Jianghua Chen

Jianghua Chen
  • Chinese Academy of Sciences

About

55
Publications
11,156
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,581
Citations
Introduction
Skills and Expertise
Current institution
Chinese Academy of Sciences

Publications

Publications (55)
Preprint
Full-text available
Sessile plants exhibit diverse movement behaviors that have long intrigued the scientists. The legume plants display a rhythmic leaflet movement pattern characterized by horizontal opening during the day and vertical closure at night. However, the underlying mechanisms remain largely enigmatic. Here, we isolated a mutant designated as dlm1 (downwar...
Article
Tomato fruit size is a crucial trait in domestication, determined by cell division and cell expansion. Despite the identification of several quantitative trait loci associated with fruit size in tomatoes, the underlying molecular mechanisms that govern cell division and expansion to control fruit size remain unclear. CRISPR/Cas9 gene editing was us...
Article
Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in othe...
Article
Full-text available
The plant-specific IDD transcription factors (TFs) are vital for regulating plant growth and developmental processes. However, the characteristics and biological roles of the IDD gene family in tomato (Solanum lycopersicum) are still largely unexplored. In this study, 17 SlIDD genes were identified in the tomato genome and classified into seven sub...
Article
Full-text available
The plant homeodomain finger (PHD finger) protein, a type of zinc finger protein extensively distributed in eukaryotes, plays diverse roles in regulating plant growth and development. While PHD finger proteins have been identified in various species, their functions remain largely unexplored in pea (Pisum sativum). In this study, we identified 84 m...
Article
Full-text available
The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is un...
Article
Full-text available
Plant lateral organs are often elaborated through repetitive formation of developmental units, which progress robustly in predetermined patterns along their axes. Leaflets in compound leaves provide an example of such units that are generated sequentially along the longitudinal axis, in species-specific patterns. In this context, we explored the mo...
Article
Full-text available
Plant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F‐box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legume Medica...
Article
Full-text available
Edible Macadamia is one of the most important commercial nut trees cultivated in many countries, but its large tree size and long juvenile period pose barriers to commercial cultivation. The short domestication period and well-annotated genome of Macadamia integrifolia create great opportunities to breed commercial varieties with superior traits. R...
Article
MYB transcriptional regulators belong to one of the most significant transcription factors families in plants, among which R2R3-MYB transcription factors are involved in plant growth and development, hormone signal transduction, and stress response. Two R2R3-MYB transcription factors, FLP and its paralogous AtMYB88, redundantly regulate the symmetr...
Article
Full-text available
The VILLIN (VLN) protein is an important regulator of the actin cytoskeleton, which orchestrates many developmental processes and participates in various biotic and abiotic responses in plants. Although the VLN gene family and their potential functions have been analyzed in several plants, knowledge of VLN genes in soybeans and legumes remains rath...
Article
Full-text available
Long non-coding RNAs (lncRNAs) have been verified as flexible and important factors in various biological processes of multicellular eukaryotes, including plants. The respective intricate crosstalk among multiple epigenetic modifications has been examined to some extent. However, only a small proportion of lncRNAs has been functionally well charact...
Article
Full-text available
Pea (Pisum sativum L.) is one of the most important legume crops in the world, and it has attracted great attention for its high nutritive values. Recently, the crop breeding program has been focused on the crop metabolic engineering (i.e., color, flavor, nutrition) to improve the quality of crop. As a major group of transcription factors forming t...
Article
Full-text available
Soybean is one of the most important legume crops that can provide the rich source of protein and oil for human beings and livestock. In the twenty-one century, the total production of soybean is seriously behind the needs of a growing world population. Cultivated soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. an...
Article
Full-text available
Nyctinastic leaf movement of Fabaceae is driven by the tiny motor organ pulvinus located at the base of the leaf or leaflet. Despite the increased understanding of the essential role of ELONGATED PETIOLULE1 (ELP1)/PETIOLE LIKE PULVINUS (PLP) orthologs in determining pulvinus identity in legumes, key regulatory components and molecular mechanisms un...
Article
Anthocyanins and proanthocyanins are two end-products of the flavonoid biosynthesis pathway. They are believed to be synthesized on the ER, and then sequestered into the vacuole. In Arabidopsis thaliana, AtTT19 is necessary for both anthocyanin and PA accumulation. Here, we found that MtGSTF7, a homolog of AtTT19, is essential for anthocyanin accum...
Article
Full-text available
Anthocyanins and proanthocyanins are two end-products of the flavonoid biosynthesis pathway. They are believed to be synthesized on the ER, and then sequestered into the vacuole. In Arabidopsis thaliana, AtTT19 is necessary for both anthocyanin and PA accumulation. Here, we found that MtGSTF7, a homolog of AtTT19, is essential for anthocyanin accum...
Article
Full-text available
Simple and compound which are the two basic types of leaves are distinguished by the pattern of the distribution of blades on the petiole. Compared to simple leaves comprising a single blade, compound leaves have multiple blade units and exhibit more complex and diverse patterns of organ organization, and the molecular mechanisms underlying their p...
Article
Full-text available
In most legumes, two typical features found in leaves are diverse compound forms and the pulvinus‐driven nyctinastic movement. Many genes have been identified for leaf‐shape determination, but the underlying nature of leaf movement as well as its association with the compound form remains largely unknown. Using forward‐genetic screening and whole‐g...
Article
Full-text available
The size of leaf and seed organs, determined by the interplay of cell proliferation and expansion, is closely related to the final yield and quality of forage and crops. Yet the cellular and molecular mechanisms underlying organ size modulation remain poorly understood, especially in legumes. Here, MINI ORGAN1 (MIO1) was identified as a key regulat...
Article
Full-text available
Key message: A 3-ketoacyl-CoA synthase involved in biosynthesis of very long chain fatty acids and cuticular wax plays a vital role in aerial organ development in M. truncatula. Cuticular wax is composed of very long chain fatty acids and their derivatives. Defects in cuticular wax often result in organ fusion, but little is known about the role o...
Article
Full-text available
Plant specific WOX family transcription factors play important roles from embryogenesis to lateral organ development. The WOX1 transcription factors, belonging to the modern clade of WOX family, are found to regulate leaf blade outgrowth specifically in the mediolateral axis. However, the role of WOX1 in compound leaf development is still unknown....
Article
Full-text available
Leaves are the primary sites for plant photosynthesis and disease-resistance, showing great diversity in shapes. Thus, leaves are the good model for studying the morphogenesis as well as the evolution of complex organs. Simple leaves and compound leaves are two basic forms in nature. Significant progresses have been made in understanding the simple...
Article
Full-text available
Optimizing plant architecture is an efficient approach for breeders to increase crop yields, and phytohormones such as gibberellins (GAs) play an important role in controlling growth. Medicago truncatula is a model legume species, but the molecular mechanisms underlying its architecture are largely unknown. In this study, we examined a tobacco retr...
Article
Full-text available
Male sterility is an important tool for plant breeding and hybrid seed production. Male‐sterile mutants are largely due to an abnormal development of either the sporophytic or gametophytic anther tissues. Tapetum, a key sporophytic tissue, provides nutrients for pollen development, and its delayed degeneration induces pollen abortion. Numerous bHLH...
Article
Full-text available
Plant height is a vital agronomic trait that greatly determines crop yields because of the close relationship between plant height and lodging resistance. Legumes play a unique role in the worldwide agriculture; however, little attention has been given to the molecular basis of their height. Here, we characterized the first dwarf mutant mini plant...
Article
Full-text available
Artificially improving traits of cultivated alfalfa (Medicago sativa L.), one of the most important forage crops, is challenging due to the lack of a reference genome and an efficient genome editing protocol, which mainly result from its autotetraploidy and self-incompatibility. Here, we generate an allele-aware chromosome-level genome assembly for...
Article
Full-text available
Compound leaves show more complex patterns than simple leaves, and this is mainly because of a specific morphogenetic process (leaflet initiation and arrangement) that occurs during their development. How the relevant morphogenetic activity is established and modulated to form a proper pattern of leaflets is a central question. Here we show that th...
Article
Full-text available
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene family has been well-studied in Arabidopsis and play crucial roles in the diverse growth and development processes including establishment and maintenance of boundary of developmental lateral organs. In this study we identified and characterized 38 LBD genes in Lotus japonicus (LjLBD) and 57 LBD genes...
Data
The chromosomal distribution of the LBD gene family in Lotus japonicus and Medicago truncatula. The chromosome number is indicated at the bottom of each chromosome. Genes without intron are marked with red asterisk. Segmental duplication genes in M. truncatula are linked by red dash lines. (TIF)
Data
The phylogenetic analysis of LBD members from Lotus japonicus and Arabidopsis. The amino acid sequences of the LBD proteins were aligned with Clustal X, and the phylogenetic tree was constructed using the neighbor-joining method of MEGA 5.0 software. The red clade represents the Class II members. The LBD proteins in bracket meant that they have bee...
Data
Information of LBD gene family identified in Medicago truncatula. (DOCX)
Data
Motif sequences identified by MEME tools. (DOCX)
Article
Full-text available
Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. E...
Article
Transcription factors and phytohormones have been reported to play crucial roles to regulate leaf complexity among plant species. Using the compound-leafed species Lotus japonicus, a model legume plant with 5 visible leaflets, we characterized four independent mutants with reduced leaf complexity, proliferating floral meristem (pfm), proliferating...
Article
Full-text available
Plants exhibit various kinds of movements that have fascinated scientists and the public for centuries. Physiological studies in plants with the so-called motor organ or pulvinus suggest that cells at opposite sides of the pulvinus mediate leaf or leaflet movements by swelling and shrinking. How motor organ identity is determined is unknown. Using...
Article
Full-text available
To identify genes that confer nonhost resistance to biotrophic fungal pathogens, we did a forward-genetics screen using Medicago truncatula Tnt1 retrotransposon insertion lines. From this screen, we identified an inhibitor of rust germ tube differentation1 (irg1) mutant that failed to promote preinfection structure differentiation of two rust patho...
Article
Full-text available
As the primary site for photosynthetic carbon fixation and the interface between plants and the environment, plant leaves play a key role in plant growth, biomass production and survival, and global carbon and oxygen cycles. Leaves can be simple with a single blade or compound with multiple units of blades known as leaflets. In a palmate-type compo...
Article
Full-text available
Plant leaves are diverse in their morphology, reflecting to a large degree the plant diversity in the natural environment. How different leaf morphology is determined is not yet understood. The leguminous plant Medicago truncatula exhibits dissected leaves with three leaflets at the tip. We show that development of the trifoliate leaves is determin...
Article
Full-text available
The PIN family of auxin efflux transporters exhibit polar plasma membrane (PM) localization and play a key role in auxin gradient-mediated developmental processes. Auxin inhibits PIN2 endocytosis and promotes its PM localization. However, the underlying mechanisms remain elusive. Here, we show that the inhibitory effect of auxin on PIN2 endocytosis...
Article
Full-text available
Molecular genetic studies suggest that FLORICAULA (FLO)/LEAFY (LFY) orthologs function to control compound leaf development in some legume species. However, loss-of-function mutations in the FLO/LFY orthologs result in reduction of leaf complexity to different degrees in Pisum sativum and Lotus japonicus. To further understand the role of FLO/LFY o...
Article
Full-text available
Zygomorphic flowers, with bilateral (dorsoventral) symmetry, are considered to have evolved several times independently in flowering plants. In Antirrhinum majus, floral dorsoventral symmetry depends on the activity of two TCP-box genes, CYCLOIDEA (CYC) and DICHOTOMA (DICH). To examine whether the same molecular mechanism of floral asymmetry operat...
Article
Full-text available
CENTRORADIALIS/TERMINAL FLOWER 1 (CEN/TFL1) genes play an important role in the phase transition of plant flowering. Here we characterized the expression pattern of a CEN/TFL1-like gene, Ljcen1, from Lotus japonicus. Sequence analysis revealed that Ljcen1 shared 67-76% identity to its homologs from a variety of plant species. Ljcen1 transcripts cou...

Network

Cited By