Exact diagonalization: the Bose–Hubbard model as an example

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 Eur. J. Phys. 31 591

(http://iopscience.iop.org/0143-0807/31/3/016)

The Table of Contents and more related content is available

Download details:
IP Address: 159.226.35.229
The article was downloaded on 08/04/2010 at 03:21

Please note that terms and conditions apply.
Exact diagonalization: the Bose–Hubbard model as an example

J M Zhang and R X Dong

Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
E-mail: jmzhang@aphy.iphy.ac.cn

Received 24 January 2010, in final form 23 February 2010
Published 7 April 2010
Online at stacks.iop.org/EJP/31/591

Abstract
We take the Bose–Hubbard model to illustrate exact diagonalization techniques in a pedagogical way. We follow the route of first generating all the basis vectors, then setting up the Hamiltonian matrix with respect to this basis and finally using the Lanczos algorithm to solve low lying eigenstates and eigenvalues. Emphasis is placed on how to enumerate all the basis vectors and how to use the hashing trick to set up the Hamiltonian matrix or matrices corresponding to other quantities. Although our route is not necessarily the most efficient one in practice, the techniques and ideas introduced are quite general and may find use in many other problems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Among the various analytical and numerical approaches to strongly correlated systems, numerical exact diagonalization has a unique position. It is not burdened by any assumptions or approximations and thus provides unbiased benchmarks for other analytical and/or numerical approaches [1]. It is also appealing in its conceptually simple and straightforward nature. The basic idea to set up the Hamiltonian matrix in some basis and thus reduce a physical problem to a purely mathematical one is readily accessible to a senior undergraduate student.

However, possibly due to some technical subtleties, exact diagonalization is not accounted for in detail in existing textbooks on computational physics. It is the aim of this paper to illustrate these tricks and promote teaching and use of exact diagonalization. To make the discussion concrete, we take the Bose–Hubbard model as an example. This model is chosen because of its relevance to the currently active field of ultracold atom physics [2]. It has been realized with ultracold atoms in an optical lattice, and the celebrated superfluidity-Mott insulator (SF-MI) transition has been observed experimentally [3, 4]. We will use exact diagonalization to get a glimpse of this quantum phase transition.
One common misconception, according to the experience of the authors, is that in doing numerical exact diagonalization, one solves all the eigenvalues and eigenvectors of the Hamiltonian by some algorithm. This ideal case, though desirable (for the purpose of thermodynamics) and achievable with some effort in some contexts (see [5] and references therein), is actually neither possible nor necessary in many cases as long as the dimension of the Hilbert space \(D \) gets large. It is impossible since to reduce a Hermitian matrix \(H \) in the form \(U \Lambda U^\dagger \), with \(\Lambda \) being a diagonal real matrix and \(U \) a unitary matrix, it would take time on the order of \(O(D^3) \) and memory space on the order of \(O(D^2) \). With a moderate value \(D = 100,000 \), the memory needed is over 10 GB, far beyond that of a typical desktop computer, needless to say the time cost. It is also often unnecessary since physically, in many cases, the most relevant eigenstates are the ground state and low lying excited states. High excited states, due to the Boltzmann factor, contribute little to the thermodynamics of the system at low temperatures.

In view of the considerations mentioned above, one can fully appreciate the value of the Lanczos algorithm [6]. This algorithm belongs to the iterative category for solving eigenvalue problems. As the iteration goes on, the estimated eigenvalues and eigenvectors converge quickly. Especially, the extremal eigenvalues and eigenvectors converge first. Usually, with an iteration time \(m \ll D \), the ground state and several low excited states converge to machine precision. In a certain sense, the Lanczos algorithm is a tailor-made algorithm for solving the ground state and/or low lying excited states of a Hamiltonian. It provides exactly what we need, no more no less.

As far as we know, all exact diagonalizations are based on the Lanczos algorithm and its variants. Since this algorithm has become a standard topic in textbooks on numerical matrix theory [7] and since there are many monographs [8] devoted to this algorithm and also several very readable introductions [9, 10], here in this paper, we do not go into the details of this algorithm. We will just invoke some packages based on the Lanczos algorithm and use them as the final stroke.

In contrast, our emphasis is placed on some other techniques which we believe are involved in all kinds of exact diagonalizations in a wide variety of contexts. The road map we will take is perhaps the most natural one—first enumerate all the basis vectors, then set up the Hamiltonian matrix in this basis and finally invoke the Lanczos algorithm to solve the desired eigenstates. In each step, we will explain the tricks in detail. We would like to mention that in practice, usually the Hamiltonian matrix is not explicitly set up beforehand; instead the action of the Hamiltonian on a wave vector is done ‘on the fly’ [9, 10]. This is consistent with the philosophy of iterative method—the matrix–vector multiplication is all that we need and its internal workings are of no concern. Though this is of use for saving memory, we do not introduce it here for our pedagogical purposes.

2. The model and its symmetries

We begin by describing the one-dimensional Bose–Hubbard model and its symmetries. The Hamiltonian is

\[
\hat{H} = -J \sum_{\langle ij \rangle} (a_i^\dagger a_j + a_j^\dagger a_i) + \frac{U}{2} \sum_{i=1}^{M} \hat{n}_i (\hat{n}_i - 1) \tag{1}
\]

where \(a_i^\dagger \) (\(a_i \)) creates (annihilates) a particle on the site \(i \) and \(\hat{n}_i = a_i^\dagger a_i \) counts the particle number on that site. The first term proportional to \(J \) is the kinetic part of the Hamiltonian (\(\hat{H}_{\text{kin}} \)) and describes particle hopping between adjacent sites (in the sum, \(\langle ij \rangle \equiv \langle ji \rangle \)). The second
term is the interaction part (\hat{H}_{int}) and is due to the particle–particle interaction, the strength of which is characterized by the parameter U. The Bose–Hubbard model has been realized with ultracold boson atoms in an optical lattice [4]. Moreover, in this system, the parameters J and U can be conveniently adjusted by various means, e.g. the Feshbach resonance or just by changing the intensity of the laser beams.

The Hamiltonian \hat{H} possesses several symmetries. The first one is the $U(1)$ symmetry, which is associated with the conservation of the total atom number $\hat{N} = \sum_{i=1}^{N} \hat{n}_i$. The Hamiltonian is invariant under the transform $(a_i^\dagger, a_i) \rightarrow (a_i^\dagger e^{i\theta}, a_i e^{-i\theta}) = e^{i\hat{N}\theta}(a_i^\dagger, a_i) e^{-i\hat{N}\theta}$ for $\forall \theta \in \mathbb{R}$. The second one is the translation symmetry. The Hamiltonian is invariant under the transform $(a_i^\dagger, a_i) \rightarrow (a_{i+1}^\dagger, a_{i+1})$, if the periodic boundary condition is imposed. This symmetry is associated with the conservation of the total quasi-momentum of the system

$$\hat{K} \equiv \sum_{q=0}^{M-1} \left(\frac{2\pi q}{M} \right) b_q^\dagger b_q \pmod{2\pi},$$

where the operator

$$b_q^\dagger = \frac{1}{\sqrt{M}} \sum_{j=1}^{M} e^{i\left(2\pi q/M\right)j} a_j^\dagger$$

creates a particle in the Bloch state with quasi-momentum $2\pi q/M$. Actually, the transform above is done as $e^{-i\hat{K}}(a_i^\dagger, a_i) e^{i\hat{K}} = (a_{i+1}^\dagger, a_{i+1})$. In terms of (b_q^\dagger, b_q), the Hamiltonian \hat{H} is rewritten as

$$\hat{H} = -2J \sum_{q=0}^{M-1} \cos(2\pi q/M) b_q^\dagger b_q + \frac{U}{2M} \sum_{q_1, q_2=0, q_1+q_2=0}^{M-1} \sum_{q_3, q_4=0}^{M-1} b_{q_1}^\dagger b_{q_2}^\dagger b_{q_3} b_{q_4} \delta_{q_1+q_2, q_3+q_4},$$

where the Dirac function is defined as

$$\delta_{q_1+q_2, q_3+q_4} = \begin{cases} 1 & \text{if } q_1 + q_2 \equiv q_3 + q_4 \pmod{M} \\ 0 & \text{otherwise} \end{cases}.$$ \hfill (5)

It is then clear that \hat{K} is conserved. The third symmetry is the reflection symmetry. The Hamiltonian is also invariant under the transform $(a_i^\dagger, a_i) \rightarrow (a_{M-i}^\dagger, a_{M-i})$, or in terms of (b_q^\dagger, b_q), $(b_q^\dagger, b_q) \rightarrow (b_{-q}^\dagger, b_{-q})$. The combination of the translation and reflection symmetries indicates that the Bose–Hubbard model has the D_M symmetry, the symmetry of an equilateral polygon with M vertices. This is plausible if we envisage that the M sites are placed equidistantly on a circle.

Therefore, the Bose–Hubbard model is of $U(1) \otimes D_M$ symmetry. It is desirable to decompose the total Hilbert space into subspaces according to the irreducible representations of this group. The Hamiltonian cannot couple two states belonging to two different irreducible representations and thus is block (partially) diagonalized [10, 11]. Analytically, it can be proven that the ground state $|G\rangle$ of \hat{H} belongs to the identity representation of D_M.

Therefore, as far as the ground state is concerned, we only need to seek it in a subspace where all the basis vectors are of a definite atom number (thus belong to a definite representation of $U(1)$) and are invariant under all rotations and reflections.

1 Due to the periodic boundary condition, the site index 0 is identified with M.

2 For $J > 0$, due to the connectedness of the lattice and the Perron–Frobenius theorem, the ground state $|G\rangle$ must be non-degenerate, and all the expansion coefficients in terms of the Fock states (7) are real and of the same sign. Therefore, we have $\langle G | e^{i\theta} | G \rangle > 0$. Since $|G\rangle$ is an eigenstate of the unitary operator $e^{i\theta}$, we have $e^{i\theta} | G \rangle = | G \rangle$. That is, the ground state is translationally invariant. Moreover, it is easy to show that it is also invariant under reflection. Therefore, $|G\rangle$ constitutes the identity representation of the group D_M.
We first restrict to the space \mathcal{H} with total atom number N. The dimension of this space is found to be

$$D = \frac{(N + M - 1)!}{N!(M - 1)!} \tag{6}$$

which grows explosively with the system size. For fixed filling factor $N/M = 1$, $D = 24,310$ for $M = 9$, and it grows to $D = 352,716$ for $M = 11$, and further to $D = 5200,300$ for $M = 13$. We may divide this space into M smaller subspaces according to the eigenvalues of \hat{K}. The ground state, being translationally invariant, falls in the subspace \mathcal{H}_0 with $K = 0$, whose dimension D_0 is approximately D/M. Actually, $D_0 = 2704, 32,066$ and $400,024$ in the case of $N = M = 9, 11$ and 13, respectively. The subspace \mathcal{H}_0 can be further divided into two subspaces according to the two representations of the reflection group $\{I, \sigma\}$. The ground state, being invariant under reflection, belongs to the subspace \mathcal{H}_0^+, where the superscript means all the basis vectors yield a plus sign under reflection. The dimension D_0^+ of \mathcal{H}_0^+ is nearly half of D_0. Actually, $D_0^+ = 1387, 16,159$ and $200,474$ respectively in the three cases mentioned above. The reduction of the dimension from D to D_0 and again to D_0^+ promises a reduction of computation, especially, a reduction of memory needed.

Indeed, when memory is limited, it is necessary to work within the subspace \mathcal{H}_0 (or even \mathcal{H}_0^+) and with the Hamiltonian in equation (4) (so we do in the $N = M = 13$ case below). However, to simplify the discussion and focus on essential techniques, we will still work within the space \mathcal{H} and with the Hamiltonian in equation (1). In fact, working in the subspaces \mathcal{H}_0 or \mathcal{H}_0^+ requires a bit more effort in coding and will be left as exercises.

3. Basis vectors generation

A natural basis is the occupation number basis $\{|n_1, n_2, \ldots, n_M\rangle\}$ which is defined as

$$\hat{n}_i |n_1, n_2, \ldots, n_M\rangle = n_i |n_1, n_2, \ldots, n_M\rangle \tag{7}$$

with $n_i \geq 0$. In the subspace with a fixed total particle number N, we have the constraint: $\sum_{i=1}^M n_i = N$. We need to enumerate all the basis vectors satisfying this constraint. One naive idea is to write down a piece of code with an M-fold loop:

```matlab
for n_1=0:N
    for n_2=0:N-n_1
        for n_3=0:N-n_1-n_2
            \ldots
        end
    end
end
```

This approach, though workable, has two apparent drawbacks. First, the number of loops depends on the number of sites and hence the code is inflexible. Second, when coding with tools such as MATLAB, which is inefficient in dealing with loops, the efficiency would be low.

3 The same rule can be used to generate the basis vectors in the subspace \mathcal{H}_0. The space \mathcal{H} is spanned by $\{|m_0, m_1, \ldots, m_{M-1}\rangle\}$ which are defined as $b_0^\dagger b_0 |m_0, m_1, \ldots, m_{M-1}\rangle = m_i |m_0, m_1, \ldots, m_{M-1}\rangle$ with $\sum m_q = N$. These states are generated one by one but only those with $\sum q m_q = 0 \pmod{M}$ will be taken into \mathcal{H}_0. The subspace \mathcal{H}_0^0 of \mathcal{H}_0 is spanned by $\{\frac{1}{\sqrt{2}}(|m_0, m_1, \ldots, m_{M-1}\rangle + |m_0, m_{M-1}, \ldots, m_1\rangle)\}$.

Table 1. Configurations of the basis vectors $|n_1, n_2, n_3\rangle$ with atom number $N = 3$ and site number $M = 3$. They are generated recursively according to the algorithm described in section 3.

<table>
<thead>
<tr>
<th>v</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Here we prescribe one way to bypass these difficulties. To this end, we first note that it is possible to rank all the basis vectors $|n_1, n_2, \ldots, n_M\rangle$ in lexicographic order.

For two different basis vectors $|n_1, n_2, \ldots, n_M\rangle$ and $|\tilde{n}_1, \tilde{n}_2, \ldots, \tilde{n}_M\rangle$, there must exist a certain index $1 \leq k \leq M - 1$ such that $n_i = \tilde{n}_i$ for $1 \leq i \leq k - 1$, while $n_k \neq \tilde{n}_k$. We say $|n_1, n_2, \ldots, n_M\rangle$ is superior (inferior) to $|\tilde{n}_1, \tilde{n}_2, \ldots, \tilde{n}_M\rangle$ if $n_k > \tilde{n}_k (n_k < \tilde{n}_k)$. It can be shown that this defines a total order among the basis vectors. In particular, it is clear that $|N, 0, \ldots, 0\rangle$ is superior to all other basis vectors while $|0, 0, \ldots, N\rangle$ is inferior to all other basis vectors.

Having furnished the set of basis vectors with an order structure, we can now generate all the basis vectors one by one by descending from the highest one $|N, 0, \ldots, 0\rangle$. Given a basis vector $|n_1, n_2, \ldots, n_M\rangle$ with $n_M < N$, we proceed to the next basis vector inferior to the current one according to the following rule (see footnote 3).

Suppose $n_k \neq 0$ while $n_i = 0$ for all $k + 1 \leq i \leq M - 1$, then the next basis vector is $|\tilde{n}_1, \tilde{n}_2, \ldots, \tilde{n}_M\rangle$ with

- $\tilde{n}_i = n_i$ for $1 \leq i \leq k - 1$;
- $\tilde{n}_k = n_k - 1$;
- $\tilde{n}_{k+1} = N - \sum_{i=1}^{k} \tilde{n}_i$ and $\tilde{n}_i = 0$ for $i \geq k + 2$.

This procedure will end with the lowest basis vector $|0, 0, \ldots, N\rangle$. Obviously, this algorithm yields a code involving only a single loop and with all the difficulties associated with the naive one avoided. Numerically, we store the basis vectors in a $D \times M$ array A, with the vth generated basis vector filled in the vth row of the array. We will refer to the basis vector in vth row as $|v\rangle$, so $|v\rangle \equiv |A_{v1}, A_{v2}, \ldots, A_{vM}\rangle$.

As an example, we enumerate in table 1 all the basis vectors generated with the foregoing algorithm in the case of $N = M = 3$. As for the efficiency of the algorithm, we mention that in the case of $N = M = 13$, it takes about 38 s to generate the $D = 5200$ 300 basis vectors with our MATLAB code in our desktop computer.

4. Setting up the Hamiltonian matrix

With all the basis vectors prepared, we are now in the position to set up the Hamiltonian matrix with respect to this basis. That is, we are to determine the $D \times D$ matrix H corresponding to

4 The idea of defining an order in a set so as to facilitate the enumeration is common in combinatorics; see [12].

5 The CPU is Intel Core TM 2, Q8200, @ 2.33 GHz, and the RAM is 2.5 GB.
the Bose–Hubbard Hamiltonian \(\hat{H} \) with
\[
H_{uv} \equiv \langle u | \hat{H} | v \rangle.
\] (8)
Here by determining the matrix \(H \), we do not mean to save it in the full matrix form in the computer (that will cost memory on the order of \(D^2 \)), but to figure out all its non-zero elements and their positions, i.e. their row and column numbers. Actually, as we will see below, the matrix \(H \) is extremely sparse with at most \(2M + 1 \) non-zero elements per column. Therefore, it is appropriate to store \(H \) in a certain sparse form, which will require memory only on the order of \(D \). In MATLAB, a sparse matrix is stored in the coordinate format.

To proceed, we treat the interaction part \(\hat{H}_{\text{int}} \) and kinetic part \(\hat{H}_{\text{kin}} \) of the Hamiltonian separately. The corresponding matrices are denoted as \(H_{\text{int}} \) and \(H_{\text{kin}} \), respectively. We note that \(H_{\text{int}} \) and \(H_{\text{kin}} \) are the diagonal and off-diagonal parts of \(H \), respectively. We also note that this separation is necessary when we want to change the ratio \(U/J \) to study the SF-MI transition. The matrix \(H_{\text{int}} \) can be easily done; therefore, we will concentrate on \(H_{\text{kin}} \).

A general and straightforward but naive method to set up \(H_{\text{kin}} \) is to let \(u \) and \(v \) run over all the integers from 1 to \(D \), respectively, and examine the corresponding matrix elements one by one. This procedure entails computation scale proportional to \(D^2 \) and is very inefficient since most checks yield null results. A clever way out is to ask the question: in each column, which elements are non-zero? Physically, it is equivalent to ask: given an arbitrary basis vector \(|v\rangle \), if we act \(\hat{H}_{\text{kin}} \) on it, which (generally not merely one) basis vectors will appear? To answer this question, we note that there are \(2M \) hopping terms in \(\hat{H}_{\text{kin}} \), all in the form of \(a_i^\dagger a_j \). These hopping terms, when acting on a given basis vector, either annihilate it or change it into another basis vector with some amplitude. In the latter case, the occupation numbers of the newly generated basis vector are readily obtained from those of \(|v\rangle \). However, this information is not what we really need. The problem that really matters is: which basis vector is it among the basis vectors tabulated in the array \(A \)? Or more precisely, which row does it belong to in \(A \)?

Here we will invoke the so-called hashing technique to fulfil this aim [13, 14]. The basic idea is to define a tag for each basis vector, that is, to condense the information of the vector into a single entity. Thereafter, to see whether two vectors are the same, rather than comparing their elements one by one, we only need to see whether their tags are the same. Concretely, the tag of the \(v \)th basis vector is defined by a function \(T \):
\[
T(v) \equiv T(A_{v1}, A_{v2}, \ldots, A_{vM}).
\] (9)
Numerically, this function should be readily evaluated. Moreover, since we want to identify the basis vectors with their tags, it is mandatory that different basis vectors have different tags. In other words, there should be a one-to-one mapping between the rows of \(A \) and the elements of the array \(T \).

A fortunate case is that the tag \(T(v) \) coincides with \(v \). In this case, by calculating the tag of a basis vector, we know its rank among all the basis vectors. Such a function is hard to find generally [13]; however, for the problem under consideration, it does exist according to Schnack et al [15]. The idea is to count the number of basis vectors before an arbitrary basis vector by making use of the lexicographic order. Though this yields a very efficient algorithm, below we will pursue a different approach which is equally efficient. We impose only the condition that all the tags are different, which is relatively easy to meet in a general case. A

6 We should mention that we do not use the hashing trick in the standard way, as in [13, 14]. In our approach, we are free of the troublesome collision problem in the usual way of hashing. The coding is thus made much easier and more suitable for pedagogical use.
candidate for the tag function is
\[T(v) = \sum_{i=1}^{M} \sqrt{p_i} A_{vi}, \]
with \(p_i \) being the \(i \)-th prime number. This function is linear in the occupation numbers and is readily calculated. More importantly, since the \(\sqrt{p_i} \)'s are radicals of distinct square-free numbers, they are linearly independent of the rationals\(^7\), and therefore, different vectors have different tags necessarily. An alternative tag function is \(T(v) = \sum_{i=1}^{M} (\ln p_i) A_{vi} \). By some simple number theory \([17]\), it is seen that this tag function is also a viable one. The tag function the authors use is of the form (10) but with \(p_i = 100 \times i + 3 \), which is easier to program.

Given a basis vector \(|v\rangle \) specified by a set of occupation numbers but with \(v \) unknown, we calculate its tag according to equation (10), and then search the tag among the array \(T \) to locate its position, i.e. the value of \(v \). Here another trick is possible. Originally, the array \(T \) is unsorted, i.e. the tags are not arranged in ascending or descending order according to their values. To search a given element, the only way is to check the elements one by one and that will take on average \(D/2 \) trials to find that element. That is a huge work since \(D \) can be on the order of \(10^6 \). A simple trick saves the workload significantly. Rather than searching inside an unsorted array, we should better search inside a sorted array so that we can make use of the Newton binary method \([13]\). That will take at most \(\log_2 D \) trials to find the target. For \(D = 2^{20} \approx 1.05 \times 10^6 \), it takes at most 20 trials to locate the target\(^8\).

Thus, we first sort \(T \) in ascending (or descending) order with the quicksort algorithm \([13, 18]\). For clarity, we denote the sorted array as \(T_{\text{Sorted}} \). In doing so, we can also prepare another \(D \)-element array \(\text{ind} \) which stores the positions of elements of \(T_{\text{Sorted}} \) in the original array \(T \). More precisely, \(T(\text{ind}(i)) = T_{\text{Sorted}}(i) \). In MATLAB, this can be done simply with the code
\[
[T, \text{ind}] = \text{sort}(T)
\]
Here we overwrite the original array \(T \) with \(T_{\text{Sorted}} \). For those programming with Fortran, the ORDERPACK package by Olagnon can be used to fulfil the same aim \([19]\).

We summarize the procedure to establish the matrix \(H_{\text{kin}} \) as follows. The non-zero elements are determined column by column. Given an arbitrary basis vector \(|v\rangle \), we apply the hopping terms \(a_i^\dagger a_j \) on it. If \(A_{v_j} \geq 1 \), we have
\[
a_i^\dagger a_j |v\rangle = \sqrt{(A_{v_i} + 1)A_{v_j}} |\ldots, A_{v_i} + 1, \ldots, A_{v_j} - 1, \ldots\rangle.
\]
We then calculate the tag \(T_r \) of the vector on the right-hand side and search it among the sorted array \(T \). Suppose \(T(w)^{\prime\prime} = T_r \), we then know the resulting basis vector is the \(u = \text{ind}(w)^{\prime\prime}\)-th one. We have thus found a non-zero element with coordinates \((u, v)\) and value \(-J \sqrt{(A_{v_i} + 1)A_{v_j}} \). This process is repeated as \(v \) runs from 1 to \(D \). Obviously, it can be parallelized. It is also clear that the overall time cost in this step is on the order of \(MD \log_2 D \).

In figure 1, we plot the sparsity pattern of the Hamiltonian \(H \) in the case \(N = M = 10 \). We see that on average there are only 11.5 non-zero elements per column, which is four orders smaller than the dimension \(D = 92378 \). We would like to mention that with our MATLAB code, it takes about 15 s to set up the Hamiltonian matrix and plot the pattern using the code \(\text{spy}(H) \).

\(^7\) Physically, this can be understood as the \(\sqrt{p_i} \)'s are incommensurable. Mathematically, it can be proven rigorously; see \([16]\).

\(^8\) Though on average it takes 19 trials.
Figure 1. Sparsity pattern of the Hamiltonian matrix H in the case $N = M = 10$. Every spot corresponds to a non-zero element. The dimension of the Hilbert space is $D = 92,378$ and the number of non-zero elements is $nz = 1064,777$. On average, there are 11.5 non-zero elements per column.

5. Numerical results

After preparing the Hamiltonian in a sparse matrix form, we can use the Lanczos algorithm to compute the ground state and low lying excited states and their energies. There are some well-developed packages for this purpose and our philosophy is not to reinvent the wheel. For those programming with Fortran, the ARPACK package [20] by Lehoucq et al is a very useful aid. For those programming with MATLAB, it is enough to invoke the ‘eigs’ command. For instance, the code

$$[\text{Evec}, \text{Eval}] = \text{eigs}(H, 2, 'sa')$$

returns the two smallest eigenvalues (the ground state energy and the first excited state energy) of H in the 2×2 diagonal matrix Eval and their corresponding eigenvectors (the ground state and the first excited state) in the $D \times 2$ matrix Evec. Here we would point out that when executing ‘eigs’, MATLAB invokes the very ARPACK package to do the job.

With the ground state on hand, we can then calculate various quantities to gain some physical insights of the model. One quantity that is of primary interest is the single-particle density matrix (SPDM) associated with the many-particle ground state. In the Wannier state basis, it is defined as

$$\rho_{ij}^{(1)} = \langle G | a_i^\dagger a_j | G \rangle,$$

(12)

with $1 \leq i, j \leq M$. All one-particle variables, e.g., the momentum distribution, are captured in the SPDM.

In general, the SPDM is Hermitian, semi-positive-definite and of trace equal to the particle number. In the present case, the SPDM is subjected to more constraints. Due to the translation and reflection invariance of the ground state (see footnote 2), we have $\rho_{ij}^{(1)} = \rho_{i+k,j+k}^{(1)}$ for an arbitrary k and also $\rho_{ij}^{(1)} = \rho_{ji}^{(1)}$. Therefore, the SPDM is real, symmetric and cyclic. These good properties reduce the number of matrix elements to be computed from $M(M + 1)/2$ to $\lfloor M/2 \rfloor + 1$, where $\lfloor \cdot \rfloor$ is the floor function.

9 See the Help document of Matlab.
5.1. Condensate fraction

According to the Penrose–Onsager criterion [21], a condensate is present if and only if the largest eigenvalue λ_1 of $\rho^{(1)}$ is macroscopic, i.e. $f_c = \lambda_1/N$ is on the order of unity and the ratio f_c is called the condensate fraction. In the non-interacting case, all particles reside in the lowest Bloch state (a zero momentum state), and the system is in a pure condensate state with $f_c = 1$. As the interaction is turned on, more and more particles will be kicked into higher Bloch states and the condensate is said to be depleted. In the thermodynamic limit (M goes to infinity with $N/M = 1$ fixed), there is a critical value [22] (≈ 4.65) of U/J beyond which f_c vanishes.

To gain a picture of this phase transition, we have numerically calculated the condensate fraction as a function of the ratio U/J, with three different lattice sizes. The results are shown in figure 2(a). We see that as U/J increases, the condensate fraction decreases monotonically. However, the finite size effect is significant. The condensate fraction is far from being vanishing in the deep Mott insulator regime ($U/J \gg 4.65$). Actually, since $\lambda_1 \geq \left(\sum_k \lambda_k \right)/M = N/M$, f_c has a lower bound $1/M$.

5.2. Off-diagonal long-range order

The presence of a condensate is also associated with an off-diagonal long-range order [23]. That is, a condensate is present if the off-diagonal element of the single particle density matrix $\rho^{(1)}_{ij}$ converges to a finite value as $|i - j| \to \infty$. This is consistent with the Penrose–Onsager criterion. Actually, converting into the Bloch state representation, the density matrix takes the form

$$\tilde{\rho}^{(1)}_{q_1 q_2} = \langle G|b_{q_1}^\dagger b_{q_2}|G \rangle$$

$$= \frac{1}{M} \sum_{j_1, j_2} \langle G|a_{j_1}^\dagger a_{j_2}|G \rangle e^{i2\pi(j_1-j_2)/M}$$

$$= \sum_j \rho^{(1)}_j e^{-i2\pi q_1 q_2 / M} \delta_{q_1 q_2}. \quad (13)$$

Here in the third line, we have used the cyclicity of $\rho^{(1)}$. Thus, the SPDM is diagonal in the Bloch state representation. Its eigenvalues coincide with its diagonal elements, and its
Variance of the occupation number σ_i at an arbitrary site i as a function of the ratio U/J [24]. Actually five different lattice sizes, i.e. $N = M = 8, 9, 10, 11, 12$, are investigated. However, the curves all collapse onto the same one.

Eigenstates (called natural orbits) coincide with the Bloch states. It can be proven that all the elements of $\rho^{(1)}$ are non-negative (see footnote 2). Therefore, the largest eigenvalue of the SPDM is just $\tilde{\rho}^{(1)}_{q_1q_1}$ with $q_1 = 0$, and is of the explicit expression

$$\lambda_1 = \sum_j \rho^{(1)}_{0j}.$$ \hspace{1cm} (14)

We then see immediately that, if $\rho^{(1)}_{0j}$ decreases monotonically with j, f_c and $\rho^{(1)}_{0j}$ converge to the same value in the thermodynamical limit.

Thus, the phase transition can also be investigated by examining the behavior of the off-diagonal elements. In figure 2(b), we show how the element $\rho^{(1)}_{0[M/2]}$ behaves as U/J varies. We choose this element because it corresponds to the correlation between two sites with the largest distance on a circle. Moreover, as M tends to infinity, the distance $[M/2]$ also tends to infinity. Comparing with figure 2(a), we see that the correlation $\rho^{(1)}_{0[M/2]}$ decreases much faster than f_c, especially, in the deep Mott insulator regime, it drops to zero.

5.3. Occupation variance

In the previous subsections, we see that both the condensate fraction and off-diagonal elements suffer from a strong finite size effect. Here, we show that the fluctuation of the occupation number on one site

$$\sigma_i = \sqrt{\langle \hat{n}_i^2 \rangle - \langle \hat{n}_i \rangle^2}$$ \hspace{1cm} (15)

is not very sensitive to the size of the lattice [24], as long as $M \gg 1$. In figure 3, we show σ_i as a function of U/J for five different lattice sizes. The differences between the curves are hardly visible. This indicates that the curve has already converged to its value in the infinite lattice limit.

This suggests that the SF-MI transition cannot be tracked in any local variables. This is why we do not fix the distance between the two sites when calculating the off-diagonal element in the preceding subsection. By the Hellmann–Feynman theorem, we have $\partial E_G/\partial U = \langle \partial H/\partial U \rangle = M \sigma^2_i/2$. Our numerical result for σ_i suggests that the ground state energy is a smooth function of U.

![Figure 3](image-url)
6. Conclusion and discussion

Exact diagonalization is conceptually simple but never trivial in programming. Taking the Bose–Hubbard model as a working example, we have illustrated the architecture of numerical exact diagonalization. Some essential tricks, namely ordering, enumerating, hashing, sorting and searching, were explained in detail. These tricks are believed to be quite general and can be adopted in many other situations [25].

For example, we show how the idea of ordering can save computation if we want to work within the subspace \mathcal{H}_0. To impose the condition $K = 0$, we had better work with \hat{H} in equation (4) (see footnote 3). This time it is the interaction part

$$\hat{H}_{\text{int}} = \frac{U}{2M} \sum_{q_1, q_2} \sum_{q_1 \neq q_2} b_{q_1}^\dagger b_{q_2}^\dagger b_{q_2} b_{q_1},$$

(16)

that costs most effort. Here the condition $q_1 + q_2 \equiv q_3 + q_4 (\text{mod } M)$ is taken implicitly. There are exactly M^3 terms in the sum. By noting $[b_{q_1}, b_{q_2}] = [b_{q_2}^\dagger, b_{q_1}^\dagger] = 0$, we have

$$\hat{H}_{\text{int}} = \frac{U}{2M} \sum_{q_1 \geq q_2} \sum_{q_1 \geq q_3} B_{q_1, q_2}^\dagger B_{q_3, q_4},$$

(17)

where $B_{q_1, q_2}^\dagger = (2 - \delta_{q_1, q_2}) b_{q_1}^\dagger b_{q_2}^\dagger$ is defined for $q_1 \geq q_2$. We can reduce the computation further by making use of the Hermiticity of \hat{H}_{int}. We define $$(q_1 q_2) = M q_1 + q_2.$$ The terms B_{q_1, q_2}^\dagger are ordered according to their tags $(q_1 q_2)$. We then rewrite (17) as

$$\hat{H}_{\text{int}} = \frac{U}{2M} \left[\sum_{(q_1 q_2) = (q_3 q_4)} B_{q_1, q_2}^\dagger B_{q_3, q_4} + \sum_{(q_1 q_2) > (q_3 q_4)} B_{q_1, q_2}^\dagger B_{q_3, q_4} + \sum_{(q_1 q_2) < (q_3 q_4)} B_{q_1, q_2}^\dagger B_{q_3, q_4} \right].$$

(18)

The third term is Hermitian conjugate to the second one. Thus, in setting up the matrix corresponding to \hat{H}_{int}, we only need to consider the non-zero elements due to the second term; those due to the third term are then determined automatically. Overall, in the case of $N = M = 10$, the number of terms needed to be considered is reduced from 1000 to 180.

The readers are encouraged to convert the procedure described in this paper into codes and explore the interesting physics in the Bose–Hubbard model, which is surely far from being exhausted in the present paper. For example, we have shown how to study the condensate fraction as a function of the ratio U/J. On this basis, an immediately accessible problem is then how the superfluidity density varies with U/J. The subtle relation between condensation and superfluidity can then be investigated. For more details, see [24]. We would like to mention that the coding does not cost much effort. It takes no more than 100 lines in MATLAB and is very efficient. For the $N = M = 12$ case, it takes around 4 min to set up the Hamiltonian matrix and 1 min to solve the ground state on our desktop computer. Note that the dimension is $D = 1352078$. By working in the subspace \mathcal{H}_0, we have successfully performed exact diagonalization for a system as large as $N = M = 13$ on our computer. Systems with larger sizes may be investigated by working in the \mathcal{H}_0^+ subspace. Therefore, the Bose–Hubbard model may serve as a good topic for teaching exact diagonalization in an undergraduate or graduate course of computational physics.

Acknowledgments

We are grateful to G F Bertsch and T Papenbrock for their helpful advices and to E H Lieb for his valuable comments. We are also grateful to the anonymous referee for his/her comments and, especially, drawing our attention to some ultra-valuable references.
References