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ABSTRACT

Motivation: The caspase family of cysteine proteases play essential
roles in key biological processes such as programmed cell
death, differentiation, proliferation, necrosis and inflammation. The
complete repertoire of caspase substrates remains to be fully
characterized. Accordingly, systematic computational screening
studies of caspase substrate cleavage sites may provide insight
into the substrate specificity of caspases and further facilitating the
discovery of putative novel substrates.
Results: In this article we develop an approach (termed Cascleave)
to predict both classical (i.e. following a P1 Asp) and non-
typical caspase cleavage sites. When using local sequence-derived
profiles, Cascleave successfully predicted 82.2% of the known
substrate cleavage sites, with a Matthews correlation coefficient
(MCC) of 0.667. We found that prediction performance could be
further improved by incorporating information such as predicted
solvent accessibility and whether a cleavage sequence lies in
a region that is most likely natively unstructured. Novel bi-
profile Bayesian signatures were found to significantly improve the
prediction performance and yielded the best performance with an
overall accuracy of 87.6% and a MCC of 0.747, which is higher
accuracy than published methods that essentially rely on amino acid
sequence alone. It is anticipated that Cascleave will be a powerful
tool for predicting novel substrate cleavage sites of caspases
and shedding new insights on the unknown caspase-substrate
interactivity relationship.
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1 INTRODUCTION
To date 14 mammalian caspases have been identified; these
molecules function in signaling cascades that control critical
processes such as apoptosis, necrosis, inflammation, migration
proliferation and differentiation (Dix et al., 2008; Fischer et al.,
2003; Lüthi and Martin, 2007; Mahrus et al., 2008; Nicholson, 1999;
Pop and Salvesen, 2009; Talanian et al., 1997; Timmer and Salvesen,
2007). Caspases cleave substrates that generally contain a highly
conserved aspartate (d) at the P1 position (Nicholson, 1999; Pop
and Salvesen, 2009; Talanian et al., 1997). However, in addition
to the P1 Asp, the amino acids at the P′

1 and P4–P′
2 positions

contain important additional determinants of specificity that can
dramatically affect cleavage efficiency. Accordingly, mammalian
caspases can be divided into three groups (Nicholson, 1999). Group I
caspases (caspase-1, -4, -5 and -13) prefer bulky hydrophobic amino
acids at the P4 site and recognize peptide sequence (W/L)EHD;
group II caspases (caspase-2, -3 and -7) preferentially cleave the
DEXD motif, while group III caspases (caspase-6, -8, -9 and -10)
recognize the sequence (I/V/L)E(H/T)D. In contrast to the other
caspases, caspase-14 is expressed and activated mainly in the
epidermis and exhibits cleavage preference for the WEHD or IETD
motif (Denecker et al., 2008).

The study of apoptotic pathways predominantly mediated by
caspases has important implications for the development of therapies
for cancer treatment, there is significant interest in gaining a better
understanding of caspase substrate specificity (Dix et al., 2008; Lüthi
and Martin, 2007; Mahrus et al., 2008; Timmer et al., 2009). Even
though almost 400 caspase substrates have been reported to date,
there are likely to be hundreds of new caspase substrates that remain
to be discovered (Fischer et al., 2003). Experimental identification
and characterization of protease substrates is often difficult and time-
consuming (Enoksson and Salvesen, 2008; Enoksson et al., 2007;
Ju et al., 2007; Rawlings et al., 2008; Schilling and Overall, 2008).
Hence, computational prediction of caspase substrate specificity
may provide useful and experimentally testable information in
regards to novel potential cleavage sites or candidate substrates.

Several computational approaches have been developed to predict
caspase cleavage-site specificity. PeptideCutter utilized a limited
experimental dataset and was initially used to predict the substrate
cleavage sites for a variety of protease families including several
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caspases (Gasteiger et al., 2005). Lohmüller et al. (2003) developed
a bioinformatic tool called prediction of endopeptidase substrates
(PEPS) that utilized rule-based endopeptidase cleavage site scoring
matrices (CSSM) and was deployed to predict caspase-3 substrates.
Garay-Malpartida et al. built CasPredictor to predict caspase
cleavage sites; this approach again utilizes sequence and specificity
information but also incorporates an index of PEST-like sequences
enriched in the vicinity of cleavage site regions (Garay-Malpartida
et al., 2005; Singh, 2006). The latter program achieved an accuracy
of 81% when evaluated on a dataset of 137 experimentally verified
cleavage sites (Garay-Malpartida et al., 2005). Yang (2005) applied
neural networks to build models for predicting caspase cleavage
sites and investigated the impact of a sliding window size on the
performance. This approach attained the highest reported prediction
accuracy of 97%, however, it is important to note that only a small
dataset of 13 substrate sequences was considered. The GraBCas
software developed by Backes et al. (2005) provided position-
specific scoring prediction of cleavge sites for caspases 1–9 and
granzyme B. Wee et al. applied a support vector machine (SVM)
approach and showed that CASVM predictors could achieve an
accuracy ranging from 81.2 to 97.9% based on an extended dataset of
210 cleavage sites. More recently, they proposed a two-step model
called multi-factor CASVM which exploits the structural factors
to score and filter the false positives to improve the performance
(Wee et al., 2009).

In this work, we extend the SVM approach proposed by Wee
et al. (2006, 2007, 2009) to predict caspase cleavage sites from the
flanking sequences of substrates. We started with the construction of
a caspase substrate database with experimentally verified substrate
sequences extracted from multiple resources. We then built support
vector regression (SVR) models that not only provided conventional
two-state (cleavage or non-cleavage) prediction, but also generated
an estimated probability for each candidate cleavage site, thus
providing a quantitative evaluation of caspase substrate specificity.
We extensively explored different sequence encoding schemes and
examined their effects on the prediction performance. Further, we
took into consideration the characteristic sequence and structural
features surrounding substrate cleavage and non-cleavage sites,
such as the predicted secondary structure, solvent accessibility and
natively disordered regions, based on a recently developed bi-profile
Bayesian feature extraction method (Shao et al., 2009). Comparison
with the published approaches reveals that our approach is generally
useful for identification of caspase cleavage sites in large datasets.

2 METHODS

2.1 Datasets
We have constructed a caspase substrate sequence dataset from multiple
resources, including manually curated CASBAH database (Fischer et al.,
2003), the MEROPS database (Rawlings et al., 2008), the CASVM
webserver (Wee et al., 2006, 2007), the Uniprot database (Bairoch and
Apweiler, 2000), as well as a literature search. All the annotated substrate
cleavage sites were verified experimentally. The current dataset contains 370
caspase substrate sequences and 562 cleavage sites (Supplementary Table 1).
In order to objectively evaluate the prediction performance, we employed 5-
fold cross-validation and leave-one-out cross-validation (LOOCV) methods.
In the case of 5-fold cross-validation, substrate sequences in this dataset were
randomly divided into five subsets with roughly equal numbers of substrate
sequences. In each validation step, one subset was singled out in turn as the

testing dataset, while the rest were used as the training dataset. In the case of
LOOCV, each substrate sequence in the dataset was singled out in turn as the
testing set and this procedure was repeated for all the substrate sequences.
Moreover, in order to make a more stringent comparison with CASVM, we
also used an independent testing set extracted from a recent experimental
study (Dix et al., 2008), which contains 64 caspase substrate sequences and
69 cleavage sites. The complete list of these substrate sequences used in this
study is available in the Supplementary Data and can be downloaded from the
Cascleave website (http://sunflower.kuicr.kyoto-u.ac.jp/∼sjn/Cascleave/).

Cleavage and non-cleavage sites were collected as positive and
negative datasets, respectively. Peptide sequences in positive and negative
datasets were extracted using a sliding window approach surrounding the
experimentally verified cleavage sites and other residues that were found not
to be cleaved by caspases, respectively. The predictive models were then
built based on the extracted positive and negative peptide sequences. As the
obtained datasets this way might contain sequence redundancy which will
lead to the overestimation of the prediction performance of the models, we
need to reduce sequence homology for the extracted positive and negative
peptide sequences. Local window-based homology reduction (Shao et al.,
2009) was adopted for this purpose. Sequence homology reduction within
the training and testing datasets was performed in such a way that sequence
identity between any two peptide sequences should not be larger than 70%.

2.2 Binary encoding amino acid sequence profiles
(BEAA)

In the first instance, the SVR models were trained and tested using binary
encoding amino acid sequence profiles (BEAA) where substrate sequences
were transformed into n-dimensional vectors using an orthonormal encoding
scheme, in which each amino acid is represented by the 20-D binary vector
composed of either zero or one elements (Song et al., 2006; Wee et al.,
2006), e.g. Ala (10000000000000000000), Cys (01000000000000000000),
Asp (00100000000000000000), …, Tyr (00000000000000000001), etc. For
the sake of simplicity, we termed this binary encoding amino acid sequence
profile as the encoding scheme ‘BEAA’. Since increasing sequence window
size is supposed to provide more local sequence information, we used a
sliding window approach to derive the local sequence profiles based on
the ‘BEAA’ scheme and examined the corresponding prediction accuracy.
The window size w is defined as the residue numbers involved in the local
sequence windows surrounding the cleavage sites from P8 to P′

8 positions,
either in a symmetrical or non-symmetrical manner (Supplementary Fig. 1):
i.e. w = 3 (P4–P1), 4 (P2–P′

2 or P3–P′
1), 5 (P3–P′

2 or P4–P′
1), 6 (P3–P′

3), …, 14
(P7–P′

7), 16 (P8–P′
8), etc.

2.3 Predicted structural information
Based on the observation of structural determinants of caspase substrate
specificity, we also incorporated into Cascleave the structural information
predicted by state-of-art algorithms, specifically, secondary structures,
solvent accessibility and natively unstructured regions. Secondary structure
was predicted using the PSIPRED program, which provides one of the
most accurate predictions for protein secondary structures and generates the
probability profiles of three secondary structure assignments (helix, strand
and coil) for each residue in a protein (Jones, 1999). For a given residue,
we extracted the w ×3 matrix from the output file of PSIPRED by selecting
the sliding window size w. Solvent accessibility was predicted using the
SSpro program implemented in the SCRATCH package (Cheng et al., 2005).
SSpro predicts the solvent accessibility status for each residue in a protein
sequence, producing a binary output- either as ‘exposed’ or ‘buried’ (Cheng
et al., 2005). Solvent accessibility was encoded as binary units into the SVR
model. Natively unstructured region was predicted using the DISOPRED2
server (Ward et al., 2004), which is one of the leading servers for predicting
natively disordered regions in proteins. The probability of each residue being
disordered generated by DISOPRED2 is used as the input to the SVR models.
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2.4 Bi-profile Bayesian signatures
Shao et al. (2009) recently proposed a novel approach called bi-profile
Bayes and applied it to predict methylation sites in proteins. This approach
has been demonstrated to provide a significant improvement of prediction
performance for predicting methylation sites from protein sequences (Shao
et al., 2009). We will describe the application of bi-profile Bayesian feature
extraction approach to predict caspase cleavage sites in this study. The
rationale behind this approach is that peptide sequences that can be cleaved
by caspases should exhibit different features or characteristics relative to
those that cannot be cleaved. Therefore, integrating the bi-profile Bayesian
signatures by representing each sample in a bi-feature manner would be more
informative than the single BEAA mentioned above. This approach would
be particularly useful when dealing with an unbalanced dataset comprising a
smaller amount of positive samples and greater number of negative samples.
Given a substrate peptide sequence S = {aa1, aa2, aa3, …, aai, …, aan},
where each aai (i = 1, ...,n) denotes an amino acid at position i and n denotes
the sequence length of substrate peptide (i.e. the local sliding window size),
S can be classified as one of the two classes C1 (representing cleavage sites
of caspases, i.e. positive samples) or C0 (representing non-cleavage sites of
caspases, i.e. negative samples), according to whether or not it can be cleaved
by caspases. The posterior probability of both positive and negative samples
can be calculated as the occurrence of each amino acid at each position in the
training dataset. We integrated the bi-profile Bayesian signatures to predict
cleavage sites of caspase from primary sequence of substrates (for more
details about the bi-profile Bayesian feature extraction method, refer to the
original work of Shao et al.).

2.5 Sequence encoding schemes
We extracted four different types of sequence-profiles based on the
bi-profile Bayesian feature extraction approach: (i) bi-profile Bayesian amino
acid profile (BPBAA); (ii) bi-profile Bayesian secondary-structure profile
(BPBSS); (iii) bi-profile Bayesian solvent accessibility profile (BPBSA);
(iv) bi-profile Bayesian disordered profile (BPBDISO), through calculating
the frequency of each amino acid or the corresponding structural types at
each position for the cleavage and non-cleavage peptide sequences in the
training set. As we performed 5-fold/LOOCV, in each of cross-validation
rounds, these bi-profile Bayesian signatures were generated based only
on the training dataset without the validation subset used as the testing
dataset, in order to avoid the overestimation of the prediction performance.
Based on the bi-profile Bayesian signature extraction, a peptide sequence
(either positive or negative) can be encoded by its probability vector �P=
(p1,p2 ,... ,pn,pn+1 ,... ,p2n−1,p2n), potentially carrying more informative
features than the simple binary encoding amino acid (BEA) profiles.

2.6 SVR implementation and parameter selection
In this study, we used SVR to build the models to estimate the cleavage
probability of caspase substrates. SVM is a supervised machine learning
technique based on structural risk minimization from statistical learning
theory (Vapnik, 2000). SVM has been applied successfully to a wide
range of classification problems in recent years, including predicting protein
subcellular localization (Kumar and Raghava, 2009; Tamura and Akutsu,
2007), protein–protein interaction (Shen et al., 2007), protein methylation
sites (Shao et al., 2009), DNA-repair protein (Brown and Akutsu, 2009),
cyclin protein (Kalita et al., 2008) and microRNAs (Ahmed et al., 2009). In
practice, SVM has two modes: the classification mode SVC and regression
mode SVR. Due to its excellent regression ability to infer property values
from a limited dataset of samples, SVR has attracted increasing attention
with a growing number of applications, including predicting gene expression
level (Raghava and Han, 2005), residue contact number (Yuan, 2005), residue
contact order (Song and Burrage, 2006), residue depth (Song et al., 2009),
peptide-MHC binding affinities (Liu et al., 2006; Wan et al., 2006), disulfide
connectivity (Song et al., 2007) and half-sphere exposure (Song et al., 2008).
We used the SVM_light package, an implementation of Vapnik’s SVM for

SVC, SVR and pattern recognition (Joachims, 1999). We selected radial
basis kernel function (RBF) at ε = 0.01, γ = 0.01 and C = 100.0 to build
the prediction models. This parameter set was optimized based on 5-fold
cross-validation.

The number of negative samples is much larger than that of the positive
samples, which will incur the imbalance problem and result in biased
prediction in favor of the negative data (Song et al., 2006; Wee et al., 2006).
We employed the under-sampling approach to overcome this imbalance
problem by reducing the size of the over-represented negative samples.
We set the ratio of the positive to negative data at 1:3. Random sampling
still retained the original distribution of negative samples, but avoided their
over-representation.

2.7 Performance evaluation
The predictive performance of our approach was evaluated using
the accuracy, sensitivity, specificity, F-score and Matthews correlation
coefficient (MCC) measures (Matthews, 1975) (see Supplementary Data for
more details). The predictive performances were evaluated using these five
measures based on 5-fold cross-validation and LOOCV tests.

3 RESULTS

3.1 Statistical distribution of substrate cleavage sites
Using the compiled dataset of experimentally determined caspase
substrates, we analyzed the statistical distributions of substrate
cleavage sites for P8–P′

8 positions. As shown in Figures 1 and 2,
caspase-3 was used as an example to generate a heat map and
sequence logo diagram, respectively, for the P8–P′

8 specificities
of caspase-3. As expected, one of the prominent characteristics of
caspase-3 cleavage site specificity is that this enzyme preferentially
cleaves after the aspartate (d) at P1 and P4 position, which forms
the well-known canonical ‘XXXD’ motif (Dix et al., 2008; Fischer
et al., 2003; Lüthi and Martin, 2007; Mahrus et al., 2008; Nicholson,
1999; Pop and Salvesen, 2009; Talanian et al., 1997; Timmer and
Salvesen, 2007; Timmer et al., 2009).

Our analysis reveals that 96.99% of cleavage sites have a P1
aspartate, while only a small percentage of cleavages sites exhibit
the non-canonical ‘XXXE’ (1.24%), ‘XXXG’ (0.53%) and ‘XXXA’
(0.35%) motifs. Aside from the P1 site specificity, we note a modest
preference for glutamate at P3 and glycine at P′

1. Aspartate was
present in 43.44% of all P4 positions and glycine occurred in 28.19%

Fig. 1. Caspase-3 substrate cleavage sites for P8–P′
8 position. The average

amino acid occurrences in P8–P′
8 were calculated and displayed in the form

of a two-dimensional heat map. The scissile peptide bond between sites P1
and P1′ is indicated by a vertical white line.
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Fig. 2. Sequence logo diagram representation of the occurrences of amino
acid residues in the caspase substrate cleavage site P8–P′

8 positions. To better
show the occurrence rate of each amino acid type, the sequence logo ordinates
have been scaled in bits (Schneider and Stephens, 1990).

of all P′
1 positions. We also generated heat maps for the other

caspases such as caspase-1, -6, -7, -8, -9 and -10, as well as sequence
logo representations for P8–P′

8 position (Supplementary Figs 1–3).
Comparison of different caspase groups reveals distinct patterns of
subsite specificity through the P8–P′

8 sites, for example, serine at P′
1

for caspase-1, valine at P4 for caspase-6, glycine at P′
1 for caspase-7

and proline at P8 for caspase-10.

3.2 Analysis of structural determinants that
characterize caspase substrate specificity

As indicated in previous studies, the three-dimensional (3D)
context and the appropriate presentation of solvent accessible
surface are key factors, which determine whether the presence
of a particular substrate motif can be accessed and cleaved by a
caspase (Nicholson, 1999; Timmer et al., 2009). The expanded
dataset of caspase substrates used in this study allows us to
perform a comprehensive analysis of the structural determinants
that characterize the caspase substrate specificity. As such, we
performed the prediction of three secondary-structures (helix, strand
and coil), two-state solvent accessibility (exposed, buried), native
disorder (disordered, ordered), as well as functional domains, using
the PSIPRED (Jones, 1999), SCRATCH (Cheng et al., 2005),
DISOPRED (Ward et al., 2004) and HMMER (Finn et al., 2008)
programs, respectively. All of these programs have been widely
accepted as the state-of-the-art in their respective functions.

The frequency of secondary-structure types occurring at each
position from P8 to P′

8 reveals that caspase most frequently cleave
substrates that contain coils or loops, which is consistent with a
recent study of large-scale proteomics-based profiling of caspase-
mediated proteolytic events (Mahrus et al., 2008). Depending
on positions P4 through P′

4, the majority of these cleavage sites
(71–80%) are observed to be located within the predicted coils,
2–9% in beta sheets and 17–19% are located within alpha-helices
(Fig. 3A). However, in regards to the secondary structure (SS) motifs
of cleavage sites for P4–P′

4 sites, we found that although an all-
coil motif is the most common SS motif as expected (287 counts),
the second most common one is an all-helix motif (43 counts)
(Supplementary Data), suggesting that selective cleavage at alpha-
helical regions is not uncommon for caspases.

A large percentage of cleavages sites (65–87%, depending on P4
through P′

4 position) are predicted to be solvent accessible (exposed),
while only a small fraction of these cleavage sites (13–35%) are
predicted to be solvent inaccessible (buried) (Fig. 3B). Moreover, the
distribution of the predicted natively unstructured regions suggests
that ∼65% of caspase cleavage sites tend to occur in natively
unstructured regions (Fig. 3C), which reflects that there might
exist substantial structural dynamics in the substrate-binding regions

and loops or natively unstructured regions may function as distant
subsites that can facilitate the caspase-substrate interactions (Garay-
Malpartida et al., 2005). In addition, localization analysis of caspase
substrate cleavage sites relative to functional domain boundaries
annotated in Pfam (Finn et al., 2008) indicates that 35.7% of these
cleavage sites are located within functional domains, 32.8% are
located between functional domains, 14.0% are located before the
first domain, and 17.5% are located after the last domain (Fig. 3D).

3.3 Prediction of caspase cleavage sites using the
BEAA profile

In this section, we focused on predicting caspase cleavage sites
from the flanking amino acid sequences of substrates. This is
different from previous studies where statistical rules based on
amino acid preference in the vicinity of cleavage sites (Backes
et al., 2005; Garay-Malpartida et al., 2005; Lohmüller et al.,
2003) or classification-orientated algorithms like SVM (Wee et al.,
2006, 2007) or neural networks (Yang, 2005) are typically used
to generate predictive models. Here, we formulated the prediction
task of cleavage sites as a regression task for which SVR was
utilized to build the models which predict the cleavage probabilities
given primary sequences. First, we wanted to examine the influence
of different local window sizes of single sequence inputs on
the predictive performances of the SVR models. We thus used
different local window sizes, both symmetric and asymmetric
(Supplementary Fig. 4), to build the SVR models in order to find
out which size could lead to the best performance. The accuracy of
the 5-fold cross-validation is shown in Supplementary Table 2.

The predictive performance based on asymmetric windows
appears to be better than the corresponding symmetric windows
(Supplementary Table 2). For example, the prediction accuracy
based on P4–P′

3 (80.8%) is better than that based on P4–P′
4 (79.6%).

Another interesting finding is that the non-prime-side cleavage
sites (P1–P8) appear to have more distant effects on the prediction
performance than the prime-side sites (P′

1–P′
8) in that smaller

window sizes are required to improve the predictive performance
for the latter. Based on a local window of P4–P′

2, the SVR method
can achieve the best prediction accuracy of 82.2% and an MCC
of 0.667. Therefore, in the following analysis, we fixed the local
window at P4–P′

2 when evaluating the effects of incorporating other
informative features.

3.4 Improving predictive performance by
incorporating relevant structural information of
substrates

The BEAA profile used above is based on the binary encoding
of single sequences only; however, we need to take into account
additional informative features to further improve the predictive
performance. Recently Shao et al. (2009) proposed a novel approach
called bi-profile Bayesian feature extraction to extract the key
features in the positive and negative data. This method outperformed
other methods due to its advantage over binary encoding and single
feature encoding schemes. On the other hand, caspase cleavage sites
exhibit different features in terms of predicted secondary-structure,
solvent accessibility and natively unstructured regions, which might
be suitably captured by bi-profile Bayesian feature extraction
approach. It is conceivable that incorporating this information
might be useful for improving the prediction accuracy of caspase
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A B

C D

Fig. 3. Structural determinants of caspase substrate specificity based on the amino acid occurrences in P8–P′
8 positions for cleavage sites. (A) Three secondary-

structure assignments at each position for P8–P′
8 positions of caspase substrate cleavage sites. H: alpha-helix, E: beta-stand, C: coil. (B) Two-state solvent

accessibility distribution at each position for P8–P′
8 positions of caspase substrate cleavage sites. Two states are defined: ‘e’ indicates ‘exposed’, while ‘b’

denotes ‘buried’. (C) Natively unstructured region or disordered region distribution at each position for P8–P′
8 positions of caspase substrate cleavage sites.

‘Asterisk’ indicates the natively unstructured/disordered region while ‘dot’denotes the structured/ordered region. (D) Localization of caspase substrate cleavage
sites relative to functional domain boundaries annotated in Pfam. Four domain boundaries are defined: inter-, intra-domain, before first domain and after
last domain.

cleavage sites. From this, we extracted different types of sequence
profiles based on the bi-profile Bayesian feature extraction: BPBAA,
BPBSS, BPBSA and BPBDISO, as described in the ‘Materials and
methods’ section.

We evaluated the predictive performances of different
combinations of these profiles with the gradual increase
in the complexity of features, i.e. the encoding schemes
BEAA, BEAA_BPBAA, BEAA_BPBSA, BEAA_BPBSS_
BPBSA, BEAA_BPBAA_BPBSA, BEAA_BPBAA_BPBSS_
BPBSA_BPBDISO, BEAA_BPBAA_BPBSS_BPBDISO and
BEAA_BPBAA_BPBSA_BPBDISO (for brevity, these encoding
schemes are represented by 1, 2, …, 8, respectively, in Table 1).
This step-wise procedure can reveal the contribution of individual
features to the predictive performances.

When selecting the sequence encoding scheme BEAA_BPBAA
which uses single binary amino acid profile coupled with bi-
profile Bayesian signature, Cascleave achieved an accuracy of
84.1%, F-score of 74.2%, and MCC of 0.686. In contrast, adopting
sequence encoding scheme BEAA_BPBSA which uses the amino
acid sequence profile along with the bi-profile Bayesian solvent
accessibility profile, Cascleave achieved an accuracy of 84.6%,

F-score of 75.7%, and MCC of 0.699. Moreover, the incorporation
of the bi-profile Bayesian features based on binary encoding amino
acid profile and solvent accessibility (BEAA_BPBAA_BPBSA)
leads to a further improvement of 1.9% accuracy. The F-score and
MCC also increased by 4.4% and 0.031, respectively.

It is observed that the predictive performance of Cascleave
gradually increases with the addition of input features, and attains
the best performance when using the sequence encoding scheme
BEAA_BPBAA_BPBSA_BPBDISO—achieving a prediction
accuracy of 87.6%, F-score of 80.4% and MCC of 0.747 and
was the best performing encoding scheme observed in this study.
However, the addition of BPBSS did not improve the predictive
performance, but rather decreases the accuracy, presumably because
that there might exist redundant information between different
feature sets.

To further evaluate the predictive performance, we plotted the
receiver operating characteristic (ROC) curves for the assessment
of these eight sequence encoding schemes in Figure 4. ROC curves
indicate the performance of all the SVR models based on the same
training and testing datasets. The uppermost curve with the largest
area under the curve indicates the best prediction model. The ROC
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Table 1. Predictive performances of Cascleave using different sequence
encoding schemes

Sequence
encoding
schemes

Prediction accuracy (%)

ACC SE SP F-score MCC Dimensionality

1 82.2 65.2 92.0 72.8 0.667 120
2 84.1 67.6 92.5 74.2 0.686 132
3 84.6 71.4 91.3 75.7 0.699 132
4 86.5 73.7 93.1 78.6 0.730 144
5 86.3 76.5 91.2 79.0 0.731 144
6 87.1 74.6 93.4 79.5 0.739 168
7 87.3 72.6 94.8 79.5 0.741 156
8 87.6 76.2 93.3 80.4 0.747 156

The results were obtained by 5-fold cross-validation.

Fig. 4. The ROC curves to assess the predictive performance of the eight
Cascleave models based on different sequence encoding schemes. See the
main text for more details about these encoding schemes.

curve based on the scheme BEAA_BPBAA_BPBSA_BPBDISO
dominates the curves representing other encoding schemes. This
reinforces the notion that this is the best amongst all eight encoding
schemes. Taken together, all the results obtained from Table 1,
Figure 4 and Supplementary Table 5 suggest that the integration of
relevant structural features in terms of predicted secondary structure,
solvent accessibility and natively unstructured regions based on
bi-profile Bayesian feature extraction approach can significantly
enhance the predictive performance of Cascleave.

3.5 Comparison with other methods
Next, we compared the predictive performance of our Cascleave
predictor with other methods. Due to the unavailability of the two
previously developed webservers CasPredictor (Garay-Malpartida
et al., 2005) and GraBCas (Backes et al., 2005), we compared
the predictive performance between Cascleave, CASVM (Wee
et al., 2007) and Multi-factor CASVM (Wee et al., 2009).

Multi-factor CASVM is a two-step model: the first step is based
on CASVM and the second step filters out the predicted false
positives using the structural factors such as disorder and solvent
exposure in the vicinity of cleavage sites (Wee et al., 2009). The
methodological differences among these three methods are detailed
in Supplementary Table 3.

Since cross-validation performance comparison is only logical
when the training and testing datasets being employed are identical
to each other, these two methods were first tested on the same
training and testing datasets using 5-fold cross-validation. For
each method, there were a total of six models indexed to a
particular local window size. As previously observed by Wee et al.
(2005), because of the large percentage of cleavage sites with the
canonical ‘XXXD’ motif compared to the much smaller percentage
of cleavage sites with the non-canonical ‘XXXE’ and ‘XXXG’
motifs, there might exist the possibility for the built models to
be over-trained, meaning the built model tends to overlook the
other non-canonical cleavage sites and simply predict them as being
negatives. Cascleave generally results in an improvement of ∼4–5%
and 2–5% with respect to CASVM and Multi-factor CASVM,
respectively (Supplementary Table 4). Cascleave obtained the best
performance with an accuracy of 87.4%, F-score of 80.3% and MCC
of 0.747.

Further, we compared the predictive performance of Cascleave,
CASVM and multi-factor CASVM using the LOOCV test, which
is a more stringent test compared with 5-fold cross-validation
(Supplementary Table 5). For the sake of a comprehensive
comparison, the predictive performances of different Cascleave
models based on different encoding schemes were also presented.
As can be seen, Cascleave model using the encoding scheme
BEAA_BPBAA_BPBSA_BPBDISO achieved the best prediction
performance in the LOOCV test, with the accuracy of 89.0±2.8%
and the MCC of 0.742±0.062, respectively, while multi-factor
CASVM achieved the accuracy of 88.3±2.8% and the MCC of
0.715±0.072, respectively. Moreover, we tested the predictive
power of the online Cascleave server to recognize novel caspase
substrates and compared with the online CASVM server using an
independent testing set. It was extracted from a recent study of
Dix et al. (2008) and contains newly identified caspase substrate
cleavage sites that were not previously reported. The percentage of
true positives, i.e. the percentage of the cleavage sites that were
correctly predicted by Cascleave is 81.2%, while CASVM was only
able to identify 66.7% of the novel substrate cleavage sites, again
demonstrating the predictive power of Cascleave (Supplementary
Table 6).

In summary, Cascleave outperforms CASVM and multi-factor
CASVM by explicitly integrating primary sequence features with the
predicted solvent accessibility/secondary structures/native disorder
features, which serve as an important supplement to the primary
sequence. By integrating these features, Cascleave is capable of
distinguishing more difficult cleavage sites that cannot be readily
detected by methods based only on primary sequence information.

3.6 Case study
We further investigated the predictive performance of Cascleave by
studying four different caspase substrates for which the cleavage
sites have been experimentally validated. Substrate sequence
scanning results with Cascleave are shown in Figure 5 and
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A

B

Fig. 5. The predicted cleavage probability for caspase cleavage sites using Cascleave based on the best sequence encoding scheme. (A) Caspase-activated
DNase inhibitor (ICAD, Uniprot ID: O54786); (B) Apoptotic protease Mch-2 (Caspase-6, Uniprot ID: P55212). The two substrates have two and three
cleavage sites, respectively. The predicted coiled, solvent exposed and natively disordered regions on the top of each panel are highlighted by magenta, green
and red, respectively. A threshold value of 0.5 for making the positive cleavage site prediction is denoted by a red dashed line. The predicted cleavage sites
in P4–P′

4 positions by Cascleave are also labeled.

Supplementary Figure 5. The first example is the caspase-activated
DNase inhibitor (ICAD) which inhibits the activity of Caspase-
activated DNase (CAD) (Enari et al., 1998). Importantly, cleavage
of ICAD by caspase-3 activates the CAD nuclease and deactivates
its CAD-inhibitory effect. Site-directed mutagenesis indicated that
ICAD carries two specific cleavage sites by caspase-3: DEPD|SRAG
at positions 117–118 and DAVD|TGVG at positions 224–225 (‘|’
denotes the cleavage site). Cleavage of ICAD can liberate the active
CAD nuclease that can otherwise be inhibited by ICAD and mediate
the apoptotic DNA degradation (Sakahira et al., 1998).

The second example is the apoptotic protease Mch-2 (caspase-6),
which is further cleaved by caspase-3, -8 or -10 to produce the two
active subunits (Srinivasula et al., 1996), resulting in the activation
cascade of caspases responsible for apoptosis execution. Mch-2 has
three cleavage sites of capase-3: TETD|AFYK at positions 23–24,
DVVD|NQTE at position 179–180 and TEVD|AASV at positions
193–194 (Srinivasula et al., 1996). All the experimentally identified
cleavage sites of both ICAD and Mch-2 were successfully predicted
with the Cascleave predictor based on the best-performing sequence
encoding scheme (Fig. 5). These cleavage sites were among the top
ranking results according to the predicted probabilities and could be

correctly identified as putative cleavage sites using a cutoff threshold
of 0.5.

The third and fourth examples are the heterogeneous
nuclear ribonucleoprotein inhibitor (hnRNP, Uniprot ID: O43390)
(Brockstedt et al., 1998) and the Ras GTPase-activating protein
(RasGAP, Uniprot ID: P20936) (Yang and Widmann, 2001),
respectively. They represent difficult caspase substrates for which
the cleavage sites cannot be readily deduced from the use of
sensitive machine learning models like Cascleave. hnRNP has
four caspase cleavage sites, however, Cascleave only successfully
predicted two of them: DYYD|DYYG and DYHD|YRGG, failing to
identify the other two cleavage sites: RAID|ALRE and KESD|LSHV
(Supplementary Fig. 5). RasGAP is a special substrate as it
is cleaved through sequential caspase cleavage during apoptosis
(Yang and Widmann, 2001). Assigning a higher cutoff threshold
of 0.6, Cascleave was only able to predict one of the two
cleavage sites DEGD|SLDG, while missing the primary cleavage
site DTVD|GKEI. Nevertheless, if a lower cutoff of 0.5 is used,
DTVD|GKEI site will be included in the predicted sites, with the
ranking of third place, among the five predicted sites. All the above
results suggest that silico computational sequence scanning using
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Cascleave might be helpful for identifying the putative caspase
substrate cleavage sites in vivo.

4 DISCUSSION
Caspases have central roles in apoptotic cell death processes by
catalysing a multitude of proteolytic events, such as activating
pro-survival or anti-apoptotic proteins and activating anti-survival
or pro-apoptotic proteins (Mahrus et al., 2008). The key to
understanding the physiological role of caspases is to identify
their natural substrates. Caspases have the ability to cleave
multiple proteins in different physiological compartments and
produce polypeptide products with potentially new functional
activities (Dix et al., 2008; Lüthi and Martin, 2007; Mahrus
et al., 2008), with cleavage preference influenced by various
factors such as substrate sequence, substrate conformation and
accessibility. Knowledge about the substrate specificity of caspases
can dramatically improve our ability to predict target protein
substrates; however, this information cannot at present be readily
derived from experimental approaches. Solving this problem is
fundamental for both understanding caspase biology and the
development of therapeutics that target specific caspase-mediated
apoptotic pathways.

The recent proliferation of large-scale in vitro peptide cleavage
libraries and proteome-wide global profiling platforms offers
promising prospects of identifying specific caspase substrates in
combination with computer-based screening of genome sequences
(Timmer et al., 2009). The advantage of machine learning techniques
such as SVR make them particularly appealing in solving the
difficult problem of caspase substrate specificity prediction, as they
can be effectively applied to better describe the complex non-linear
relationships underlying the caspase-substrate interactivity by using
the kernel functions to build the predictive models (Shao et al.,
2009). To address this problem, we developed a novel bioinformatic
approach based on SVR to make testable predictions on the substrate
specificity of caspases. Considering that caspase cleavage sites show
preferences for predicted secondary structure, solvent accessibility
and natively unstructured regions, we used a bi-profile Bayesian
feature extraction approach to derive these profiles and train the
SVR models. The efficiency of the resulting Cascleave predictors
for predicting caspase cleavage sites has been demonstrated by
comparing to one of the most accurate existing algorithms CASVM
(Wee et al., 2006, 2007) and multi-factor CASVM (Wee et al., 2009).
The predictive performance of Cascleave was further showcased by
predicting four caspase substrates for which the cleavage sites have
been experimentally validated. The results indicate that sequence
scanning using Cascleave should be very useful for identifying the
putative caspase cleavage sites.

In this study, our goal was to predict all the potential
cleavage sites, irrespective of the spatiotemporal environments or
conformation changes that a substrate may be subject to. The features
used as input to the Cascleave predictor are derived from primary
sequences and the input data does not contain specific information
about the order of sequential cleavage events in proteolytic cascades.
In these exceptional cases, there is a chance that the predictor will
fail as a purely statistical model. The predicted solvent exposure and
native disorder features are a supplement to the primary sequence,
and in cases where the primary sequence alone contains a strong
consensus indicating a cleavage site, we hope these amino acid

sequence encoding features are overriding. For example, in RasGAP
(Uniprot ID: P20936) there is a correctly predicted cleavage site
(DEGD|SLDG) by Cascleave which shows low probability of
being solvent exposure and natively disordered (Supplementary
Fig. 5). In the specific cases where a sequential proteolytic cascade
occurs, features based on primary sequence alone are unlikely to
be sufficient. Training based on features from the 3D structure
of the substrate protein may help in this regards, although this
is not amenable to a general predictor since the 3D structures of
many substrates, in their intact or cleaved-form mid-cascades, are
generally not known.

There are a number of additional measures with potential
to further increase the accuracy of prediction in the future. The first
approach is to use either the accurate 3D structure of the substrate
or the structure of a protease in complex with a substrate, instead
of the predicted structural information to build the predictive
models. This will allow us to ascertain whether the high-resolution
crystal structure of a protease/substrate complex can be used
to derive specificity information. The second is to incorporate
other informative and complementary features, such as sequence-
order-dependent context that can better describe the sequential
neighborhood surrounding the substrate cleavage sites (Mahrus
et al., 2008; Nicholson, 1999). The third is to investigate how to
effectively represent the negatives (non-cleavage sites) that are true
negatives and are non-cleavable under any cellular or physiological
conditions, and how to better discriminate these absolute negatives
from those that are cleavable under a given physiological condition.
Thus the precise detection of the true negatives is more likely to
contribute to an improvement of the prediction accuracy, based on
which characteristic feature sets regarding positives and negative
samples can be more accurately represented and established. Further
improvement can be also achieved by using refined training and
testing datasets with high-quality coverage of the cleavage sites,
identified by high-throughput proteome-wide techniques.

5 CONCLUSION
In summary, we have proposed a novel approach to predict
cleavage sites from the flanking amino acid sequences of caspase
substrates. We analyzed the structural determinants of caspase
substrate specificity based on a well-curated database from multiple
resources. We built the Cascleave models using the bi-profile
Bayesian approach that takes into account the characteristic
sequential and structural profiles in the vicinity of cleavage
and non-cleavage sites. This provides a quantitative evaluation
of caspase substrate specificity. The results showed that our
approach is more accurate than the CASVM and multi-factor
CASVM methods, demonstrating its usefulness for describing the
complex sequence-structure relationships and predicting caspase
cleavage sites. It is anticipated that Cascleave will be a powerful
tool for predicting novel substrate cleavage sites of caspases
and shedding new insights on the unknown caspase-substrate
interactivity.
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