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Model-Based Intelligent Fault Detection
and Diagnosis for Mating Electric Connectors
in Robotic Wiring Harness Assembly Systems

Jian Huang, Member, IEEE, Toshio Fukuda, Fellow, IEEE, and Takayuki Matsuno, Member, IEEE

Abstract—Mating a pair of electric connectors is one of the most
important steps in a robotic wiring harness assembly system. A
class of piecewise linear force models is proposed to describe both
the successful and the faulty mating processes of connectors via
an elaborate analysis of forces during different phases. The cor-
responding parameter estimation method of this model is also
presented by adapting regular least-square estimation methods.
A hierarchical fuzzy pattern matching multidensity classifier is
proposed to realize fault detection and diagnosis for the mating
process. This classifier shows good performance in diagnosis. A
typical type of connectors is investigated in this paper. The results
can easily be extended to other types. The effectiveness of proposed
methods is finally confirmed through experiments.

Index Terms—Fault detection and diagnosis, fuzzy pattern
matching, modeling, robotic wiring harness assembly.

I. INTRODUCTION

AUTOMATED handling of assembly of materials has been
studied by many researchers in the areas of manufactur-

ing, robotics, and artificial intelligence. While robotic assembly
applications have increased in both number and complexity over
the years, a large number of applications have been passed over
due to technology. One of them is the electric wiring harness
assembly task, which presents itself in the manufacturing of
various electrical instruments. To implement a robotic wiring
harness assembly system as shown in Fig. 1, researchers have
to tackle two primary issues. One is using robotic systems to
manipulate deformable linear objects (DLOs), which has been
extensively discussed in [1] and [2]. The other is how to obtain a
secured mating of a pair of electric connectors by the assembly
robot. However, so far, little work has been done with respect to
this issue.
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Fig. 1. Concept of a robotic wiring harness assembly system and the scheme
of model-based FDD for the mating process.

In a robotic assembly system, error recovery approaches are
necessary due to inevitable errors caused by unpredictable situ-
ations. The field of error recovery is often divided into three sub-
fields: fault detection, diagnosis, and error recovery [3]. During
the last decades, many efforts have been made in the field of fault
detection and diagnosis (FDD), especially in the field of model-
based methods [4]–[8]. On the other hand, intelligent methods,
like neural networks (NNs) or neuro-fuzzy approaches, are also
extensively applied to FDD systems. However, these methods
always treat systems as “black-box” models, in which the a
priori knowledge is overlooked.

For a fault diagnosis problem, statistical methods are usually
not good choices because they require large numbers of training
samples to estimate probability distributions. Therefore, intelli-
gent classifiers, especially fuzzy classifiers, are widely applied
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in this field. Real-time performance of some fuzzy classifica-
tion methods has been evaluated in [9]. Among them, the fuzzy
pattern matching (FPM) method seems to be the best one since
it gives very good classification rates for the shortest comput-
ing time and it possesses the incremental learning ability [10].
Although the traditional FPM method cannot classify noncon-
vex shapes, recently some improvements have been proposed to
solve the problem [11]. A hierarchical diagnosis scheme, called
SELECT, has been presented and applied to dc motors [12]. A
hierarchical fuzzy pattern matching classifier (HFPMC), which
combined the FPM method and a decision tree, was successfully
applied in [13] to recognize tire treads.

In this paper, a model-based fault detection and diagnosis
scheme for the mating process of electric connectors is inves-
tigated. For each type of connector, a typical frictional force
model is established to describe the whole mating process. All
the typical models are integrated into a database in advance.
During a mating process, the impedance and the displacement
of the gripper are measured by sensors mounted in the robot.
Both force and displacement limits are preset as stop conditions.
If either of the stop conditions is satisfied, model parameters are
estimated as features from the sensor data, which serve to the
feature extraction and fault diagnosis modules. A hierarchical
fuzzy pattern-matching scheme (HFPMS) is chosen as the final
classifier.

II. MODELING FOR THE MATING PROCESS OF CONNECTORS

A. Introduction to Electric Connectors

In view of the variety of electric connectors that we may meet
in different tasks, it is necessary to establish a model database
that comprises all possible cases. Despite the fact that the char-
acteristics of connectors differ from each other, their underlying
frictional force models are similar during a mating process.
Therefore, instead of enumerating all possible cases, we inves-
tigate a special type of connectors to exemplify the modeling
procedure. Applying similar methods to other types, a model
database as depicted in Fig. 1 can finally be constructed. The
typical connectors and headers studied in this paper are illus-
trated in Fig. 2. As we can see, there are a couple of lead-in
chamfers on the connector and the header, respectively. These
chamfers provide a positive locking that provides a secure mat-
ing retention.

The aforementioned “force model” means the relationship
of resistance Fz that impedes connector’s insertion, and the
corresponding displacement z of the gripper. Both these signals
are measured by sensors mounted in the robot. It should be
pointed out that such a model is not a dynamic model describing
the plant states, because the model parameters exclude input
forces from the robot.

B. Modeling for Successful Mating Process

In order to model the mating process, it is necessary to analyze
the process of insertion carefully and to separate force data into
components from different sources. A typical mating process of

Fig. 2. Pair of typical three-pin connector and header, and their typical mating
process with four key phases.

the insertion can be divided into four phases, which are shown
in Fig. 2.

During all these phases, a female socket connector prewired
with standard wires, which are clamped tightly together with
crimp terminals, is mated with the header little by little. We
use {Si, Si+1} to denote the start and end state of a phase,
where i = 1, 2, . . . , 4. S ′

2 is an intermediate state in phase II.
The definition of reference frame is also shown in Fig. 2.

1) Phase I: The connector starts to move down from a state
at which it is totally separated from the header to a state at which
it slightly touches the header. Note that, at the end of this phase,
the couple of lead-in chamfers comes into contact and are ready
to lead the connector to slide in. During this phase, the z-axis
resistance Fz is approximately equal to zero.

2) Phase II: A detailed force analysis of this phase is de-
picted in Fig. 3. The z-axis force Fz mainly comes from two
sliding frictions, Ffr1 and Ffr2 . During the insertion, deforma-
tions occur in several places, including pins, crimp terminals,
chamfers, and even the base board. Some deformations produce
increasing normal forces upon frictional surfaces, which makes
the force Fz become larger as the connector wedges in deeper.
We based our consideration on the following assumptions.

Assumption 1: The two frictions satisfy Ffr1 � Ffr2 , since the
contact surface between two lead-in chamfers is very smooth.
This assumption leads to

Fz = Ffr1 . (1)

Assumption 2: Suppose that all the deformations are elastic.
These consist of deformations of crimp terminals and pins, and
the deformation of the two lead-in chamfers. Obviously, the
extent of the deformations depends on the depth of the insertion.
Therefore, in phase II, we can suppose that the normal forces
on the contact surface and their counterparts F1 , F2 , F

′
1 , F

′
2 ,

which are produced by these deformations, are proportional to
the relative displacement increment between the connector and
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Fig. 3. Force analysis and mechanical system model of phase II.

the header. Thus, we have

F1 = k′
1 ∆z1 , F2 = k′

2 ∆z1 (2)

where ∆z1 denotes the relative displacement increment, and k′
1

and k′
2 are the proportional parameters.

Assumption 3: In view of the fact that the gripper’s speed
is slow and constant in the whole mating process, we assume
a simple friction model without considering the variance of
frictions due to different speed. That is to say, the frictions
satisfy

Ffr1 = µ1 · (F1 + F2 cos θ) + f1

= k1 ∆z1 + k2 ∆z1 + f1 (3)

where µ1 is the fictional parameter determined by the Coulomb’s
friction law, k1 and k2 are elastic constants, and f1 is the static
friction.

Assumption 4: A single-point contact model is introduced to
describe the deformation of the base board. In spite of the small
measurement, this deformation always exists during the mating,
caused by the pressure Fz coming from the header. This model
is parameterized by k3 and f3 in Fig. 3.

Together with the single-point contact model, we can for-
mulate a corresponding mechanical system model shown in
Fig. 3 for phase II. In this mechanical system, the upper two
springs describe the two friction components derived from nor-
mal forces F1 and F2 . These two components are quantified
as two items in (3). The parameter ∆z2 indicates the defor-
mation of the base board. The parameter ∆z1 + ∆z2 is the
actual relative z-axis displacement increment of the connector.
Introduce zI,II , zII,III , and zIII,IV to denote the displacements
of the boundary states, S2 , S3 , and S4 , between every two suc-
cessive phases. In the reference frame defined in Fig. 2, the

Fig. 4. Transitions of the mechanical system models.

equations

Fz = k3 ∆z2 + f3 (4)

∆z = ∆z1 + ∆z2 = z − zI,II (5)

hold. Equations (1)–(5) can be summed up to a concise force
model of phase II, which is given by

Fz = kIIz + fII (6)

where parameters kII and fII satisfy



kII =
k3(k1 + k2)
k1 + k2 + k3

fII =
k3f1 + (k1 + k2)f3

k1 + k2 + k3
− kIIzI,II .

(7)

3) Phase III: The frictional component produced by two
lead-in chamfers disappears suddenly when entering state S3
because the slippage between chamfers is over. Thus, a transition
of corresponding mechanical system models happens, which is
depicted in Fig. 4.

Applying a similar procedure as in phase II, the force model
of phase III is easily obtained as follows:

Fz = kIIIz + fIII (8)

where

kIII =
k1k3

k1 + k3
, fIII =

k3f1 + k1f3

k1 + k3
− kIIIzI,II . (9)

4) Phase IV: After the connector and the header are totally
mated, friction forces between them disappear immediately.
Therefore, the system model is changed again. Such a transition
is also depicted in Fig. 4.

The mathematical expression of the force model in phase IV
is then easily obtained as follows:

Fz = kIVz + fIV (10)

where

kIV = k3 , fIV = f3 − kIVzI,II . (11)

5) Boundary Analysis: The boundaries are those displace-
ments zI,II , zII,III , zIII,IV at which a transition of the force model
occurs. Except for zI,II , sudden changes of Fz occur before and
after the boundaries, because some of the force components
disappear just after the transition of models. The changes of
Fz at all the boundaries are denoted by ∆FI,II ,∆FII,III , and
∆FIII,IV .
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Fig. 5. Typical force profile of a successful mating process.

Fig. 6. Models for four classes of fault mating processes. (a) Jammed insertion.
(b) Connector lost. (c) Wrong connector. (d) Uncompleted insertion.

To sum up the aforementioned analyses for all phases, we
conclude a piecewise linear model to describe the whole mating
process as

Fz =




0, 0 ≤ z ≤ zI,II
kIIz + fII , zI,II < z ≤ zII,III
kIIIz + fIII , zII,III < z ≤ zIII,IV
kIVz + fIV , zIII,IV < z

(12)

where all the parameters are given by (7), (9), and (11). Note that
the relation among three slope parameters is kIII < kII < kIV .
In addition, the boundary positions are found uncertain from
observing the experiment results. Fuzzy tools are used to cope
with these uncertainties, as illustrated in Section II-D. A typical
profile of the complete force model can then be shown by Fig. 5.
The validation of the model is discussed in Section V.

C. Modeling for Fault Cases

In this study, four common fault cases often met in the mating
process are modeled by using the similar methods presented in
Section II-B. These faults include jammed insertion, connec-
tor lost, wrong connector, and uncompleted mating. Note that
wrong connectors here indicate connectors wrongly prewired
with improper number of wires. The schematic drawings and
the ideal force profiles are given in Fig. 6. It should be pointed
out that the parameters and boundaries in fault cases are also
uncertain.

As shown in Fig. 6, similar piecewise linear models can be
developed for possible faults. The analytical representations of
these models are concluded in Table I. To avoid the confusion of
notations, we use a superscript i to indicate different fault classes
with i = 0, 1, . . . , 4, where value 0 stands for the successful
case.

D. Parameter Estimation

Least-square estimation (LSE) is a well-known tool to esti-
mate coefficients of a straight line. Unfortunately, it cannot be
directly applied to our piecewise linear model due to the un-
certainties of boundaries. Commonly, these uncertainties can
be solved by assigning some fuzzy sets to characterize differ-
ent phases of the mating process. Reference fuzzy sets of each
phase are obtained based on the experimental data and design-
ers’ experience. To determine the optimal degree of overlaps
and shapes of the fuzzy membership functions is a tough task.
Whereas, we have also experienced that a rough choice will often
give satisfying results. For a linguistic variable set {PHASE I,
PHASE II, PHASE III, PHASE IV}, the corresponding mem-
bership functions are displayed in Fig. 7. A set of common-
place trapezoid functions {µI(z), µII(z), µIII(z), µIV (z)} are
assumed to characterize these fuzzy sets.

For the whole process, a piecewise linear approximator is
formulized as

F̂z (z) =
IV∑
i=I

µi(z)(k̂iz + f̂i) (13)

where F̂z denotes the estimated z-axis force for the given dis-
placement z. The coefficients k̂i and f̂i are estimated param-
eters of the linear models. The membership functions µi(z)
are used as weighting factors that define the different seg-
ments i ∈ {I, II, III, IV}. Given a set of n training samples
T = {(zk , Fz,k )}, the parameters of the linear models can be
trained. The goal is to minimize the approximation errors for
the training samples that are located in one phase. On the other
hand, training samples that belong to another phase could have
arbitrary bad approximation results. These parameters are typi-
cally determined by the regular LSE method by minimizing the
LSE function

J =
n∑

k=1

(Fz,k − F̂z (zk ))2 (14)

over the training set.
Note that the idea of an approximator (13) is similar to those

presented in [14] and [15], in which a class of Gaussian functions
are adopted as the weighting factors.

III. EXTRACTING FEATURES FOR FAULT DIAGNOSIS

In this paper, we regard implementing our FDD system as a
multiclasses classification task based on a feature space com-
posed of all possible estimated model parameters.

Feature extraction is the process of transforming the raw data
into a format that both highlights the class differences in the
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TABLE I
IDEAL PIECEWISE LINEAR MODELS FOR SUCCESSFUL MATING AND FAULT CASES

Fig. 7. Fuzzy segmentation for the phases of a successful mating process.

data and converts it to a form that can be compatible with the
classifier. Owing to the a priori knowledge of force models, the
most useful features must be the parameters in the complete
models. These parameters include the coefficients k and f of
every linear segment and the standard square errors derived
from the procedure of parameter estimation. A feature space can
be established based on all these parameters, whose dimension
depends on both the number of fault cases and the complexity
of established models. We denote the set of all the feature bases
by

Fall =
{
k̂

(0)
I , f̂

(0)
I , sse(0)

I , k̂
(0)
II , f̂

(0)
II , sse(0)

II , . . . ,

k̂
(1)
I , f̂

(1)
I , sse(1)

I , . . . , . . .
}

where k̂
(i)
N , f̂

(i)
N are the estimated coefficients of the N th linear

segment of the i-th model in Table I, with sse(i)
N the standard

square error derived from the estimation process.

IV. FAULT DIAGNOSIS

The evaluation of the features is performed by using a hier-
archical FPM scheme. This scheme is chosen mostly based on
the following considerations:

1) The advantages of a hierarchical tree-like structure are the
simple integration of a priori knowledge and the intuitive,
human-like concept.

2) In a real situation, some faults can be more easily isolated
than others. This provides evidence that there must be an
intrinsic hierarchical structure in the faults. Therefore, a

multiclasses tree-based classifier might be the best choice
for our diagnostic system.

3) An FPM method gives a very good classification rate to-
gether with a short computing time [9].

4) The defect of the classical FPM method that it cannot be
used for discriminating classes of nonconvex shape, has
been overcome by two improved classification methods:
FPM with exponential function (FPME) and FPM multi-
density (FPMM) [11].

A. Construction of HFPMMC

1) Determining the Decision Tree Structure: In this paper,
we combine a decision tree structure with FPMM methods to
form a multiclasses hierarchical fuzzy matching multidensity
classifier (HFPMMC) for the fault diagnosis problem.

To explain the whole tree-building procedure, first some no-
tations should be clarified. We use ALL to denote the root node
that stands for the dataset of all training samples.

A set Call = {Ci |i = 0, 1, . . . , c − 1} is used to denote c
classes in ALL. Here, class 0 stands for the successful mating
processes and others for the ith fault cases.

The parameter Dall = D0 ∪ D1 ∪ · · · ∪ Dc−1 is the set of all
training data, where Di indicates the training data labeled by
Ci .

The parameter Fall = F0 ∪ F1 ∪ · · · ∪ Fc−1 is the set of
all possible features that are defined in Section III. Here,
Fi = {f 1

i , . . . , fki
i } contains all possible features of class Ci .

Further, we define F∗
i = {f 1

i , . . . , f
k ∗

i
i } ⊆ Fi , which contains

k∗
i significant features of class Ci . Note that these significant

features are selected model parameters of the class. The detail
of the selection method is explained later.

Let m indicate the depth of the decision tree, with m = 0,
1, . . . , c − 1. The parameter DSm ⊆ Dall denotes the dataset
dealt with at depth m.

The parameter Cm = {Cim , 1 , Cim , 2 , . . . , Cim , M m
} ⊆ Call is

used to denote the set of class labels contained in the dataset
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Fig. 8. Hierarchical FPMM classifier.

DSm , where the integer subscripts satisfy 0 ≤ im,1 ≤ · · · ≤
im,Mm

≤ c − 1. At each depth m, only one class, Cim
, is dis-

tinguished from the others within the subspace based on F∗
im

.
The variable C̄im

denotes the other classes in Cm . The sub-
script im satisfies im ∈ {im,1 , . . . , im,Mm

}. The variable Cnon
is used to denote all unknown data that might appear owing to
some unexpected situations.

The parameter FPMMm denotes the two-class FPMM clas-
sifiers used at depth m.

The expected tree structure of our total classifier is shown
in Fig. 8. It should be pointed out that the membership and
ambiguity rejects introduced in [11] are applied to classify
the “unknown” class of data at each depth. Detecting an “un-
known” sample data is one of the most important abilities of
an industrial diagnosis module, since unexpected faults always
exist.

2) Choice of Tree Nodes and the Related Feature Subset: In
the tree-building procedure, a major problem has to be tackled.
That is how to choose the appropriate leaf nodes Cim

and the
related feature subset F∗

im
at depth m.

This task can be divided into two parts. One is to form the
feature subset F∗

i for each class Ci . The other is to decide which
class should be isolated at each depth. As mentioned before,
elements of the subset Fi are all model parameters of class Ci ,
because the developed model reflects the intrinsic properties of
this class. In order to obtain F∗

i , feature-selection method has
to be applied to reduce the number of features in Fi , which
results in both reduced computation and efficient classification.
Feature selection is generally performed in two ways. One is
to use a priori knowledge and experimental observations to
choose the most discriminating measurements. The other is to
apply some reasonable criteria to search optimal features based
on training data. A definition of interclass distance can be used
to evaluate how much a feature contributes to the classification
performance. The interclass distance of the two-class problem

is given by

Jj =
(mj1 − mj2)2

s2
j1 − s2

j2
(15)

where mj1 , mj2 , and sj1 , sj2 are the means and variance of the
jth feature of the two classes, respectively.

We form the feature subset F∗
i by using a method, combining

the a priori knowledge of force models and the interclass dis-
tance criterion. For each class Ci and C̄i , compute the interclass
distance Jj over all features of the set Fi . After that, organize
the set of interclass distances {Jj | j = 1, 2, . . . , ki} into a de-
scendant order. Finally, evaluate the first n features and select
k∗

i of them to constitute F∗
i in terms of the a priori knowledge

of modeling. Note that the a priori knowledge here means the
different significances of the model parameters in a diagnostic
task. For instance, phase III of model (12) is found very unsta-
ble from experimental observations. Comparing with phase II,
it provides less reliable information for diagnosis.

In order to determine the leaf node at depth m, the fuzzy
C-mean (FCM) clustering algorithm is applied with each feature
subset F∗

im , l
(l = 1, . . . , Mm ), respectively. The cluster validity

for the partition is calculated after every clustering under two
criteria. One is the polarization degree and the other is whether
all the samples pertaining to a class belong to the same cluster
or not. A similar method can be found in [13].

The complete tree-building procedure using the dataset Dall
can then be concluded as follows.

Algorithm 1:
Input: Call , Fall , Dall .
1) For every class Ci , form the related feature subset F∗

i .
2) Let m = 0, DS0 = Dall , C0 = Call ,
3) While m < c do
4) choose the leaf node Cim

.
5) If m < c − 1, then
6) learn a 2-classes FPMM classifier by using datasets Dim

,
DSm /Dim

, and F∗
im

,
7) Else
8) employ the dataset Dim

and F∗
im

to establish a 2-classes
FPMM classifier;

9) End if
10) DSm+1 = DSm /Dim

, Cm+1 = Cm /Cim
, and m =

m + 1;
11) End while
12) Output: {Cim

,F∗
im

,FPMMm |m = 0, 1, . . . , c − 1}.
Because there is no information about the classes other than

Ci at depth c − 1, a threshold Θ is adopted to perform the
classification. That is, for a sample x, if the result of fuzzy
aggregation computed by FPMMc−1 satisfies ui(x) > Θ, then
x belongs to Ci . Otherwise, it belongs to the unknown class
Cnon .

B. Fault Diagnosis

The algorithm of fault diagnosis by applying the HFPMMC
is specified as follows. Suppose that a new measured sample
has been represented as a point x in the feature space based on
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Fig. 9. Experiment setup for a mating process of connectors.

Fall . C(x) is the final classification result of the hierarchical
classifier.

Algorithm 2:
Input: a new point x
1) m = 0,
2) While m < c do
3) use FPMMm to classify x based on F∗

im
.

4) If x belongs to class Cim
, then

5) assign C(x) = Cim
and exit.

6) End if
7) m = m + 1.
8) End while,
9) assign C(x) = Cnon and exit.

10) Output: C(x)

V. EXPERIMENT RESULTS

A. Experimental Condition

A 7 DOF PA-10 industrial robot from MHI was employed
to manipulate connectors. Data were acquired from the force
sensor and the position sensors mounted in the wrist and joints
of PA-10. A base board installed with some headers was fixed
in front of the robot. Fig. 9 shows the setup of the experiment.

B. Validation of the Complete Model

The piecewise linear model was validated by a direct compar-
ison of the real experimental data depicted in Figs. 10 and 11.
The overall shape of the model is similar to the data, although
variations of different connectors and inaccuracies in the mod-
eling procedure make a perfect match impossible. A serious
problem in this model is that not only the model parameters are
fuzzy, but also the boundary states are unclear. Despite these
limitations of the model, it is still useful for fault detection and
diagnosis. Typical force profile of fault cases is also shown in
Fig. 12.

C. Validation of Parameter Estimation Method

We assessed the accuracy of the identified model by calcu-
lating the percentage of the output variation, which is explained

Fig. 10. Several successful mating processes under the same condition.

by

fit = 1 −
∑n

k=1 (Fz,k − F̂z (zk ))2
∑n

k=1 (Fz,k − F̄z )2 (16)

where F̄z is the mean value of all the samples Fz,k . The more
this calculated fit is closer to 1, the more accurate this piecewise
linear model is.

The results of Table II show that this estimation method is
effective for connectors of the same type, even if the mating
speed is different.

A comparison of estimated force with actual force data is
depicted in Fig. 13.

D. Construction of HFPMMC

The parameter Call = {Ci |i = 0, 1, . . . , 4} denotes all the
five classes of data in our experiments. The classes include suc-
cessful mating process and four typical fault cases. According
to Table I, the total number of model parameters is 42. Thus, we
have a 42-dimensional feature space based on Fall .

To train the HFPMMC, a training dataset DSall consisting
of 48 samples was employed. There are 16 samples of class C0
(successful mating) and 8 samples of each of the other classes
in DSall . The reduced feature subset F∗

i of each class Ci was
obtained by applying the feature-selection method presented
in Section IV-A2. As mentioned before, the method based on
evaluating interclass distances depends severely on the train-
ing samples. Bad samples may lead to an unreliable order of
features. Thus, a priori knowledge and experimental observa-
tions are used to choose reliable features that provide interclass
distance as long as possible. After determining the classifier’s
structure, the final HFPMMC was created by Algorithm 1.

E. Validation of HFPMMC

We used a test dataset consisting of 105 samples to validate the
classifier. Experimental results show fairly good classification
performance. The test dataset were employed to evaluate the
final classifier. The success rates of classification for each class
were also computed. Table III lists the classification results using
trained HFPMMC. All the success ratios are satisfied.
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Fig. 11. Force profiles under different experimental conditions. (a) Force profiles of two mating processes using different connectors. (b) Force profiles of two
mating processes with different mating speeds.

Fig. 12. Typical force profiles of fault cases. (a) Fault I. (b) Fault II. (c) Fault III. (d) Fault IV.

TABLE II
VALIDATION OF THE PARAMETER ESTIMATION

Fig. 13. Comparison of measured force data and estimated one.

TABLE III
RESULTS USING TRAINED HFPMMC

VI. CONCLUSION

In this paper, we proposed a kind of static piecewise lin-
ear model to describe the successful robotic mating process of
electric connectors, as well as several possible fault cases. The
experimental results show that this modeling methodology has
good accuracy for identifying such processes. Although only
one typical connector was investigated, the method can be ex-
tended to other types of connectors easily. To realize a practical
fault detection and diagnostic system, a new multiclasses clas-
sifier called the HFPMMC was also proposed. The classifier
provides good performance in fault diagnosis. The effective-
ness of the proposed methods is confirmed by experiments.
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As a future work, we intend to study the error recovery sys-
tem for the mating process, where a new real-time fault detection
and diagnosis scheme is required. To further enhance the per-
formance of fault diagnosis, other sensors like vision systems
would be added into the system.
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