
World Wide Web (2018) 21:89–104
https://doi.org/10.1007/s11280-017-0456-y

Personalized app recommendation based on app
permissions

Min Peng1 ·Guanyin Zeng1 ·Zhaoyu Sun1 ·
Jiajia Huang2 ·Hua Wang3 ·Gang Tian1

Received: 14 December 2016 / Revised: 17 February 2017 /
Accepted: 27 March 2017 / Published online: 17 April 2017
© Springer Science+Business Media New York 2017

Abstract With the development of science and technology, the popularity of smart phones
has made exponential growth in mobile phone application market. How to help users to
select applications they prefer has become a hot topic in recommendation algorithm. As
traditional recommendation algorithms are based on popularity and download, they inad-
vertently fail to recommend the desirable applications. At the same time, many users tend
to pay more attention to permissions of those applications, because of some privacy and
security reasons. There are few recommendation algorithms which take account of apps’
permissions, functionalities and users’ interests altogether. Some of them only consider per-
missions while neglecting the users’ interests, others just perform linear combination of
apps’ permissions, functionalities and users’ interests to implement top-N recommendation.
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In this paper, we devise a recommendation method based on both permissions and func-
tionalities. After demonstrating the correlation of apps’ permissions and users’ interests,
we design an app risk score calculating method ARSM based on app-permission bipar-
tite graph model. Furthermore, we propose a novel matrix factorization algorithm MFPF
based on users’ interests, apps’ permissions and functionalities to handle personalized app
recommendation. We compare our work with some of the state-of-the-art recommendation
algorithms, and the results indicate that our work can improve the recommendation accuracy
remarkably.

Keywords App permissions and privacy · App recommendation algorithms · App
functionalities · User interests

1 Introduction

Recent years have witnessed the rapid development in smart phone industry, and its pop-
ularity prospers mobile phone application software market. According to statistics, by the
July of 2013, there are more than one million apps on the Google Play, with fifteen bil-
lion times of download. And by the end of 2014, the amount of download adds up to
seventy-five billion times in just one year. What is more astonishing is that the amount
of download increases to 156 billion all around the world in 2015. For users, there is an
urgent need for selecting interested apps from massive amounts of apps. Since 2012, many
recommendation algorithms have been proposed, such as mining personal context-aware
preferences for mobile users [27], personalized context-aware recommendation by min-
ing context logs through topic models [23], and mobile application recommendation with
very sparse datasets [20, 24]. All these recommendation algorithms are designed for mobile
phone users.

Generally, users know very little about apps, especially in the aspect of apps’ permis-
sions, as many apps require some permissions to some authorities [22] in order to provide
better user experience. Therefore, many malicious apps may disclose users’ privacy infor-
mation by furtively applying permissions [25]. Even worse, with the purpose of occupying
the app market, some apps apply for unnecessary permissions to obtain users’ personal
information [15]. In case of this undesirable phenomenon, some recommendation algo-
rithms are devised to solve these problems, such as using probabilistic generative models
to rank risks of apps [23], mobile app recommendation with security and privacy [26, 28],
etc. But all these recommendation algorithms just quantify permissions and functionalities,
or make a simple linear combination of them [9]. They potentially ignore the relationship
between the apps’ permissions and users’ interests in functionalities. However, according
to empirical analysis, when two apps have similar functionalities and their risk scores are
known to users, they tend to choose the one that is more security. In this case, malicious apps
usually have lower users’ ratings. In other words, if two apps have the same level of per-
mission security, then their ratings are similar, too. As users’ ratings are reflections of their
preferences on apps’ functionalities, we hence assume that apps’ permissions are internally
related to users’ interests.

In this paper, we propose a novel matrix factorization algorithm based on permissions
and functionalities (MFPF). Our algorithm exploits the relationship between the permis-
sions and functionalities to achieve personalized recommendation for the first time. The
main contributions of this paper are as follows: (1) Based on the experimental dataset, the
distribution of the apps’ permissions is analyzed and we also elaborate specific conditions
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of apps’ permissions. (2) We analyze the relationship between the apps’ permissions and
users’ ratings, and then verify this relationship in detail. (3) We construct a matrix factoriza-
tion algorithm to perform recommendation. This algorithm recommends apps by integrating
users’ interests on apps’ functionalities, as well as the apps’ permissions. (4) In experiments,
we evaluate the proportion and influence of the permissions in the users’ ratings. Then we
make further analysis on the relationship between users’ ratings and apps’ permissions. We
also compare our algorithm with other mainstream algorithms, and find that our algorithm
is more accurate.

2 Related work

Most current recommendation methods are based on collaborative filtering, which can be
classified in two types. One is the collaborative filtering based on users or items [12, 19],
which performs personalized recommendation according to the similarity between users or
items. The other is based on latent factor model (e.g., matrix factorization) [3, 5, 6, 10].

Meanwhile, the popularity of smart phone has raised the related researches on per-
sonalized recommendation system. Among them is recommendation system about users’
preferences, such as mining personal context-aware preferences [27] and personalized
context-aware recommendation by mining context logs through topic models [11, 23].
Although these methods can do pretty well in preference recommendation, they still require
a large number of information about users’ mobile phones in order to achieve better results.
These methods on one hand have problems of disclosing users’ personal information, on the
other hand they have trouble in obtaining enough information, so there exists a cold-start
problem in these recommendation systems.

Since 2012, mobile app recommendation system has received wide attraction from
researchers, among them are a sort of recommendation systems that can predict users’ usage
patterns on mobile app management, such as predicting the mobile application patterns [21]
and the most probable app to be used [1]. This kind of recommendation system, which is
one of the main topics in research about app recommendation system, is a combination of
users’ behaviors and apps’ functionalities. There are also some recommendation systems
which focus on solving sparseness and cold-start problem, such as recommending mobile
app with very sparse datasets [20], which aims at solving the problem of data sparseness,
and addressing cold-start problem by using social network [8, 14]. The above mentioned
recommendation systems are a part of obtained fruit of researches in app recommendation
system with the increasing popularity of smart phone and in-depth studies.

In recent years, there has emerged a new realm in recommendation system, which focuses
on security of users’ privacy [2, 7]. In order to improve user experience, mobile app develop-
ers need to apply some permissions which are usually related to users’ personal information.
Due to users’ ignorance about apps’ permissions, offenders can also utilize these permis-
sions to develop malwares, so as to disclose users’ privacy. In this paper, we conduct code
detection for each app in our experiments to analyze apps’ permissions in detail. From our
analysis, we find that there are about 120 kinds of app permissions, and we also notice that
among the frequently used permissions, almost 80% of them concentrate on certain kinds
of permissions like “WRITE EXTERNAL STORAGE”, “ACCESS NETWORK STATE”,
and so on. But there remains some kinds of permissions which are used relatively infre-
quently, and these permissions are usually more dangerous, like “INSTALL PACKAGES”,
“SEND SMS”, and so on. Peng, et al. [23] point out that these kinds of permissions are
usually used in malwares. Obviously, we can preliminarily determine whether an app is
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malware or not through analysis of its permissions. Therefore, it is necessary and effective
to consider aspects of apps’ permissions in personalized recommendation system.

Despite of the fact that app’s permission is an important factor in personalized rec-
ommendation algorithm, there are few mature researches in this field. Although there are
some excellent achievements, their works are still in the early stage. The method proposed
by Peng, et al. ranks app risk by incorporating probabilistic generative models [23], and
recommends apps with respect to this risk score. It does obtain good results, but it only
analyzes security aspect from the code, the apps’ permissions and users’ interests in apps’
functionalities are not considered. Liu, et al. make improvements by conducting top-N rec-
ommendation with integrating apps’ functionalities, apps’ permissions and users’ interests
[9]. However, there still remain some flaws in their method. They just make a simple linear
combination of all the components to perform top-N recommendation, while ignoring the
relationship between apps’ permissions and users’ interests.

In this paper, we first elaborate and verify the relationship between users’ interests and
apps’ permissions. Then we propose a new recommendation algorithm based on matrix
factorization (MFPF), which combines apps’ permissions, apps’ functionalities as well
as users’ interests. Finally we compare our algorithm with other recommendation algo-
rithms such as SVD++ [5], BiasedMF [6], ItemKNN [19], as well as Privacy Res and
Sensitive Perm, which are mentioned in [9].

3 Preliminary analysis of relationship between apps’ permissions
and users’ interests

Most of the security apps need fixed kinds of permissions, only a handful of apps need
relatively uncommon permissions. However, the malwares are just the opposite [23]. Fig-
ure 1 is the distribution map of apps’ permissions. From Figure 1, we can find that apps’
permissions concentrate on dozens of specific kinds, but there still remain some seldom-
used permissions, and these permissions are more dangerous. So if we analyze apps’

Figure 1 Distribution of app permissions
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permissions, we can determine whether an app is dangerous and malicious subjectively. In
order to achieve a more accurate and objective effect, Zhu, et al. propose a method which
can judge app security by introducing the concept of risk score [28]. App risk score reflects
its privacy security, the higher the risk score, the lower the privacy security, and vice versa.

Based on [28], we propose an app risk score calculating method (ARSM) to ingeniously
quantify the degree of app potential risk. ARSM is inversely proportional to app reliability,
and its construction refers to the app-permission bipartite graph model [28], as shown in
Figure 2. Let Edge be the set of edges (eij ∈ Edge only when app ai requests permission
pj ), and proij ∈ Pro be the weight of edge eij , which is the probability of ai needing pj .
proij is obtained by calculating permissions of apps which are in the same category with
ai , that is:

proij = c
ij∑

eik∈Edgecik

, (1)

where cij is the total number of apps in category t (ai ∈ t) requesting permission
pj . We express ai and pj in vectors, i.e., ai = {proi1, proi2, ..., proiN }, pj =
{pro1j , pro2j , ..., proMj }, and formulate app similarity sima

ij as follows:

sima
ij = cos

(
ai , aj

) = ai · aj

‖ai‖ · ∥
∥aj

∥
∥
. (2)

Figure 2 An example of the bipartite graph between apps and permissions
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Similarly, permission similarity sim
p
ij can also be calculated by sim

p
ij = cos(pi , pj ).

Therefore, we present the calculation of app risk score loss function in our ARSM as
follows:

f (a, p) = λ
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where Rsa
i , Rs

p
j are the risk scores of app ai and permission pj derived from prior knowl-

edge. The calculation of app risk score loss function (3) is composed of three parts. The
first part controlled by λ defines the constraint that the apps’ and permissions’ risk scores
should fit prior knowledge. The second part is the global constraint controlled by parameter
μ, which is the balance of risk scores, thus needs to satisfy the hypothesis that if two apps
(or two permissions) are highly similar, then their risk scores should also be similar. The
third part is the smoothness constraint between apps and permissions, which guarantees that
if two apps have high probabilities to request a specific permission, then their risk scores
should be similar. Finally, we only need to calculate values of Rsa

i , Rs
p
j with iterative min-

imization of f (a, p) by (4) and (5). Notice that in this paper, users’ ratings refer to users’
interests in apps’ functionalities, and in our experiments, users’ ratings are in the interval
[1-5], so we use sigmoid function Sig(x) = 5/(1 + e−x) to map risk scores Rsa

i , Rs
p
j to

[1-5].
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Firstly we initialize Rsa
i to 1/M , Rs

p
j to 1/N . M and N is the number of apps and

permissions respectively. Then according to PNB (Naive Bayes with information Priors) [4,

13], we can derive R̃sa
i = −lnP (p1, ..., pk|θ) and R̃s

p
j = −lnP (pj |θ), where P(pj |θ)

can be estimated by (6), and parameter θ follows beta prior distribution Beta(θ; α0, β0).
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xij is the binary function, when ai requests pj , its value is 1, or its value is 0.

P(pj |θ) =

M∑

i

xi,j + α0

M + α0 + β0
. (6)

Therefore, we use gradient descent method to derive the risk scores according to iterative
update, as shown in (4) and (5). Meanwhile, we can calculate app risk score Rsa

i of every
app, and make comparison between Rsa

i and users’ average ratings. Figure 3 is the line
chart of app risk scores and average users’ ratings. By analyzing Figure 3, we can find
that the higher the app risk scores, the lower the users’ ratings (significantly exhibits in
the black box). This means users’ ratings can not only figure out users’ interests in apps’
functionalities, but also reflect security of apps’ permissions, even though the permissions
are not intuitive enough for users directly. In other words, there exists a relationship between
users’ interests and apps’ permissions. But this relationship is not explicit enough, as almost
all app risk scores are in the interval [2.5-3], making them too crude to detect malware.
In the following part, we will propose a new method which can formulate the relationship
between users’ interests and apps’ permissions more intuitively. Furthermore, we conduct
personalized recommendation based on this relationship.

4 Matrix factorization algorithm MFPF

In last section, we have proved that there is a relationship between users’ interests in apps’
functionalities and apps’ permissions preliminarily. In this section, we will introduce our
algorithm more precisely. Specifically, we propose a new matrix factorization algorithm
based on users’ interests and apps’ permissions (MFPF). By integrating users’ interests,
apps’ functionalities, as well as apps’ permissions, we can provide a more precise and
effective personalized recommendation algorithm.

4.1 Definition description

In our recommendation algorithm, the set of users is denoted as U = {u1, u2, ..., uM }, the
set of apps is denoted as A = {a1, a2, ..., aI }, and the set of permissions is denoted as
P = {p1, p2, ..., pN }. Table 1 shows all of the important symbols used in this paper.

Figure 3 Risk score of app and average of user rating. The higher the app risk scores are, the lower the
users’ ratings (significantly exhibits in the black box)
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Table 1 Description of symbols
Symbol Denotation

U Set of users

A Set of apps

P Set of permissions

M Number of users

I Number of apps

N Number of permissions

R User-app ratings matrix

R̃ Predicted value of R

L Permission matrix

Q User’s interest latent matrix

V App functionality latent matrix

K Dimension of latent factor space

4.2 Model construction

In recent years, collaborative filtering (CF) has been widely used in recommendation sys-
tem. There are two primary approaches, the neighborhood approach [6], and latent factor
models [17, 18]. Neighborhood methods focus on relationships between items or, alterna-
tively, between users. For example, an item-item approach models the preference of a user
to an item based on ratings of similar items by the same user. Latent factor models, such as
matrix factorization, comprise an alternative approach by transforming both items and users
to the same latent factor space. The former algorithms execute quickly, but due to the lack
of knowledge learning, their accuracy is pretty low. On the contrary, due to the incorpora-
tion of user profiles and item profiles, the latter ones have a higher accuracy, but a relatively
lower speed. In order to achieve high precision, our recommendation algorithm is based on
matrix factorization, and then construct MFPF according to ARSM.

The predicted score of basic matrix factorization recommendation is as follows:

R̃ui = QT
u Vi, (7)

where QM×K is latent matrix of user’s interests, V K×I is latent matrix of items profiles,
and K is the dimension of the latent space (latent factor).

In the hypothesis that users’ ratings are related to permissions, we combine users’
interests, functionalities, as well as permissions, and calculate the predicted rating as
follows:

R̃ui = αQT
u Vi + (1 − α)

QT
u

I∑

j �=i

(sijVj )

I∑

j �=i

sij

, (8)

where QM×K is latent matrix of users’ interests, V K×I is latent matrix of apps’ functional-
ities, sij is the cosine similarity between permissions of app ai and permissions of app aj ,
namely, sij = cos(Li, Lj ), α is the permission weight control factor. In (8), the calculation
of user’s predicted ratings for apps contains two parts. The first part is the basic matrix fac-
torization, by incorporating the users’ interests and apps’ latent functionalities. The second
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part is the rating prediction, which represents user u’s interests on app aj , by considering
the permission similarity between app ai and app aj . Note that this part is on the basis of
the hypothesis of the relationship between user ratings and permissions, i.e., user ratings to
apps which have similar permissions are similar, too. This has been preliminarily verified
in ARSM (see details in Section 3).

Figure 4 depicts the MFPF model, which is composed of two parts with accordance to
(8). The first part is the combination of users’ interests and apps’ functionalities controlled
by parameter α. This part is based on basic matrix factorization recommendation algorithm.
The second part is the combination of users’ interests, apps’ functionalities and permissions
controlled by 1 − α. The whole model is based on the hypothesis that users’ ratings are
related to apps’ permissions, and the proportion of two parts is controlled by α. When α = 1,
the model is the basic matrix factorization recommendation algorithm, namely, ignoring
apps’ permissions. When α= 0, apps’ permissions are the key factor of the model. When
α is in (0, 1), our model runs personalized recommendation according to users’ interests,
apps’ functionalities and permissions simultaneously.

In order to calculate matrix QM×K and V K×I in (8), we employ minimize prediction
error method:

min
Q,V

∑

u,i

(Rui − R̃ui)
2
. (9)

Meanwhile, we avoid over-fitting through regularization, then obtain the optimization
function as follows:

min
Q,V

∑

u,i

(Rui − R̃ui)
2 + λ(‖Q‖2 + ‖V ‖2). (10)

In this paper, we exploit stochastic gradient descent [16] to calculate (10). In order to
minimize prediction error Jui = Rui − R̃ui , we use (11) and (12) to update iteratively:

Qu = Qu + β1

⎛

⎜
⎝αVi + (1 − α)

∑

j �=i

(sijVj )

∑

j �=i

sij

⎞

⎟
⎠ Jui − λQu, (11)

Vi = Vi + β2αQuJui − λVi, (12)

Figure 4 The model of MFPF
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where β1, β2 are the learning rate, which need to be specified manually. When the predic-
tion error reaches the stable value or the maximum number of iterations is satisfied, the
computation ends.

5 Experimental analysis

5.1 Dataset

All the experimental data comes from the AnZhi market (http://360.anzhi.com), including
5534 apps, 2762 users, and 1075401 comments. We further exclude apps and users whose
comments are less than 10. Finally we obtain 1287 apps, 975 users, and 98621 comments.

5.2 Experimental description

In this paper, the experimental section is mainly to answer the following four questions:

– What is the optimum of permission control factor?
– Are apps’ permissions related to users’ ratings?
– How does the latent spatial dimension (latent factor) affect the experimental results?
– Whether our recommendation algorithm MFPF is superior to other algorithms or not?

In order to solve these problems, we conduct a lot of experiments, and compare our
results with some excellent recommendation algorithms. We use 5-fold cross validation, the
training data set accounts for 80%, and the testing data set accounts for 20%. There are two
types of inspection criteria in our experiment, the first is root mean square error (RMSE),
as shown in (13), where Rtest is testing user-app rating matrix. The second is precision,
as shown in (14), where N is the number of apps which get the highest predicted rating in
testing data set, CN,rec is the apps that top-N recommendation algorithm recommends to
users, and Cadopted is the apps which are adopted in testing data set.

RMSE =

√
√
√
√

∑
(u,i)|Rtest

(Ru,i − ˜Ru,i)

|Rtest | , (13)

Precision@N = |CN,rec ∩ Cadopted |
N

. (14)

5.3 Analysis of permission control factor and relationship

In the algorithm proposed in our paper, the permission weight control factor plays a pivotal
role, it is necessary to cover both users and items profiles (i.e., users’ interests and apps’
functionalities in our recommendation algorithm) in basic recommendation algorithm, and
at the same time permissions should also be taken into account. So the value of α not
only determines relevance between apps’ permissions and users’ ratings, but also plays an
important role in evaluating results of our recommendation algorithm MFPF.

Figure 5 shows different RMSE values under different α. The experimental parameters
are set as follows: regularization parameter λ is 0.1, the dimension of latent space (factor
of matrix factorization) K is 30, learning rate β1 = β2 = 0.01, and the control factor α is
between [0,1]. From Figure 5, we can find that different α makes different RMSE values.
When α=0, the RMSE reaches its maximum value, which means the worst effect. Then with

http://360.anzhi.com
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Figure 5 The RMSE of different α

the increasing of α, the value of RMSE becomes lower, and when α is about 0.6, RMSE
value is the lowest, which means under this circumstance we have the best results, then with
the increasing of α, the value of RMSE grows higher again. Therefore, we can conclude
that although users’ rating is essentially a subjective evaluation of apps’ functionalities, it
can reflect the security of apps’ permissions. This indicates that there exists some kind of
relationship between users’ ratings and apps’ permissions. And we notice a fact that when
α is in [0.5, 1], our recommendation algorithm performs better than the performance when
α is in [0, 0.5]. This means that although the aspect of apps’ permissions plays an important
role in our recommendation algorithm, the users’ interests and apps’ functionalities are more
intuitive and valuable in predicting users’ ratings.

Figure 6 presents the influence of different dimension K of latent space (latent factor) on
the accuracy of our algorithm MFPF. The abscissa is the value of K , and the ordinate is the
value of RMSE. Other experimental parameter settings are: regularization parameter λ is
0.1, learning rate β1 = β2 = 0.01, permission control factor α is 0.6. From Figure 6, we can
see that when K is in [0, 50], the value of RMSE begins to decrease, when K is about 50,
RMSE reaches its minimum values, and then with the increasing of K , the value of RMSE
begins to increase and finally tends to converge. The main reason is that our algorithm takes
permissions into account, and we can obtain apps’ permissions through analyzing the code,
by which the problem of cold-start could also be solved.

5.4 Experimental comparisons

In this section we will compare our algorithm MFPF with two groups of other recom-
mendation algorithms. The first group includes some excellent classic recommendation
algorithms: (1) SVD++ [5], which is an improvement of SVD. (2) BiasedMF [6], which
is a matrix factorization similar to SVD, but takes into deviation data. (3) ItemKNN [19],
which is a KNN algorithm based on items. The second group includes algorithms which
also focus on apps’ functionalities and permissions, such as Privacy Res and Sensitive Perm
[9]. Privacy Res and Sensitive Perm both take apps’ permissions into account. The dif-
ference between them is that Privacy Res takes 10 types permissions into account, but
Sensitive Perm takes 23, leading to a more precise result.
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5.4.1 Analysis of RMSE

Figure 7 shows different RMSE values under different dimensions K . Here note that K in
ItemKNN is the number of nearest neighbors, not the dimension. The settings of experimen-
tal parameters are as follows: (1) In SVD++, regularization parameter λ is 0.1, learning
rate is 0.1. (2) In BiasedMF, regularization parameter λ is 0.1, learning rate is 0.01. (3) In
the experiment of ItemKNN, there is no extra setting of parameters, only the nearest neigh-
bor number K needs to be fine-tuned. (4) In our MFPF, regularization parameter λ is 0.1,
learning rate β1 = β2 = 0.01, permission control factor α is 0.6.

From Figure 7 we can find that with the increasing of K , ItemKNN tends to be stable
when K ≥ 10. The change of ItemKNN is not so obvious as other algorithms, which
is mainly because the sparsity of experimental data has a great influence on the effect of
ItemKNN.When experimental data reaches a certain degree, nearest neighbor number tends
to be stable, so the effect also tends to be stable. Except for ItemKNN, RMSE values of other
algorithms decrease when K changes from 5 to 50. However, when K turns to be around 30,
RMSE value becomes stable. Meanwhile, we compare the effect of different algorithms, we
find that SVD++ is better than BiasedMF and ItemKNN, because SVD++ and BiasedMF
both make use of historical data and learn implicit feedback information. And we also find
that our algorithm is the best among all the algorithms involved in experiments. On one
hand, apps’ permissions are important in app recommendation algorithm. On the other hand,
although classical recommendation algorithms employ latent factor model such as matrix
factorization, they cannot learn enough implicit information, because many latent feedback
information is not explicitly expressed.

Figure 8 shows different RMSE values under different proportions of training data. The
settings of experimental parameters are as follows: (1) In SVD++, regularization parameter
λ is 0.1, learning rate is 0.1, dimensions K is 30. (2) In BiasedMF, regularization parameter
λ is 0.1, learning rate is 0.01, dimensions K is 30. (3) In the experiment of ItemKNN, the
number of nearest neighbor K is 30. (4) In our MFPF, regularization parameter λ is 0.1,
learning rate β1 = β2 = 0.01, permission control factor α is 0.6, dimensions K is 30.
From Figure 8 we can find that the change of ItemKNN is obvious with the increasing of
proportion of training data, while other algorithms are relatively stable. We can also find

Figure 6 The RMSE of different K
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Figure 7 RMSE of different algorithms under different dimensions K

that the RMSE is satisfactory when proportion of training data is between 70 and 90%. But
totally, our algorithm is better than the others, no matter what the proportion is.

5.4.2 Analysis of precision

Figure 9 is the bar graph about precision of our algorithmMFPF and Sensitive Perm as well
as Privacy Res under different cases top-N recommendation, where latent dimension K is
30 (because when K = 30, the experimental results are more accurate). Other parameters of
Privacy Res and Sensitive Perm are set as: αU = αV = αP = 20, βU = βV = βP = 0.5,
η = 0.00001, λ=1.

Figure 8 RMSE of different algorithms under different proportions of training data
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Figure 9 Precision @N

From Figure 9, we can find that our MFPF is the most accurate algorithm among all
the algorithms. Since Privacy Res takes less permissions into account, its result is unsat-
isfactory, which proves the importance of apps’ permissions in recommendation algorithm
from the opposite side. As for Sensitive Perm, although its performance is better when
N = 30, our algorithm is clearly better in a global perspective. This is mainly because that
our algorithm takes the relationship of apps’ permissions and users’ interests into account.

6 Conclusion

In this paper, we analyze apps’ permissions and verify our assumption that there exists
a relationship between apps’ permissions and users’ rating (users’ interest). According to
this, we propose a matrix factorization based on apps’ permissions and apps’ functionali-
ties called MFPF, which integrates users’ interests, apps’ functionalities, as well as apps’
permissions, and regulate permission control factors to conduct personalized mobile app
recommendation. Finally, by comparing with other state-of-the-art algorithms, we prove that
our algorithm is more effective in terms of accuracy. The future work contains two parts.
The first part is to further demonstrate the influence of sparsity in recommendation algo-
rithm. The second part is to introduce social network into our algorithm, which can solve
the cold-start problem and further improve the recommendation accuracy.
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