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Abstract

Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are
focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug–disease associations.
Similar to traditional latent factor models, which directly factorize drug–disease associations, they assume the neighbors are
independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we
propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to
infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug–disease association
network, the drug–drug similarity and disease–disease similarity networks (using the nearest neighbors). To take the advantage of
localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph
convolution operation to integrate the information of the known drug–disease association, the drug’s and disease’s neighborhood
and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-
layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug–disease
associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly,
the unknown drug–disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases
and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung
cancer (e.g. valrubicin and cytarabine).
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Introduction
Drugs are bioactive compounds that act on protein
targets to cure/decelerate a specific disease or to
promote the health of a living being [1]. Traditional de
novo drug discovery has three steps: discovery stage,
preclinical stage and clinical stage [2], which usually
spans >10 years [3]. A recent study estimated that it
costs $2.6 billion on average to develop a new drug
approved by the Food and Drug Administration in 2015,
as compared with $802 million in 2003 [4]. Biological
experimental approaches pose considerable difficulties
(e.g. time-consuming, costly and high-risk). Hence,
repurposing of ‘old’ drugs to treat both common and
rare diseases is becoming more and more attractive
because it involves the use of de-risked compounds,
with potentially lower overall development costs and
shorter development timelines [5–7]. Computational
drug repurposing narrows down the search space for
drug–disease interactions by suggesting drug candidates

for wet-lab validation [8]. There is a pressing need,
therefore, for novel computational drug repurposing
methodologies to facilitate drug discovery.

The drug repositioning problem can be modeled
computationally as a recommendation system that rec-
ommends new indications based on known drug–disease
associations. As the most typical drug repositioning
method, matrix factorization projects drugs and diseases
into a shared latent space, using a vector of latent
features to represent a drug or a disease, and thereafter
the drug–disease association is modeled as the inner
product of their latent vectors. Matrix factorization and
completion algorithms have been widely and success-
fully used in bioinformatics research, such as uncovering
lncRNA–disease associations [9], predicting microRNA–
disease associations [10–12], discovering potential anti-
COVID-19 drugs [13, 14], identifying drug–drug interac-
tion prediction [15], predicting drug side effects [16] and
handling the dropouts problem by modeling single-cell
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RNA-sequencing imputation [17]. Many studies have
suggested that matrix factorization and completion
methods become promising computational strategies
for drug repositioning [18–21]. For instance, Luo et al.
presented a drug repositioning recommendation system
(called DRRS) based on the singular value thresholding
(SVT) algorithm to complete the large drug–disease
adjacency matrix of a heterogeneous network, which
integrated the disease–disease, drug–drug and drug–
disease networks [18]. Zhang et al. proposed a similarity
constrained matrix factorization method called SCMFDD,
for the drug–disease association prediction [22]. Different
from the conventional matrix factorization techniques,
SCMFDD considers the biological context of the problem
by introducing drug–drug feature-based similarity and
disease–disease semantic similarity as constraints for
drugs and diseases. In order to optimize the fusion
process of multiple drug–drug and disease–disease
similarities, Yang et al. developed a novel matrix fac-
torization method for drug repositioning, called MSBMF.
MSBMF concatenates multiple similarity matrices of
drug and disease and decomposes the drug–disease
association matrix into a drug-feature matrix and a
disease-feature matrix, which are constrained by non-
negative factorization. Zhang et al. designed a novel drug
repositioning method by using Bayesian inductive matrix
completion, termed DRIMC [23]. The aforementioned
methods can be regarded as a linear multiplication of
latent features. Although these methods have achieved
strong performance, a deficiency is that they cannot
effectively capture the complex structure of drug–
disease association data and efficiently handle the high-
complexity matrix operations on large-scale data.

To tackle the problem, some pioneering studies devel-
oped deep-learning-based models for drug reposition-
ing, such as deepDR [24], LAGCN [25] and PADME [26].
Existing deep-learning techniques mainly constructed a
heterogeneous network by using drug’s and disease’s side
information and exploited deep-learning technologies to
the heterogeneous network to learn better representa-
tion of drugs and diseases, which enhances the learning
of drug–disease associations, and finally improves the
prediction accuracy. Nevertheless, similar to the matrix
factorization and completion algorithms, they generally
utilize the global structure of the heterogeneous net-
work and assume that the neighbors are independent
of each other, i.e. considering all similar neighbors and
ignoring the possible interactions between them. In some
cases, the interactions between neighbor nodes could
strengthen the target node’s characteristics in a network.
For example, an intuition in a transaction network is
that a customer who has close business relations with
rich friends would have a higher chance to repay a loan.
Modeling such interactions between neighbors highlights
the common properties, which could be helpful for the
representation of the target node in a network. How-
ever, existing deep-learning models may be ineffective to

capture the interactions between neighbors and thus
lower the drug repositioning quality.

In this study, we proposed a novel drug repositioning
approach based on weighted bilinear neural collabo-
rative filtering, called DRWBNCF. To take advantage of
localized topology information in different domains, we
first constructed three networks, i.e. the known drug–
disease association network, the drug–drug similarity
network and the disease–disease similarity network to
characterize nearest neighbors and their interactions
information. Note that we utilized the neighborhood
effects from most similar drugs and most diseases to
create drug–drug and disease–disease similarity net-
works. In this way, our model only uses nearest neighbors
instead of all similar neighbors, and thus gets more
accurate results by filtering out noisy information. Then,
we designed an integration component by proposing a
new weighted bilinear graph convolution operation to
encode the known drug–disease association together
with the neighborhood and neighborhood interactions of
the drug and disease. Finally, unlike the previous latent
factor models that linearly factorize drug–disease asso-
ciations, we introduced a prediction component, which
uses the multi-layer perceptron (MLP) optimized by the
α-balanced focal loss function and graph regularization
to model the complex drug–disease associations. The
basic concept of DRWBNCF is to incorporate both the
known drug–disease association as well as neighborhood
and neighborhood interactions in a unified MLP neural
network. To evaluate the effectiveness of DRWBNCF, we
compared it with four state-of-the-art methods over
three real-world datasets of drug–disease associations.
Experimental results show that DRWBNCF achieves the
best performance for drug repositioning.

Materials and Methods
Datasets
In this study, we adopted three real-world datasets that
are used in previous works to evaluate the effectiveness
of DRWBNCF. The first one is Fdataset [18, 27], which
is corresponding to the gold standard drug–disease
dataset reported in the work of Gottlieb et al. [28]. It
includes 1933 known drug–disease associations between
593 drugs collected in DrugBank database [29] and 313
diseases obtained in OMIM database [30]. The second
one is Cdataset [31], containing 2532 known drug–
disease associations between 663 drugs extracted from
DrugBank database and 409 diseases listed in the OMIM
database. The third one is LRSSL, which includes 763
drugs taken from DrugBank database, 681 diseases
obtained in MeSH database and 3051 validated drug–
disease associations totally [32]. The simple statistics for
the three datasets are shown in Table 1.

In our study, the pairwise drug similarity is calculated
based on the chemical structure of simplified molecular
input line entry system (SMILES) format [33], and is
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Table 1. Details of the three benchmark datasets

Datasets No. of drugs No. of diseases The known associations

Fdataset 593 313 1933
Cdataset 663 409 2532
LRSSL 763 681 3051

represented as the Tanimoto index of chemical finger-
prints of the drug pair via the Chemical Development Kit
[34]. The pairwise disease similarity is measured based
on the semantic similarity of disease phenotypes via the
text mining analysis of medical descriptions information
of the disease pair.

The construction of three networks
We construct three networks, including the known drug–
disease association network, drug–drug similarity net-
work and disease–disease similarity network. Here, we
denote the known drug–disease association network G by
a binary matrix A ∈ R

n∗m, where each entry Aij ∈ {0, 1}, n
and m are the number of drugs and diseases, respectively.
If the drug ri has been experimentally confirmed to asso-
ciate with the disease dj, Aij = 1, otherwise, Aij = 0.

The drug–drug similarity network Gr is represented
by the matrix Ar ∈ R

n∗n, where each entry of Ar is
constructed based on the similarity of each pair of drugs.
These similarities of drugs are denoted by a n × n matrix
Sr, where the (i, j) entry Sr(i, j) is the similarity between
the drug ri and the drug rj. In order to get more accurate
results by avoiding noisy information, our model only
exploitsk-nearest neighbors instead of all similar neigh-
bors as considered in previous studies. The entry Ar

ij of Ar

is defined as

Ar
ij =

{
Sr

(
i, j

)
if rj ∈ Ñk (ri)

0 otherwise
(1)

where Sr(i, j) is the drug similarity matrix, Ñk(ri) = {ri} ∪
Nk(ri) is a set of ri’s extended k-nearest neighbors includ-
ing ri, and Nk(ri) is the k-nearest neighbors of drug ri. In
the same way, we denote the disease–disease similarity
network Gd by the matrix Ad ∈ R

m∗m. The entry Ad
ij of

matrix Ad is defined as

Ad
ij =

{
Sd

(
i, j

)
if dj ∈ Ñk

(
di

)
0 otherwise

(2)

where Sd is the disease similarities matrix, the (i, j) entry
Sd(i, j) of matrix Sd is the similarity between the disease
di and the disease dj, Ñk(di) = {di} ∪ Nk(di) is a set of di’s
extended k-nearest neighbors including disease di, and
Nk(di) is the k-nearest neighbors of disease di.

For convenience, we represent the degree of drug r by
dr, i.e. dr = |N(r)|, where |N(r)| is the number of the drug
r’s all neighbors and accordingly d̃r = |Ñ(r)| = dr + 1.
Similarly, we represent the degree of disease d by dd, i.e.
dd = |N(d)|, where |N(d)| is the number of the disease d’s
all neighbors, and accordingly d̃d = |Ñ(d)| = dd + 1.

Model architecture
Problem formulation

Assume that we have a set of drugs and diseases, denoted
by R and D respectively. Letr ∈ R denote a drug and
d ∈ D denote a disease, and Yr,d be the association label
between r and d. If r has associated with d, Yr,d = 1,
otherwise Yr,d = 0. We call a drug–disease pair <r, d> an
association pair when Yr,d = 1. The drug repositioning
can be defined as a prediction problem that infers the
value of the association label Yr,d based on association
pairs.

The conventional graph convolution operation

To date, existing efforts on GNN have largely defined
the graph convolution operations as a weighted sum (i.e.
linear aggregation) over features of the neighbors of the
target node to form the representation of the target node
[35]. To encode the neighbors information of the drug r
and the disease d by the conventional graph convolution
operation, the representations of the drug r and the
disease d are as follows:

hr = AGG
({

hi
}

i∈Ñk(r)

)
=

∑
i∈Ñk(r)

αrihiWr (3)

hd = AGG
({

hi
}

i∈Ñk(d)

)
=

∑
i∈Ñk(d)

αdihiWd (4)

where hr is the representation of neighbors information
of the drug r, hd is the representation of neighbors infor-
mation of the disease d, AGG(·) is the linear aggregator,
αxi is the weight of neighbor i and is defined as 1√

d̃xd̃i
, i is

the index from the extended k-nearest neighbors Ñk(x),
and Wr ∈ R

|R|∗K1 and Wd ∈ R
|D|∗K2 is the weight matrix.

Although the conventional graph convolution oper-
ation improves the representation of the target node,
it is built upon a summation operation and naturally
assumes that the neighbors are independent and
ignores the interactions among neighbors. Most existing
graph convolution operations forgo the importance of
interactions among neighbors. When such interactions
exist, such as the co-occurrence of two neighbor nodes
is a strong signal of the target node’s characteristics,
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Figure 1. The overall architecture of DRWBNCF. DRWBNCF involves two components: (i) an integration component, which describes how to encode
the known drug–disease association together with neighborhood and neighborhood interactions of the drug and disease; (ii) a prediction component,
which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug–disease
associations.

existing graph convolution operation may fail to capture
the signal.

Our proposed DRWBNCF model

In this section, the details related our proposed mod-
els are described. The workflow of DRWBNCF is briefly
shown in Figure 1.

Encoding the drug–disease known association

For a given drug–disease pair <r, d>, we represent the
original feature matrix of drugs and diseases by Sr and
Sd, that encode the involved drug r and disease d with a
vector sr ∈ R

1×|R| and sd ∈ R
1×|D| (a row), respectively.

By applying two projection matrices P ∈ R
|R|×K3 and

Q ∈ R
|D|×K3 , the encoded drug r or disease d (i.e. sr or sd)

vector will be transformed into a latent vector as below:

pr = sr · P, qd = sd · Q (5)

where pr ∈ R
1×K3 and qd ∈ R

1×K3 are the drug’s and
disease’s latent features vectors, respectively. To effec-
tively capture the overall structure of drug–disease asso-
ciation, we adopt the generalized matrix factorization

method and define the drug–disease association func-
tion ∅(pr, qd) as follows:

hr,d = ∅
(
pr, qd

) = pr � qd (6)

where hr,d ∈ R
1×K3 is the latent vector for association

information of drug–disease pair <r, d>, “�” denotes the
element-wise product.

Encoding neighborhood and neighborhood interactions

Inspired by the bilinear aggregator [36], To learn the
characteristics representation of drug r more compre-
hensively, we consider all pairwise weighted interactions
between the extended k-nearest neighbors (including
the drug r), and define a weighted bilinear aggregator
(WBA):

hr = WBA
({

hi
}

i∈Ñk(r)

)
= 1∑

i

∑
j Ar

ij

∑
i∈Ñk(r)

∑
j∈Ñk(r)&i<j

× (
hiUr � hjUr

) · Ar
ij (7)
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where hr is the latent vector for the weighted interac-
tions information between neighbors of drug r, i and
j are the indexes from the extended k-nearest neigh-
bors Ñk(r)—they are constrained to be different to avoid
self-interactions that are meaningless and may even
introduce additional noises, and Ur ∈ R

|R|∗K1 is the
weight matrix. We denote the interaction weight between
i and j by Ar

ij. Our proposed WBA aggregates all pair-wise
weighted interactions between neighbors and is capable
of capture the complex patterns of information propaga-
tion, which are hard to reveal by the conventional graph
convolution operation individually.

Similarly,

hd = WBA
({

hi
}

i∈Ñk(d)

)
= 1∑

i

∑
j Ad

ij

∑
i∈Ñk(d)

∑
j∈Ñk(d)&i<j

× (
hiUd � hjUd

) · Ad
ij (8)

where hd is the latent vector for weighted interactions
information between the extended k-nearest neighbors
of disease d, and Ud ∈ R

|D|∗K2 is the weight matrix.
In order to enhance the characteristics representations

of drug r and disease d, we further adopt a linear com-
bination scheme consisting of the conventional graph
convolution operator (i.e. weighted sum) and our pro-
posed WBA, formally defining a new graph convolution
operator as follows:

h̃r = λ · σ
(
WBA

({
hi

}
i∈Ñk(r)

))
+ (1 − λ)

· σ
(
AGG

({
hi

}
i∈Ñk(r)

))
(9)

h̃d = λ · σ
(
WBA

({
hi

}
i∈Ñk(d)

))
+ (1 − λ)

· σ
(
AGG

({
hi

}
i∈Ñk(d)

))
(10)

where h̃r ∈ R
1×K1 and h̃d ∈ R

1×K2 are the latent vec-
tors for the neighborhood and neighborhood interactions
information of the drug r and the disease d, respec-
tively, σ(·) is a nonlinear activation function, WBA(·) and
AGG(·) denote our proposed weighted bilinear and the
traditional linear aggregators respectively, λ is a hyperpa-
rameter, which measures the WBA and traditional linear
aggregator. The representations of drug r and disease d
are initialized to sr and sd, respectively.

By Equations (3), (4), (7) and (8), Equations (9) and (10)
are modified as follows:

h̃r = λσ

⎛
⎜⎝ 1∑

i

∑
j Ar

ij

∑
i∈Ñk(r)

∑
j∈Ñk(r)&i<j

(
hiUr � hjUr

) · Ar
ij

⎞
⎟⎠

+ (1 − λ) σ

⎛
⎜⎝ ∑

i∈Ñk(r)

αrihiWr

⎞
⎟⎠ (11)

h̃d = λσ

⎛
⎝ 1∑

i
∑

j Ad
ij

∑
i∈Ñk(d)

∑
j∈Ñk(d)&i<j

(
hiUd � hjUd

) · Ad
ij

⎞
⎠

+ (1 − λ) σ

⎛
⎝ ∑

i∈Ñk(d)

αdihiWd

⎞
⎠

(12)

Integrating the known association with neighbors and
weighted interactions between neighbors

Once we have obtained the representations for the drug–
disease known association and the drug’s and disease’s
neighborhood and neighborhood interactions, we further
integrate these latent vectors into a unified representa-
tion as below:

h̃r,d = hr,d ⊕ h̃r ⊕ h̃d (13)

where “⊕” denotes the vector concatenation operation.

MLP-based prediction

The association of a drug–disease pair can be very com-
plex. Previous approaches usually assume a linear rela-
tion by decomposing the drug–disease matrix, e.g. stan-
dard matrix factorization. Since they directly factorize
drug–disease associations, it is weak in identifying strong
associations among a set of closely related drugs or dis-
eases, especially when data are highly sparse. We would
like to endow our model with a higher level of flexibility
and nonlinearity to better characterize the association
with the incorporation of neighborhood and neighbor-
hood interactions. Hence, we apply the MLP to predict
drug–disease associations. Generally, an MLP component
can be constructed layer by layer. For j = 1, . . . , L, the MLP
component under our DRWBNCF model is defined as:

z1 = f (1)
(
WT

1z0 + b1
)

,

z2 = f (2)
(
WT

2z1 + b2
)

,

zL = f (L)
(
WT

L zL−1 + bL
)

,

p̂r,d = sigmoid
(
vTzL

)
(14)

where f (x)(·) is the nonlinear activation function for
the xth layer. We choose rectifier linear unit (ReLU)
as the activation function to avoid the oversaturation.
Wx and bx represent the weight matrix and the bias
vector, respectively. To feed the MLP, we set z0 = h̃r,d

(defined in Equation (13)). For the output layer, we utilized
the sigmoid function as activation function to limit
the output of our model in range of 0 to 1. vT is the
weights and sigmoid(x) = 1

1+exp(−x)
. p̂r,d is the conditional

probability of the association class being 1.
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Optimization

We take drug–disease association pairs as positive sam-
ples Y+ and take other pairs (i.e. unobserved or unknown
drug–disease pairs) as negative samples Y−. Herein, that
known drug–disease association pairs have been vali-
dated manually, which are highly reliable and impor-
tant for improving prediction performance. However, the
number of positive samples is far less than that of neg-
ative samples. This extreme class imbalance causes two
problems: (i) training is inefficient because easily clas-
sified negatives involve the majority of the loss that
contribute no useful learning information; (ii) the easy
negative samples can overwhelm training and lead to
poor performance of models. A common method for
addressing the extreme class imbalance is to introduce a
weighting factor α ∈ [0, 1] for class Y = 1 and 1−α for class
Y = −1, such as the weighted binary cross-entropy loss
function. Although α balances the importance of positive
and negative samples, it does not differentiate between
easy negative samples and hard positive samples. Here,

we adopt α-balanced focal loss function [37] and
graph regularization terms as the DRWBNCF’s objective
function:

Loss = − 1
n × m

⎛
⎜⎝α ×

∑
(r,d)∈Y+

(
1 − p̂r,d

)r · log p̂r,d

+ (1 − α) ×
∑

(r,d)∈Y−
p̂r

r,d log
(
1 − p̂r,d

)⎞⎟⎠
+ λrTr

(
PTLrP

) + +λdTr
(
QTLdQ

)
(15)

where α is a weighting factor for class 1, λr and λd con-
trol the regularization strength to avoid overfitting, p̂r,d

(defined in Equation (13)) is the conditional probability,
Tr(·) is the trace of a matrix, Lr = Dr −Ar and Ld = Dd −Ad

are the graph Laplacians for Ar and Ad, respectively, and
Dr

ii = ∑
sA

r
is and Dd

jj = ∑
tA

d
jt are diagonal matrices. We

optimized the objective function in Equation (15) through
the Adam optimizer [38] and initialized parameters as
described in [39]. DRWBNCF’s objective function balances
several goals. The first term (i.e. The α-balanced focal
loss function) reshapes the standard cross-entropy loss
function, and focuses training on the sparse set of hard
positives, and thus down-weights the loss assigned to the
vast number of easy negatives. The second term is for
drug graph regularization, which minimizes the distance
between latent feature vectors of two neighboring drugs.
The third term is for disease graph regularization.

Experimental
Evaluation metrics
To evaluate the performances of DRWBNCF, we adopted
10-fold cross-validation (10-CV) to predict the drug–
disease association. Specifically, both the known drug–
disease associations and the unobserved drug–disease
associations were randomly divided into 10 equal-sized
folds. Each fold of the known associations and the

unobserved associations was regarded as the testing
samples in turn, while the remaining 9-folds were used
as the training samples to train our proposed model.
Notably, the known associations were taken as positive
samples and the unobserved associations were taken as
negative samples. After all associations have been tested,
we calculate both True-Positive Rate (TPR), False-Positive
Rate (FPR) and Precision as follows:

TPR
(
or Recall

) = TP
TP + FN

(16)

where TP is the number of positive samples identified
correctly, and FN represents the number of negative sam-
ples identified incorrectly.

FPR = FP
FP + TN

(17)

Precision = TP
TP + FP

(18)

where FP is the number of negative samples identified
incorrectly, and TN represents the number of negative
samples identified correctly.

By varying the rank threshold, TPR, FPR and Precision
can be calculated to construct the receiver operating
characteristic (ROC) curve and the Precision-recall (PR)
curve. For the ROC curve, FPR is plotted on the x-axis and
TPR is plotted on the y-axes. For the PR curve, Recall and
Precision are plotted on the x and y axes, respectively. The
area under ROC curve (AUROC) and the area under the
precision–recall curve (AUPR) are utilized to evaluate the
overall performance of DRWBNCF. To obtain convincing
results, we repeat 10 times 10-fold CV like the work of Cai
et al. [40] and report the average value as the final result.

Baseline methods
To evaluate the performance of our proposed method, we
compared DRWBNCF with four state-of-the-art associa-
tion prediction methodologies listed below:

• DRIMC [23], a novel drug repositioning method,
incorporates features associated with drugs and
diseases in Bayesian inductive matrix completion.
Zhang et al. integrated four drug data sources two
disease data sources into a fused drug similarity
matrix and a fused disease similarity matrix, respec-
tively, and described the feature of each drug or
disease by similarity values between it and its nearest
neighbors, which is similar to our paper.

• SCMFDD [22] is a novel matrix factorization method
for the drug–disease association prediction. Notably,
SCMFDD incorporates drug features (i.e. substruc-
tures, enzymes, pathways, targets and drug–drug
interactions), disease semantic information as
similarity constraints for drugs and diseases into
matrix factorization, which is different from the
classic matrix factorization method.

• NIMCGCN (a novel Neural Inductive Matrix Com-
pletion with Graph Convolutional Network method
for the miRNA-disease association prediction) [41], is
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Table 2. The AUROCs and AUPRs of all compared approaches obtained in 10 times 10-fold cross-validation

Datasets DRIMC SCMFDD NIMCGCN BNNR LAGCN DRWBNCF

AUROC
Fdataset 0.9131 ± 0.0040 0.7759 ± 0.0011 0.8321 ± 0.0040 0.9330 ± 0.0032 0.8832 ± 0.0246 0.9257 ± 0.0012
Cdataset 0.9341 ± 0.0008 0.7930 ± 0.0009 0.8549 ± 0.0041 0.9410 ± 0.0072 0.9196 ± 0.0052 0.9413 ± 0.0009
LRSSL 0.9321 ± 0.0007 0.7689 ± 0.0008 0.8330 ± 0.0036 0.9284 ± 0.0017 0.9349 ± 0.0013 0.9355 ± 0.0010
Avg.∗ 0.9261 0.7793 0.8400 0.9341 0.9128 0.9341

AUPR
Fdataset 0.3136 ± 0.0040 0.0513 ± 0.0003 0.3440 ± 0.0055 0.4410 ± 0.0038 0.1301 ± 0.0113 0.4910 ± 0.0065
Cdataset 0.3923 ± 0.0029 0.0519 ± 0.0005 0.4408 ± 0.0082 0.4730 ± 0.0028 0.1910 ± 0.0061 0.5663 ± 0.0074
LRSSL 0.2672 ± 0.0011 0.0360 ± 0.0002 0.2735 ± 0.0065 0.3214 ± 0.0062 0.1139 ± 0.0030 0.3491 ± 0.0075
Avg.∗ 0.3244 0.0464 0.3528 0.4118 0.1450 0.4688

Avg.∗ shows the average AUROC or AUPR over three benchmark datasets.

equipped with both graph convolutional networks to
learn miRNA and disease latent feature representa-
tions and a novel neural inductive matrix completion
to generate an association matrix completion.

• BNNR (bounded nuclear norm regularization) com-
pletes the drug–disease matrix under the low-rank
assumption [19] Yang et al., constructed a hetero-
geneous drug–disease network, which integrates
the drug–drug, disease–disease and drug–disease
networks and incorporated a regularization term
to balance the approximation error and the rank
properties.

• LAGCN (a Layer Attention Graph Convolutional Net-
work method for the drug–disease association predic-
tion) [25] utilizes the conventional graph convolution
operation on the heterogeneous network composed
of the known drug–disease associations, drug–drug
similarities and disease–disease similarities, to learn
the embeddings of drugs and diseases. In order to
get more informative representations of drugs and
diseases, Yu and Huang et al. further introduced
the attention mechanism for integrating all useful
structural information at multiple graph convolution
layers.

Parameters setting

Our proposed DRWBNCF model uses a three-layer archi-
tecture with 64 and 32 hidden units, a dropout rate of
0.4, a learning rate of 0.0005, and a training epoch of 64
in all experiments. The number of nearest neighbors k
is set to 3, which are selected within [1, 2, 3, . . . , 20]. λ

that measures the WBA and traditional linear aggregator
is set to 0.9, which are selected within [0, 0.1, 0.2, . . . ,
1.0]. The dimensionality of hr,d, h̃r and h̃d is 64, 32 and
32, respectively. The hyperparameters α = 0.5, λr =
2−3, λd = 2−4, γ = 2. The hyperparameters of DRIMC,
SCMFDD, NIMCGCN and LAGCN were chosen as their
optimal values.

Results and Discussions
Performance of DRWBNCF in 10 times 10-fold
cross-validation
To evaluate the performance of DRWBNCF, we con-
ducted an extensive set of experiments on three

benchmark datasets and compared DRWBNCF with
five state-of-the-art association prediction approaches
by using 10 times 10-fold cross-validation. Table 2 reports
that the AUROC obtained by BNNR on Fdataset is higher
than that of our proposed model and the average AUROC
achieved by BNNR is equal to that of our proposed model.
However, the AUPR achieved by BNNR on the three
datasets is lower than our proposed model DRWBNCF.
Generally, the unknown drug–disease pairs are much
larger than the known drug–disease pairs. For such
datasets with imbalanced positive and negative samples,
AUPR is also an indispensable evaluation indicator.
DRWBNCF obtains the best average AUPR of 0.4688,
which is 5.7% higher than BNNR. The results show that
DRWBNCF improves the prediction performance in 10
times 10-fold cross-validation thanks to combining the
information of the known drug–disease association with
the drug’s and disease’s neighborhood and neighborhood
interactions information.

Due to the fact that the number of positive associa-
tions is far scarce compared to the number of negative
associations, it is meaningful to measure the fraction of
the correctly predicted true positive associations in the
top-k predictions. We further examine the DRWBNCF’s
recognition ability of true positive associations by using
Recall@k metric as reported in the work of Zeng et al. [24].
Recall@k refers to the ratio of the number of correctly
identified positive associations retrieved from the top-k
predictions to the number of all positive associations in
the dataset. As shown in Figure 2, the Recall@k values of
DRWBNCF are 77.65, 79.54 and 65.29% for the top 10,000
predictions in Fdataset, Cdataset and LRSSL, respectively,
significantly outperforming that of DRIMC (66.32, 67.61
and 54.90%), LAGCN (9.98, 63.90 and 42.45%), NIMCGCN
(65.34, 66.67 and 53.79%), BNNR (75.24, 77.68 and 63.69%)
and SCMFDD (31.09, 28.08 and 20.12%).

Effect of the number of nearest neighbors
In this section, we do experiments in three benchmark
datasets to study how the results change in compari-
son to using different numbers of neighbors in 10-fold
cross-validation. Figure 3 plots the AUROCs obtained by
DRWBNCF with respect to different numbers k of nearest
neighbors. As shown in Figure 3, DRWBNCF achieves best
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Figure 2. The Recall@k values against the top k predicted list of DRWBNCF and other compared methods during 10-fold cross-validation on Fdataset,
Cdataset and LRSSL, respectively.

Figure 3. Performance trend of DRWBNCF measured by AUROCs with different numbers of nearest neighbors in 10-fold cross-validation on three
benchmark datasets (A) Fdataset, (B) Cdataset and (C) LRSSL.

AUROCs via setting k as 5, 3 and 3, for three benchmark
datasets, respectively. Over all datasets (i.e. Fdataset,
Cdataset and LRSSL), when k = 0 (i.e. without neighbors
information), the AUROCs obtained by DRWBNCF are
0.8748, 0.8898 and 0.8343, respectively, while when k is set
as the number of all neighbors, these values are 0.7496,
0.7620 and 0.7336. To conclude, DRWBNCF achieves the
best performance with the optimal value of k, which is
substantially better than that without neighbors infor-
mation or with all neighbors information. These results
demonstrate that the effectiveness of nearest neighbors
to predict the association probability for a given drug–
disease pair. Consequently, when k = 3, we can get
reasonably good results for all datasets.

The proposed WBA benefits
In order to analyze the effects among the conventional
graph convolution aggregator (i.e. AGG) and our proposed
weighted bilinear aggregator (i.e. WBA) in DRWBNCF
model clearly, we selected the optimal parameter λ

based on nested cross-validation on Fdataset. Nested
cross-validation is a common approach to choose

hyper-parameters and evaluate model performances.
The evaluation results of models corresponding to
the different parameter λ on Fdataset in nested
cross-validation are shown in Table 3. We find that
the AUROC and AUPR of the model with λ = 0.9 are
optimal. Owing to lacking of neighborhood interactions
information, the AGG (when λ = 0.0) does not exhibit
excellent performance, whereas our proposed DRWBNCF
(when λ = 0.9) makes full use of both nearest neighbors
and weighted interactions between neighbors, showing
the best performance.

Discovery of drug candidates for new diseases
To examine the ability of DRWBNCF for discovering
novel drug candidates for new diseases without any
treatment information, we further implemented the
local leave-one-out cross-validation (LOOCV) in Fdataset.
Specifically, for each disease dx, we deleted all the
known drug–disease associations about disease dx as
the testing samples and used all the remaining known
associations as the training samples. After each disease
is repeatedly predicted, we can obtain the predicted
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Figure 4. The performance of DRWBNCF and other compared methods in discovering novel drug candidates for new diseases on Fdataset. (a) Receiver
operating characteristic (ROC) curves of prediction results obtained by applying DRWBNCF and other compared methods. (b) Precision-recall (PR) curves
of prediction results obtained by applying DRWBNCF and other compared methods. (c) The Recall@k in top 10,000 predictions obtained by applying
DRWBNCF and other compared methods.

Table 3. The AUROCs and AUPRs of models corresponding to the
different parameter λ on Fdataset

λ AUROCs AUPRs

λ = 0.0 0.9238 0.4889
λ = 0.1 0.9236 0.4918
λ = 0.2 0.9241 0.4937
λ = 0.3 0.9237 0.4967
λ = 0.4 0.9229 0.4936
λ = 0.5 0.9233 0.4994
λ = 0.6 0.9238 0.4977
λ = 0.7 0.9237 0.4973
λ = 0.8 0.9241 0.4942
λ = 0.9 0.9247 0.5009
λ = 1.0 0.9246 0.4982

Note: λ = 0.0 denotes that a model only includes the conventional graph
convolution aggregator (i.e. AGG), λ = 1.0 represents a model only includes
the proposed WBA. λ = 0.4 means that our proposed WBA accounts for 0.4
while the traditional linear aggregator accounts for 0.6.

probability of associations for each disease. It should
be noted that, the known drug–disease associations data
are missing for a new disease, our proposed model is
able to predict the potential drugs for new diseases by
making use of the similarity information of new diseases.
As shown in Figure 4A and B, compared with the state-
of-the-art drug–disease association prediction methods,
e.g. GCN-based, matrix completion-based and matrix
factorization-based models, our DRWBNCF achieves 4.9–
15.6% absolute AUPR improvements and surpasses two
other GCN-based methods by up to 20.4% (AUROC value),
which signifies the superior performance of our proposed
model on predicting novel drugs for new diseases.
Additionally, from the Figure 4C, we can find that the
Recall@k value (45.06%) of DRWBNCF for the top 10,000
predictions in Fdataset significantly outperforms that
of DRIMC (35.44%), LAGCN (14.28%), NIMCGCN (25.66%),
SCMFDD (17.38%) and BNNR (41.38%).

Case studies: computationally predicted
potential drugs for breast cancer and small cell
lung cancer
To evaluate the practical ability of DRWBNCF, we imple-
mented two case studies for two cancers (i.e. breast

cancer and lung cancer), which do not have efficacious
drugs available yet. In the process of predicting novel
drug candidates for breast cancer and lung cancer, we
used all the known drug–disease pairs in Fdataset to train
our model and then predicted the association probability
of all unobserved pairs. Subsequently, we ranked the pair
candidates according to the predicted probabilities in
descending order, such that the top-ranked pairs are the
most likely to interact. Following the similar settings in
previous studies, highly reliable sources and clinical tri-
als, i.e. DrugBank [29], the Comparative Toxicogenomics
Database (CTD) [42], DrugCentral [43] and ClinicalTri-
als.gov, are adopted as references to validate whether the
predictions for two cancers are true or not.

Breast cancer is one of the well-known malignant
tumors among women. Till now, it still remains the lead-
ing cancer-related cause of disease burden for women
[44]. We focused on the top 10 DRWBNCF-predicted drugs
for potentially treating breast cancer in Table 4. Metige-
strona, a long-acting contraceptive, has also been used to
treat breast and endometrial neoplasms. Herein, Metige-
strona is the top first predicted candidate drug for treat-
ing breast cancer. Estramustine, an antineoplastic agent
that was primarily used in the treatment of prostatic
neoplasms, was predicted by DRWBNCF to be associ-
ated with breast cancer. Such a prediction can be sup-
ported by a previous clinical trial reporting that estra-
mustine showed encouraging results in the treatment of
metastatic breast cancer and was deserved to be studied
in earlier clinical situation. In addition, DRWBNCF found
that mitoxantrone, an anthracenedione-derived antineo-
plastic agent, was associated with breast cancer, which is
supported by DB, CTD, DrugCentral and ClinicalTrials.gov.
To conclude, among the top 10 predicted drugs ranked
according to their predicted scores, 8 drugs (80% success
rate) have validated by various evidences from authori-
tative sources and clinical trials.

Small cell lung cancer with high incidence and high
mortality worldwide makes this complex neoplasm a
notable healthcare issue. We also focused on the top
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Table 4. The top 10 DRWBNCF-predicted drugs for potentially treating breast cancer (OMIM: 114480)

Rank DrugBank IDs Candidate drugs Evidences

1 DB00603 Metigestrona ClinicalTrials.gov, CTD
2 DB01196 Estramustine ClinicalTrials.gov
3 DB00977 Ethinylestradiol ClinicalTrials.gov
4 DB00655 Estrone DrugCentral
5 DB00717 Norethisterone ClinicalTrials.gov, DrugCentral
6 DB00385 Valrubicin Unconfirmed
7 DB00694 Daunorubicin ClinicalTrials.gov
8 DB01204 Mitoxantrone ClinicalTrials.gov, DB, CTD, DrugCentral
9 DB00007 Leuprolide ClinicalTrials.gov
10 DB00444 Teniposide Unconfirmed

Table 5. The top 10 DRWBNCF-predicted drugs for potentially treating small cell lung cancer (OMIM: 182280)

Rank DrugBank IDs Candidate drugs Evidences

1 DB00997 Doxorubicin ClinicalTrials.gov, DrugCentral, CTD,
2 DB00694 Daunorubicin ClinicalTrials.gov
3 DB00445 Epirubicin ClinicalTrials.gov, DB, CTD
4 DB01177 Idarubicin CTD
5 DB00541 Vincristine ClinicalTrials.gov, DB, CTD, DrugCentral
6 DB00385 Valrubicin Unconfirmed
7 DB00762 Irinotecan ClinicalTrials.gov, DB, CTD, DrugCentral
8 DB00570 Vinblastine ClinicalTrials.gov
9 DB00987 Cytarabine Unconfirmed
10 DB01204 Mitoxantrone ClinicalTrials.gov

10 DRWBNCF-predicted candidate drugs for potentially
treating small cell lung cancer in Table 5. Table 5 reports
that 8 out of 10 drugs (80% success rate) are validated
by the reliable sources and clinical trials. For instance,
doxorubicin, an antineoplastic antibiotic used to treat
various cancers and Kaposi’s Sarcoma, is the top first
predicted novel drug for potentially treating small cell
lung cancer. Such a prediction is supported by CTD, Drug-
Central and ClinicalTrials.gov. Daunorubicin, an anthra-
cycline aminoglycoside antineoplastic, which was pri-
marily used in the treatment of leukemia and other
neoplasms, was predicted by DRWBNCF to have potential
effect on small cell lung cancer. This prediction is sup-
ported by ClinicalTrials.gov. In addition, vincristine and
irinotecan predicted by DRWBNCF have been confirmed
by three reliable sources and clinical trials for small cell
lung cancer promising treatment.

For a clear view, we show the top 10 potential drugs
association networks of the two cancers in Figure 5.
It indicates that some drugs are usually related to
several diseases. For example, daunorubicin, mitox-
antrone and valrubicin are associated with both breast
cancer and small cell lung cancer. The predictions of
daunorubicin and mitoxantrone have been confirmed by
ClinicalTrials.gov. In summary, DRWBNCF can aid bio-
logical researchers and clinicians in selecting anticancer
drugs by accurately repurposing the de-risked and old
drugs.

Conclusion
In this study, we proposed a deep-learning methodology
DRWBNCF to in silico drug repositioning. The key

innovation of DRWBNCF is the explicitly encoding of
the local nearest neighbors and their interactions to
augment conventional graph convolution operation.
Unlike some previous application of neighbor informa-
tion in drug repositioning approach, DRWBNCF uses
nearest neighbors instead of all similar neighbors,
which can filter out noisy information to get more
accurate results. In order to capture the complex
patterns of information propagation, we aggregate all
pair-wise weighted interactions between neighbors by
proposing a new weighted bilinear graph convolution
operation, which is an excellent complement to the
conventional graph convolution operation. Through
integrating the representations of the drug–disease
known association, drug’s and disease’s neighbors and
neighborhood interactions into a unified representation
as the input of MLP and differentiating the easy negative
samples and hard positive samples by introducing the α-
balanced focal loss function to improve the performance
of DRWBNCF. To evaluate the performance of DRWBNCF,
we conducted an extensive set of experiments on three
benchmark datasets, comparing with four state-of-
the-art association prediction methods. For example,
DRWBNCF achieves the best AUROC and AUPR values
under 10 times 10-fold cross-validation over all datasets.
In terms of discovering novel drug candidates for new
diseases, DRWBNCF obtains the best AUROC, AUPR
and Recall@k values under the local leave-one-out
cross-validation. The experimental results validate
the efficacy of our proposed DRWBNCF model. Case
studies demonstrate that DRWBNCF has a high practical
predicting ability. For example, on the Fdataset, 80% of
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Figure 5. The top 10 potential drugs association networks of breast cancer and small cell lung cancer.

top-10 DRWBNCF-predicted potential drugs for breast
cancer and small cell lung cancer have been confirmed
by highly reliable sources and clinical trials, including
DrugBank, CTD, DrugCentral and ClinicalTrials.gov.

Despite the effectiveness of DRWBNCF to in silico
drug repositioning, there are still some limitations
to this approach. Since some related studies have
demonstrated that integrating multiple data sources
may enhance the performance of models, DRWBNCF
can incorporate the characteristics of drugs and diseases
involved in multiple data sources for better performance
in future work. Second, the lack of true negative drug–
disease interactions and the high-quality gold-standard
dataset may result in an incomplete picture. Third,
compared with some novel matrix factorization and
completion methods (such as BNNR [19] and DRIMC
[23]), DRWNBCF requires more computing resources
and is time-consuming (Supplementary Table S2). In
the future, we will develop a more efficient deep-
learning model with a lighter and more compressed
architecture.

In conclusion, our proposed DRWBNCF could signifi-
cantly benefit from integrating neural collaborative fil-
tering with neighborhood and neighborhood interactions
to predict the association probability of a given drug–
disease pair. Eventually, DRWBNCF can help accelerate
the development of drug discovery by predicting which
existing drugs could treat complex diseases to guide the
time-consuming and costly wet experiments.

Key Points

• We propose a novel deep-learning approach,
called DRWBNCF, which integrate neighborhood
and neighborhood interactions information into
neural collaborative filtering to in silico drug
repositioning.

• Our constructed drug–drug and disease–disease
similarity networks employ the nearest neigh-
bors of the drug and disease, not all similar
neighbors of them to avoid noisy information.

• The integration component based on our pro-
posed WBA leverages localized information in
complementing the drug–disease association
data to enhance the prediction ability of DRWB-
NCF.

• We resort to a multi-layer perceptron optimized
by the α-balanced focal loss function and graph
regularization to grasp complex associations.

Data availability
The implementation of DRWBNCF and the preprocessed
data is available at: https://github.com/luckymengmeng/
DRWBNCF.
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