed under extensions, direct summands, products
and coproducts. Moreover,AC(R) is closed under kernels of epimorphisms andBC(S)

is closed under cokernels of monomorphisms. See [13, Proposition 4.2 and Theorem
6.2].

(2) If C is a faithfully semidualizing module, then an R-module M ∈ AC(R) if and only
if C ⊗R M ∈ BC(S). See [26, Lemma 1.7(a)].

(3) If C is a faithfully semidualizing module, then an S-module N ∈ BC(S) if and only if
HomS(C,N) ∈ AC(R). See [26, Lemma 1.7(b)].

Definition 2.5 ([13])
Let SCR be a semidualizing bimodule. We set
FC(S) = {C ⊗R F | RF is flat}.
PC(S) = {C ⊗R P | RP is projective}.
IC(R) = {HomS(C, I ) | SI is injective}.
Modules in FC(S), PC(S) and IC(R) are called C-flat S-modules, C-projective

S-modules and C-injective R-modules, respectively.

Definition 2.6 ([12]) Assume that R is an associative ring. A duality pair over R is a pair
(X ,Y), where X is a class of left R-modules and Y is a class of right R-modules, subject
to the following conditions:

(1) For a left R-module M , one has M ∈ X if and only if M+ ∈ Y .
(2) Y is closed under direct summands and finite direct sums.
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By an argument similar to the proof of [12, Proposition 2.4] or [21, Proposition 3.3.1],
we have the following result in non-commutative setting.

Lemma 2.7 Let SCR be a semidualizing bimodule. Then (BC(S),AC(Sop)) is a duality
pair.

3 Relative Tor Functors for C-Level Modules

Recall that an S-module M over a ring S is said to be of type FP∞ [2] if M has a projec-
tive resolution by finitely generated projectives. In what follows, we denote by FP∞(S)

(FP∞(Sop)) the class of S-modules (Sop-modules) of type FP∞. Thus we have the
following definition.

Definition 3.1 ([2, Definition 2.6]) Let R be a ring and N an R-module.

(1) N is called level if TorR1 (M,N) = 0 for all Rop-modules M in FP∞(Rop).
(2) N is called FP∞-injective (or absolutely clean) if Ext1R(M,N) = 0 for all R-modules

M in FP∞(R).

For convenience, we writeL(R) andFI∞(R) for the classes of level and FP∞-injective
R-modules respectively. Dually, we can define the class of level Rop-modules (denoted by
L(Rop)) and the class of FP∞-injective Rop-modules (denoted by FI∞(Rop)).

Lemma 3.2 Let SCR be a semidualizing bimodule.

(1) HomS(M,C) ∈ FP∞(Rop) whenever M is a finitely generated projective S-module.
(2) HomRop (M,C) ∈ FP∞(S) whenever M is a finitely generated projective Rop-

module.

Proof We prove part (1); the proof of (2) is similar. Assume that M is a finitely generated
projective S-module, then there is a split exact sequence 0 → K → Sn → M → 0 of
S-modules. Applying HomS(−, C) to the split exact sequence above, we have a split exact
sequence 0 → HomS(M,C) → HomS(Sn, C) → HomS(K,C) → 0 of Rop-modules.
Note that HomS(Sn, C) ∼= Cn and C ∈ FP∞(Rop). Then HomS(Sn, C) ∈ FP∞(Rop).
So HomS(M, C) ∈ FP∞(Rop) by [2, Proposition 2.3]. This completes the proof.

Proposition 3.3 Let SCR be a semidualizing bimodule.

(1) L(R) ⊆ AC(R);
(2) FI∞(S) ⊆ BC(S).

Proof (1). Let M be a level R-module. Since C ∈ FP∞(Rop), TorRi (C, M) = 0 for
any i � 1. Note that SC admits a degreewise finite S-projective resolution by hypothe-
sis. Then there exists a quasi-isomorphism α : L → C such that Li is a finitely generated
projective S-module for any i � 0 and Li = 0 for any i < 0. Since ExtiS(C,C) = 0,
HomS(α, C) : HomS(C, C) → HomS(L, C) is a quasi-isomorphism. Note that each
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Zi (HomS(L, C)) ∈ FP∞(Rop) for any i � 0 by Lemma 3.2(1) and [2, Proposition 2.3].
It follows that HomS(α, C) ⊗R 1 : HomS(C,C) ⊗R M → HomS(L, C) ⊗R M is a quasi-

isomorphism. Since RRR
γR−→ HomS(C,C) is an isomorphism, HomS(C,C) ⊗R M ∼=

R ⊗R M ∼= M . Thus M → HomS(L, C) ⊗R M is a quasi-isomorphism. Note that
HomS(L, C) ⊗R M → HomS(L, C ⊗R M) is a quasi-isomorphism by [4, A.2.10, p.170].
It follows that M → HomS(L, C ⊗R M) is a quasi-isomorphism. Thus Hi (HomS(L, C ⊗R

M)) ∼= M for any integer i. So we haveM ∼= HomS(C,C⊗RM) and ExtiS(C,C⊗RM) = 0
for any i � 1, as desired.

(2). The proof is similar to that of part (1) by noting that Lemma 3.2(2) holds.

Definition 3.4 Let SCR be a semidualizing bimodule. An S-module is called C-level if
it has the form C ⊗R F for some level R-module F . Similarly, an R-module is called
C-FP∞-injective if it has the form HomS(C, I ) for some FP∞-injective module SI .

In what follows, we setLC(S) = {C⊗RF | RF is level} andFI∞
C (R) = {HomS(C, I ) |

SI is FP∞-injective}. Dually, we can define the class of C-level Rop-modules (denoted by
LC(Rop)) and the class of C-FP∞-injective Sop-modules (denoted by FI∞

C (Sop)).

Example 3.5 Assume that R is a commutative ring (not necessarily Noetherian) and
S = M2(R) is the 2 × 2 matrix ring over R. Let C = R2. Then SCR is a faith-
fully semidualizing bimodule and RCR is not a semidualizing bimodule. We set H =
{M | M ∼= C ⊗R G+ with idR(G) < ∞}. Thus each module M inH has a finite resolution
by modules in the class L

SCR
(S) and no finite resolution by modules in the class L

RCR
(R).

Proof Note that R and S are Morita equivalent rings by [1, Corollary 22.6]. It follows from
[13, Example 2.1(b)] that SCR is a semidualizing bimodule. However, RCR is not a semid-
ualizing bimodule since HomR(R2, R2) � R. We need to show that SCR is a faithfully
semidualizing bimodule. Note that C ⊗R N ∼= N2 for any R-module N . It follows that
N = 0 whenever C⊗R N = 0. Let M be an Sop-module such that M ⊗S C = 0. It is easy to

check that the sequence 0 → C → S
ρ→ C → 0 of S-modules is exact, where ρ : S → C

is a homomorphism defined by ρ(

(
a b

c d

)
) =

(
a

c

)
for

(
a b

c d

)
∈ S. Hence the sequence

M ⊗S C → M ⊗S S → M ⊗S C → 0 is exact. Since M ⊗S C = 0 by hypothesis, so is
M ⊗S S. So M = 0 and SCR is a faithfully semidualizing bimodule by [13, Lemma 3.1].

Let G be an R-module with idR(G) = n < ∞. Then there exists an exact sequence
0 → G → E0 → E−1 → · · · → E1−n → E−n → 0 of R-modules with E−i injective for
i = 0, 1, · · · , n. Thus 0 → (E−n)

+ → (E1−n)
+ → · · · → (E−1)

+ → (E0)
+ → G+ →

0 is an exact sequence of R-modules with (E−i )
+ level for i = 0, 1, · · · , n by [2, Theorem

2.12]. Since (E−i )
+ ∈ AC(R) for i = 0, 1, · · · , n by Proposition 3.3(1), coker((E−i )

+ →
(E1−i )

+) ∈ AC(R) for i = 1, 2, · · · , n. Hence we have an exact sequence 0 → C ⊗R

(E−n)
+ → C ⊗R (E1−n)

+ → · · · → C ⊗R (E−1)
+ → C ⊗R (E0)

+ → C ⊗R G+ → 0
of S-modules. So each module M in H has a finite resolution by modules in the class
L

SCR
(S). However each module M inH doesn’t have a finite resolution by modules in the

class L
RCR

(R) by noting that RCR is not a semidualizing bimodule. This completes the
proof.
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Lemma 3.6 Let SCR be a semidualizing bimodule.

(1) M ∈ LC(S) if and only if M ∈ BC(S) and HomS(C,M) ∈ L(R).
(2) N ∈ FI∞

C (R) if and only if N ∈ AC(R) and C ⊗R N ∈ FI∞(S).

Proof We prove part (1); the proof of (2) is dual. Assume thatM ∈ LC(S). Then there exists
a level R-module F such that M ∼= C ⊗R F . Note that F ∈ AC(R) by Proposition 3.3(1).
Then M ∈ BC(S) and HomS(C,M) ∼= HomS(C,C ⊗R F) ∼= F ∈ L(R). Conversely,
assume that M is an R-module in BC(S) and HomS(C, M) ∈ L(R). It follows that C ⊗R

HomS(C,M) ∼= M . So M ∈ LC(S). This completes the proof.

Proposition 3.7 Let SCR be a semidualizing bimodule.

(1) Both LC(S) and FI∞
C (R) are closed under direct products, coproducts and direct

summands.
(2) (LC(S),FI∞

C (Sop)) and (FI∞
C (Sop),LC(S)) are duality pairs.

(3) Both LC(S) and FI∞
C (Sop) are covering and preenveloping.

Proof (1). Since BC(S) and L(R) are closed under direct products, coproducts and direct
summands by [13, Proposition 4.2] and [2, Proposition 2.10], so isLC(S) by Lemma 3.6(1).
Similarly, we can prove FI∞

C (R) is closed under direct products, coproducts and direct
summands.

(2). Let M be an S-module. Note that HomS(C,M) ∈ L(R) if and only if
(HomS(C,M))+ ∈ FI∞(Rop) by [2, Theorem 2.12]. Since (HomS(C, M))+ ∼= M+ ⊗S C

by [4, A.2.11, p.171], HomS(C,M) ∈ L(R) if and only if M+ ⊗S C ∈ FI∞(Rop).
According to Lemma 2.7, M ∈ BC(S) if and only if M+ ∈ AC(Sop). Thus M ∈ LC(S)

if and only if M+ ∈ FI∞
C (Sop) by Lemma 3.6. So (LC(S),FI∞

C (Sop)) is a duality pair
by (1). Similarly, we can prove that (FI∞

C (Sop),LC(S)) is a duality pair by noting that
M ∈ FI∞(Rop) if and only if M+ ∈ L(R) (see [2, Theorem 2.12]).

(3). The result holds by (1), (2) and [12, Theorem 3.1].

Let C = R and S = R in Proposition 3.7, we get

Corollary 3.8 Let R be a ring. Then both L(R) and FI∞(R) are covering and preen-
veloping.

Remark 3.9 We note that the conclusion “L(R) is covering” has been proved by Bravo,
Hovey and Gillespie in [2, Theorem 2.14].

Inspired by [19, Definition 3.5], we have the following

Definition 3.10 Assume that SCR is a semidualizing bimodule. Let Q be a proper left
LC(S)-resolution of an S-module N , and let G be a proper left FC(S)-resolution of an
S-module N . For each i � 0 and any Sop-module M , set

TorMLC

i (M,N) := Hi (M ⊗S Q), TorMFC

i (M,N) := Hi (M ⊗S G).
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Remark 3.11 We note that TorMLC

i (M,−) and TorMFC

i (M,−) are homological functors
for each integer i and any Sop-module M , independent of the choice of proper left LC(S)-
resolutions and proper left FC(S)-resolutions respectively. We refer to [7, Section 8.2] and
[11, 2.4] for a detailed discussion on this matter.

Lemma 3.12 Let SCR be a semidualizing bimodule.

(1) If M is an S-module in BC(S), then every augmented proper left LC(S)-resolution of
M is exact.

(2) If N is an Sop-module in AC(Sop), then every augmented proper right FI∞
C (Sop)-

resolution of N is exact.

Proof The proof is similar to that of Proposition 2.2 in [25].

Lemma 3.13 Let SCR be a faithfully semidualizing bimodule.

(1) The class LC(S) is closed under extensions and kernels of epimorphisms.
(2) The class LC(S) is closed under pure submodules and pure quotients.

Proof (1). Let 0 → A′ → A → A′′ → 0 be an exact sequence of S-modules
with A′′ ∈ LC(S). Assume that A′ ∈ LC(S). Then both A′ and A′′ are in BC(S) by
Lemma 3.6(1). HenceA ∈ BC(S) and the sequence 0 → HomS(C, A′) → HomS(C,A) →
HomS(C,A′′) → 0 is exact. Note that HomS(C,A′) and HomS(C,A′′) are in L(R) by
Lemma 3.6(1). Then HomS(C,A) ∈ L(R) by [2, Proposition 2.10(3)]. So A ∈ LC(S) by
Lemma 3.6(1). Conversely, we assume that A ∈ LC(S). By the foregoing proof, we have
an exact sequence 0 → HomS(C, A′) → HomS(C,A) → HomS(C,A′′) → 0 such that
HomS(C,A) and HomS(C,A′′) are in L(R). Applying [2, Proposition 2.10(3)] again, we
get that HomS(C,A′) is in L(R). So A′ ∈ LC(S) by Lemma 3.6(1), as desired.

(2). The result follows from Proposition 3.7(2) and [12, Theorem 3.1].

We are now in a position to prove the following theorem which contains Theorem 1.1
from the introduction.

Theorem 3.14 Let SCR be a faithfully semidualizing bimodule and n a non-negative
integer. Then the following are equivalent for any S-module N :

(1) L -dimLC(S)N � n;
(2) LC(S)-pd(N) � n;
(3) N ∈ BC(S) and for any exact sequence · · · → X1 → X0 → N → 0 of S-modules

with each Xi in LC(S), ker(Xn−1 → Xn−2) is in LC(S), where X−1 = N and
X−2 = 0.

(4) TorMLC

i (M,N) = 0 for each (finitely presented) Sop-module M and any i > n;

(5) TorMLC

n+1 (M,N) = 0 for each (finitely presented) Sop-module M .

Proof (1) ⇒ (2). Note that there exists a HomS(LC(S),−) exact sequence 0 → C ⊗R

Fn → C ⊗R Fn−1 → · · · → C ⊗R F1 → C ⊗R F0 → N → 0 of N with Fi ∈ L(R) for
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i = 0, 1, · · · , n by (1). Then the sequence 0 → HomS(C,C ⊗R Fn) → HomS(C,C ⊗R

Fn−1) → · · · → HomS(C,C ⊗R F1) → HomS(C,C ⊗R F0) → HomS(C,N) → 0 is
exact. It follows from Proposition 3.3(1) that HomS(C, C ⊗R Fi) ∼= Fi ∈ AC(R) for any
i = 0, 1, · · · , n. Thus HomS(C,N) ∈ AC(R) by [13, Theorem 6.3], and hence N ∈ BC(S)

by Facts 2.4(3). So (2) holds by Lemma 3.12(1).
(2) ⇒ (3). By (2), there is an exact sequence 0 → C ⊗R Fn → · · · C ⊗R F1 →

C ⊗R F0 → N → 0 of S-modules with Fi ∈ L(R) for any i = 0, 1, · · · , n. Hence every
cokernel of this sequence is in BC(S) by Lemma 3.6(1) and [13, Theorem 6.3]. Therefore,
we have an exact sequence 0 → Fn → · · · → F1 → F0 → HomS(C,N) → 0 of
R-modules. Since Extj�1

R (Fi, T ) = 0 for any i = 0, 1, · · · , n and each T ∈ L(R)⊥1 ,
Extn+1

R (HomS(C,N), T ) = 0 for each T ∈ L(R)⊥1 by dimension shifting.
Let X : · · · → X1 → X0 → N → 0 be any exact sequence of S-modules with

Xi in LC(S) for any i = 0, 1, 2, · · · . Since N ∈ BC(S), so is Zi (X) for any i � 0.
Thus HomS(C,X) is exact with HomS(C,X)i ∈ L(R) for any i = 0, 1, · · · . Note that
Extn+1

R (HomS(C,N), T ) = 0 for each T ∈ L(R)⊥1 by the proof above. It follows that
Ext1R(Zn(HomS(C,X)), T ) = 0 for each T ∈ L(R)⊥1 . Since (L(R),L(R)⊥1) is a cotor-
sion pair by [2, Theorem 2.14], Zn(HomS(C,X)) is in L(R). Note that Zn(HomS(C,X)) ∼=
HomS(C,Zn(X)). Then HomS(C,Zn(X)) is level. So Zn(X) ∈ LC(S) by Lemma 3.2(1),
as desired.

(3) ⇒ (1) holds by Lemma 3.12(1).
(1) ⇒ (4) ⇒ (5) are straightforward.

(5) ⇒ (1). Let · · · → Xn

∂X
n→ Xn−1 → · · · → X1 → X0 → N → 0 be an augmented

proper left LC(S)-resolution of N . Since M ⊗S Xn+2 → M ⊗S Xn+1 → M ⊗S Xn is
exact for any finitely presented Sop-module M by (5), Xn+2 → Xn+1 → Xn is exact. Let
L = coker(∂X

n+2) and T = coker(∂X
n+1). It is easy to check that there exist a monomorphism

f : L → Xn and a homomorphism β : T → Xn−1 such that ∂X
n+1 = f h and ∂X

n = βt ,
where h and t are natural maps. Thus 0 → L → Xn → T → 0 is a pure exact sequence of
S-modules by [15, Lemma 2.5]. So T and L are in LC(S) by Lemma 3.13(2).

We are going to show that the complex 0 → T
β→ Xn−1 → · · · → X1 → X0 → N →

0 is an augmented proper leftLC(S)-resolution ofN . PutK = ker(∂X
n ) andD = ker(∂X

n−1).
So we have the following commutative diagram:

where α : Xn+1 → K and γ : Xn → D are LC(S)-precover, i and q are inclusions.
Note that ker(h) = im(∂X

n+2) = ker(∂X
n+1) = ker(α). Then there exists a monomorphism

ω : L → K such that α = ωh. Similarly, we have a homomorphism φ : T → D such
that γ = φt . Note that α : Xn+1 → K is a LC(S)-precover. Then ω : K → L is a monic
LC(S)-precover.
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Let X = ker(∂X
n )/im(∂X

n+1). It is easy to check that the sequences 0 → L
ω→ K

u→
X → 0 and 0 → X → T

φ→ D are exact, where u : K → X is the natural map. We wish
to show that φ∗ : HomS(F, T ) → HomS(F,D) is monic for any C-level S-module F . By

the exactness of 0 → X → T
φ→ D, it suffices to show that HomS(F,X) = 0 for any

C-level S-module F . Let g : F → X with F ∈ LC(S). By pullback, we have the following
commutative diagram with exact rows:

Since L and F are in LC(S), so is G by Lemma 3.13(1). Note that ω : L → K is a monic
LC(S)-precover. Then there exists ρ′ : G → L such that θ = ωρ′. Thus ω = θρ = ωρ′ρ,
and hence ρ′ρ = 1. Consequently, there exists λ : F → K such that g = uλ. Since
ω : L → K is a monic LC(S)-precover, there exists τ : F → L such that λ = ωτ . So
g = uλ = uωτ = 0, as desired.

Finally we show that the complex 0 → T
β→ Xn−1 → · · · → X1 → X0 → N → 0

is HomS(F,−) exact for any C-level S-module F . It suffices to show that the following
sequence

is exact. Since ∂X
n−1β = 0, (∂X

n−1)∗β∗ = (∂X
n−1β)∗ = 0. Thus im(β∗) ⊆ ker((∂X

n−1)∗). One
easily checks that ker((∂X

n−1)∗) = im((∂X
n )∗) ⊆ im(β∗). So im(β∗) = ker((∂X

n−1)∗). It is
left to show that β∗ is monic. Since βt = ∂X

n = qγ = qφt by the proof above, β = qφ by
noting that t is epic. Hence β∗ = q∗φ∗. Note that φ∗ is monic by the proof above. So β∗ is
monic. This completes the proof.

Note that LC(R) = FC(R) if R = S is a commutative Noetherian ring by [2, Corollary
2.9]. Thus we have the following

Corollary 3.15 ([19, Theorem 5.4]) Let C be a semidualizing module over a commutative
Noetherian ring R and n a non-negative integer. Then the following are equivalent for any
R-module N :

(1) FC(R)-pd(N) � n;
(2) TorMFC

i (M,N) = 0 for each R-module M and any i > n;

(3) TorMFC

n+1 (M,N) = 0 for each R-module M .

Note that FC(S) is closed under pure submodules, pure quotients and kernels of epi-
morphisms by [13, Lemmma 5.2(a) and Corollary 6.4]. As in the proof of Theorem 3.14,
we can extend Corollary 3.15 to the case that R and S are rings and SCR is a faithfully
semidualizing bimodule.



J. Hu, Y. Geng

Corollary 3.16 Let SCR be a faithfully semidualizing bimodule and n a non-negative
integer. Then the following are equivalent for any S-module N :

1. FC(S)-pd(N) � n;
2. TorMFC

i (M,N) = 0 for each Sop-module M and any i > n;

3. TorMFC

n+1 (M,N) = 0 for each Sop-module M .

Proposition 3.17 Let SCR be a faithfully semidualizing bimodule and n a non-negative
integer. Then the following are equivalent for any Sop-module M:

1. R-dimFI∞
C (Sop)M � n;

2. FI∞
C (Sop)-id(M) � n;

3. M ∈ AC(Sop) and for any exact sequence 0 → M → X0 → X−1 → · · · of Sop-
modules with each Xi in FI∞

C (Sop), coker(X−n+2 → X−n+1) is in LC(S), where
X2 = 0 and X1 = M .

Proof The proof is dual to that of (1) ⇔ (2) ⇔ (3) in Theorem 3.14.

We end this section with the following corollary.

Corollary 3.18 Let SCR be a faithfully semidualizing bimodule and n a non-negative
integer. Then the following are equivalent for any Sop-module N :

1. R-dimFI∞
C (Sop)N � n;

2. L -dimLC(S)N
+ � n;

3. TorMLC

i (M,N+) = 0 for each (finitely presented) Sop-module M and any i > n;

4. TorMLC

n+1 (M,N+) = 0 for each (finitely presented) Sop-module M .

Proof (1) ⇔ (2) follows from Theorem 3.14 and Proposition 3.17 by noting that
Proposition 3.7(2) holds.

(2) ⇔ (3) ⇔ (4) hold by Theorem 3.14.

4 Applications

Some applications are given in this section. We start with the following theorem which char-
acterizes when every S-module has a monic C-level precover. It contains Theorem 1.2(1)
from the introduction.

Theorem 4.1 Let SCR be a faithfully semidualizing bimodule and n a non-negative integer.
Then the following are equivalent:

(1) LC(S) = Mod(S);
(2) Every S-module has a monic C-level precover;
(3) TorMLC

1 (M,N) = 0 for any Sop-module M and any S-module N .
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Proof (1) ⇒ (2) is trivial.
(2) ⇒ (1). Let M be an S-module. Then M has a monic C-level precover f : C⊗R F →

M by (2). Hence f∗ : HomS(C,C ⊗R F) → HomS(C, M) is an isomorphism. Since C ⊗R

F ∈ BC(S) by Lemma 3.6(1), the sequence 0 → HomS(C, C ⊗R F)
f∗→ HomS(C,M) →

HomS(C, coker(f )) → 0 is exact. It follows that HomS(C, coker(f )) = 0. Since SCR is
a faithfully semidualizing bimodule by hypothesis, we get that coker(f ) = 0. So f is an
isomorphism and M is C-level, as desired.

(1) ⇔ (3) holds by Theorem 3.14.

Let N be an S-module and · · · → X1
f→ X0

ε→ N → 0 an augmented proper left
LC(S)-resolution of N . Applying M ⊗S −, we obtain the deleted complex

Then TorMLC
n (M,N) is exactly the nth homology of the complex above. There is a

canonical map

θ : TorMLC

0 (M,N) = coker(1 ⊗S f ) → M ⊗S N

defined by θ(
∑

(mi ⊗ni + im(1⊗S f ))) = ∑
(mi ⊗ε(ni)) for any

∑
(mi ⊗ni) ∈ M ⊗S X0.

Next we have the following result which contains Theorem 1.2(2).

Theorem 4.2 Let SCR be a faithfully semidualizing bimodule and n a non-negative integer.
Then the following are equivalent:

(1) Every S-module has an epic C-level precover;
(2) θ : TorMLC

0 (M,N) → M ⊗S N is an isomorphism for any Sop-module M and any
S-module N ;

(3) θ : TorMLC

0 (M,N) → M ⊗S N is an epimorphism for any Sop-module M and any
S-module N .

Proof (1) ⇒ (2) ⇒ (3) are straightforward.

(3) ⇒ (1). Let N be an S-module and · · · → X1
f→ X0

ε→ N → 0 an augmented
proper left LC(S)-resolution of N . Then θ : TorMLC

0 (S,N) → S ⊗S N is an epimorphism.

If we set π : S ⊗S X0 → TorMLC

0 (S, N) be the natural map, then 1 ⊗S ε = θπ . Hence
1 ⊗S ε : S ⊗S X0 → S ⊗S N is epic. So ε : X0 → N is an epic C-level precover. This
completes the proof.

Corollary 4.3 Let R be a commutative Noetherian ring and C a semidualizing module.
Then the following are equivalent:

(1) C is projective;
(2) Every R-module has an epic C-flat precover;
(3) θ : TorMFC

0 (M,N) → M ⊗R N is an isomorphism for all R-modules M and N ;

(4) θ : TorMFC

0 (M,N) → M ⊗R N is an epimorphism for all R-modules M and N .
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Proof Note that LC(R) = FC(R) if R is a commutative Noetherian ring by [2, Corollary
2.9].

(1) ⇒ (2). Since C is projective by (1), Mod(R) = BC(R) by [21, Corollary 4.1.6]. So
(2) holds by Lemma 3.12(2).

(2) ⇒ (1). It follows from (2) that R has an epic C-flat precover. Thus R is C-flat, and
hence R ∈ BC(R). So (1) holds by [21, Corollary 4.1.6].

(2) ⇔ (3) ⇔ (4) follow from Theorem 4.2.

The following theorem characterizes when every S-module has a monic C-level preen-
velope. It contains Theorem 1.2(3) from the introduction.

Theorem 4.4 The following are equivalent for any faithfully semidualizing bimodule SCR:

(1) S ∈ FI∞
C (Sop);

(2) Every S-module has a monic C-level preenvelope;
(3) Every Sop-module has an epic C-FP∞-injective cover;
(4) TorMLC

1 (M, (SS)+) = 0 for each (finitely presented) Sop-module M .

Proof (1) ⇒ (2). Let M be an S-module. Then M has a C-level preenvelope f : M → F

by Proposition 3.7(3). Consider the injective envelope g : M → E of M . There exists an
exact sequence S(I) → E+ → 0 of Sop-modules. Thus we have an exact sequence 0 →
E++ → (S(I))+ of S-modules, and hence (S(I))+ ∈ LC(S) by (1) and Proposition 3.7.
Note that 0 → E → (S(I))+ is split exact. It follows from Proposition 3.7(1) that E ∈
LC(S). Thus there exists h : F → E such that g = hf by noting that f : M → F is a
C-level preenvelope. So f is monic since g is monic.

(2) ⇒ (1). Note that (SS)+ has a monic C-level preenvelope (SS)+ → F by (2). Then
(SS)+ ∈ LC(S) by Proposition 3.7(1). So S ∈ FI∞

C (Sop) by Proposition 3.7(2).
(1) ⇒ (3). Let M be an Sop-module. It follows from Proposition 3.7(3) that M has a

C-FP∞-injective cover α : L → M . There exists an exact sequence β : S(I) → M → 0 of
Sop-modules. Note that S(I) ∈ FI∞

C (Sop) by (1) and Proposition 3.7(1). Thus there exists
γ : S(I) → L such that β = αγ by noting that α : L → M is a C-FP∞-injective cover. So
α is epic since β is epic.

(3) ⇒ (1). The proof is dual to that of (2) ⇒ (1).
(1) ⇔ (4) holds by Corollary 3.18.

The following result characterizes when every S-module has an epic C-level preenve-
lope.

Theorem 4.5 The following are equivalent for any faithfully semidualizing bimodule SCR:

(1) Every S-module has an epic C-level preenvelope;
(2) Every submodule of any C-level S-module is C-level;
(3) Every quotient of any C-FP∞-injective Sop-module is C-FP∞-injective;
(4) Every Sop-module has a monic C-FP∞-injective cover;
(5) R-dimFI∞

C (Sop)M � 1 for any Sop-module M;
(6) L -dimLC(S)M � 1 for any S-module M .

Proof (1) ⇒ (2). Assume that M is a C-level S-module. Let N be a submodule of M and
i : N → M the inclusion. Note that N has an epic C-level preenvelope f : N → F by (1).
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Then there exists g : F → M such that i = gf . Since i is the inclusion, f is monic. So f

is an isomorphism and N is C-level, as desired.
(2) ⇒ (1). Let M be an S-module. Then M has a C-level preenvelope f : M → F by

Proposition 3.7(3). Note that im(f ) is C-level by (2). So M → im(f ) is an epic C-level
preenvelope.

(2) ⇒ (3). Let 0 → N → M → M/N → 0 be an exact sequence of Sop-modules
with M ∈ FI∞

C (Sop). Then 0 → (M/N)+ → M+ → N+ → 0 is an exact sequence of
S-modules. Note that M+ ∈ LC(S) by Proposition 3.7(2). Then (M/N)+ is C-level by (2).
Applying Proposition 3.7(2) again, we get that M/N is a C-FP∞-injective Sop-module, as
desired.

(3) ⇒ (4). Let M be an Sop-module. It follows from Proposition 3.7(3) that M has a C-
FP∞-injective cover f : E → M . Note that im(f ) is C-FP∞-injective by (3). It is easy to
check that i : im(f ) → M is a monic C-FP∞-injective cover of M .

(4) ⇒ (2). Assume that M is a C-level S-module. Let N be a submodule of M and
i : N → M the inclusion. Then the sequence 0 → (M/N)+ → M+ ϕ→ N+ → 0 of Sop-
modules is exact such that M+ is C-FP∞-injective by Proposition 3.7(2). Note that N+
has a monic C-FP∞-injective cover f : E → N+ by (4). Then there exists g : M+ → E

such that ϕ = fg. Since ϕ is epic, so is f . Thus f is an isomorphism, and hence N+ is a
C-FP∞-injective Sop-module. So N is C-level by Proposition 3.7(2), as desired.

(3) ⇒ (5) is trivial.
(5) ⇒ (6). Let M be an S-module. Then R-dimFI∞

C (Sop)M
+ � 1 by (5). Thus M+ ∈

AC(Sop) by Proposition 3.17, and hence M ∈ BC(S) by Lemma 2.7. Note that there exists
an exact sequence · · · → X1 → X0 → M → 0 of S-modules with each Xi in LC(S) by
Proposition 3.7(3) and Lemma 3.12(1). Let K = ker(X0 → M). Then the sequence 0 →
M+ → X0

+ → X1
+ → · · · of Sop-modules is exact. It follows from Proposition 3.17 that

K+ ∈ FI∞
C (Sop). Thus K ∈ LC(S) by Proposition 3.2(2). So (6) holds by Theorem 3.14,

as desired.
(6) ⇒ (2). Let F be a C-level S-module and M a submodule of F . Then L -

dimLC(S)F/M � 1 by (6). Hence F/M ∈ BC(S) by Theorem 3.14. Since F ∈ BC(S)

by Lemma 3.6(1), so is M by [13, Corollary 6.3]. It follows from Proposition 3.7(3) and
Lemma 3.12(1) that M has an exact augmented proper left LC(S)-resolution. So we have
an exact sequence · · · → X2 → X1 → F → F/M → 0 of S-modules with Xi ∈ LC(S)

for any i � 1. Applying Theorem 3.14 again, we get that M is a C-level S-module. This
completes the proof.

The following corollary contains Theorem 1.2(4) from the introduction.

Corollary 4.6 The following are equivalent for any faithfully semidualizing bimodule SCR:

(1) Every S-module has an epic C-level preenvelope;
(2) Every Sop-module has a monic C-FP∞-injective precover;
(3) TorMLC

2 (M,N+) = 0 for each (finitely presented) Sop-module M and any Sop-
module N ;

(4) TorMLC

2 (M,N) = 0 for each (finitely presented) Sop-module M and any S-module
N .

Proof The result follows from Theorem 4.5 and Corollary 3.18.
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Recall that an R-module M is called FP -injective (or absolutely pure) [17, 24] if
Ext1R(P,M) = 0 for every finitely presented R-module P . Denote by FI(Rop) the class
of FP -injective Rop-modules. We let FIC(Sop) = {HomRop (C, I ) | I ∈ FI(Rop)}
whenever SCR is a semidualizing bimodule. Such modules are called C-FP -injective
Sop-modules by [28, Definition 2.3].

Theorem 4.7 The following are equivalent for any faithfully semidualizing bimodule SCR:

(1) R is right coherent;
(2) FI∞

C (Sop) = FIC(Sop);
(3) Every C-FP -injective preenvelope over Sop is a C-FP∞-injective preenvelope;
(4) LC(S) = FC(S);
(5) Every C-flat precover over S is a C-level precover;
(6) Every C-flat cover over S is a C-level cover;
(7) Every C-level precover over S is a C-flat precover.

Proof (1) ⇒ (2). The proof is straightforward since FI∞(Rop) = FI(Rop) by
[2, Corollary 2.9].

(2) ⇒ (3), (4) ⇒ (5) and (4) ⇒ (7) are trivial.
(3) ⇒ (1). To prove (1), it suffices to show that every FP∞-injective Rop-module is

FP -injective by [2, Corollary 2.9]. Let X be a FP∞-injective Rop-module. Then there

exists an exact sequence 0 → X
f→ E → L → 0 of Rop-modules with E ∈ FI(Rop)

and L ∈ FI(Rop)⊥1 by [18, Remark 2.8]. Note that X and E are in BC(Rop) by Proposi-
tion 3.3(2) and [28, Theorem 2.1]. Then L is BC(Rop) by Facts 2.4(1). Thus the sequence

0 → HomRop (C,X)
f∗→ HomRop (C,E) → HomRop (C,L) → 0 of Sop-modules is exact.

Since Ext1Sop (HomRop (C,L),HomRop (C, Y )) ∼= Ext1Rop (L, Y ) = 0 for any Y ∈ FI(Rop)

by [28, Theorem 2.1] and [13, Theorem 6.4(b)], f∗ : HomRop (C,X) → HomRop (C,E) is a
C-FP -injective preenvelope. Thus f∗ is a C-FP∞-injective preenvelope by (3), and hence
there exists ϕ : HomRop (C,E) → HomRop (C,X) such that 1 = ϕf∗. It follows from Propo-
sition 3.7(1) that HomRop (C,X) is C-FP -injective. Hence there exists I ∈ FI(Rop) such
that HomRop (C,X) ∼= HomRop (C, I ). ThusX ∼= HomRop (C,X)⊗SC ∼= HomRop (C, I )⊗S

C ∼= I . So X is FP -injective, as desired.
(1) ⇒ (4) holds by [2, Corollary 2.11].
(5) ⇒ (6). Let M be an S-module and f : X → M a C-flat cover of M . Then f is a

C-level precover by (5). Assume that g : X → X is a homomorphism such that f = fg.
Since f is a C-flat cover, g is an automorphism. So f is a C-level cover, as desired.

(6) ⇒ (1). By [2, Corollary 2.11], it suffices to show that every level R-module is flat.

Let M be a level R-module. Then there exists an exact sequence 0 → K → F
f→ M →

0 of R-modules with F flat and K cotorsion such that f is a flat cover by [9, Theorem
4.1.1(a)]. Note that M is in AC(R) by Proposition 3.3. It follows that K is in AC(R) by

noting that F ∈ AC(R). Thus the sequence 0 → C ⊗R K → C ⊗R F
1⊗Rf→ C ⊗R M → 0

of S-modules is exact. Since Ext1S(C ⊗R G,C ⊗R K)∼= Ext1R(G,K) = 0 for any flat R-
module G by [13, Theorem 6.4(a)], 1 ⊗R f : C ⊗R F → C ⊗R M is a C-flat precover.
Hence there exists ϕ : C ⊗R F → C ⊗R F such that 1 ⊗R f = (1 ⊗R f )ϕ. We will show
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that ϕ is an isomorphism. Note that we have the following commutative diagram with exact
rows such that the columns are isomorphisms:

Since μF and μM are isomorphisms, we have

f = μ−1
M ◦ (1 ⊗R f )∗ ◦ μF

= μ−1
M ◦ (1 ⊗R f )∗ ◦ ϕ∗ ◦ μF

= μ−1
M ◦ (1 ⊗R f )∗ ◦ μF ◦ μ−1

F ◦ ϕ∗ ◦ μF

= f ◦ μ−1
F ◦ ϕ∗ ◦ μF .

Since f is a flat cover, μ−1
F ◦ ϕ∗ ◦ μF is an isomorphism. Hence ϕ∗ is an isomorphism.

Applying HomS(C,−) to the exact sequence 0 → ker(ϕ) → C ⊗R F
ϕ→ C ⊗R F of

S-modules, we have an exact sequence

Note that HomS(C, ker(ϕ)) = 0 since ϕ∗ is an isomorphism. It follows from [13, Propo-
sition 3.1] that ker(ϕ) = 0. Thus ϕ : C ⊗R F → C ⊗R F is a monomorphism. Applying

HomS(C,−) to the exact sequence 0 → C ⊗R F
ϕ→ C ⊗R F → coker(ϕ) → 0 of

S-modules, we have an exact sequence

Since ϕ∗ is an isomorphism, HomS(C, coker(ϕ)) = 0. Thus coker(ϕ) = 0 by [13, Propo-
sition 3.1], and hence ϕ is an isomorphism. So 1⊗Rf : C⊗RF → C⊗RM is aC-flat cover.
Consequently, 1⊗R f is a C-level cover by (6). Thus there exists ψ : C ⊗R M → C ⊗R F

such that 1 = (1 ⊗R f ) ◦ ψ . It follows from [13, Proposition 5.1] that C ⊗R M is
C-flat. Hence there exists a flat R-module L such that C ⊗R M ∼= C ⊗R L. Thus
M ∼= HomS(C, C ⊗R M) ∼= HomS(C, C ⊗R L) ∼= L. So M is flat, as desired.

(7) ⇒ (4). Let M be a C-level S-module. Then 1M : M → M is a C-level precover.
Thus 1M : M → M is a C-flat precover by (7). So M is C-flat. This completes the proof.

Corollary 4.8 The following are equivalent for any faithfully semidualizing bimodule SCR:

(1) R is right coherent and left perfect;
(2) LC(R) = PC(R);
(3) Every C-projective precover over R is a C-level precover.
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Proof The results hold by Theorem 4.7 and [28, Theorem 6.1].

Corollary 4.9 The following are equivalent for any faithfully semidualizing bimodule SCR:

(1) R is right Noetherian;
(2) FI∞

C (Sop) = IC(Sop);
(3) Every C-injective preenvelope over Sop is a C-FP∞-injective preenvelope;

Proof The results hold by Theorem 4.7 and [28, Proposition 5.1].

The next result parallels [19, Construction 3.9].

Construction 4.10 For each integer i, there is a natural transformation of bifunctors
εi(−,−) : TorMFC

i (−,−) → TorMLC

i (−,−). To construct εi(−,−), let X → N be a
proper left C-level resolution of an S-module N . Choose a proper left C-flat resolution
F → N and a morphism f : F → X lifting the identity on N . For each Sop-module M , let
εi(M,N) : TorMFC

i (M,N) → TorMLC

i (M,N) be the natural homomorphism induced by
the morphism of complexes 1 ⊗S f : M ⊗S F → M ⊗S X.

We now finish this paper by giving the proof of Theorem 1.3 as follows.

4.11 Proof of Theorem 1.3. (1) ⇔ (2) ⇔ (3) ⇔ (4) follow from Theorem 4.5.
(2) ⇒ (5) holds by Construction 4.1.
(5) ⇒ (2). Let N be a C-level S-module. Then TorMLC

1 (M,N) = 0 for any Sop-module

M . Thus TorMFC

1 (M,N) = 0 for any Sop-module M by (5). It is easily checked that N is
C-flat and the proof is similar to that of (5) ⇒ (1) in Theorem 3.14. This completes the
proof. �
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