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Abstract—In this paper, an EEG-based brain–computer 

interface (BCI) system used for emotion recognition is proposed 
to detect two basic emotional states (happiness and sadness). 
Selection of frequency bands plays a vital role in distinguishing 
brain patterns associated with emotions. This paper explores a 
new method to select suitable subject-specific frequency bands 
instead of using fixed frequency bands for the emotion 
recognition. Common spatial pattern and support vector 
machine were employed to classify two emotional states. Two 
experiments involving six subjects were conducted to validate our 
method and BCI system. An average online accuracy of 74.17% 
for two classes was achieved. The data analysis results 
demonstrated that the proposed method based on subject-specific 
frequency bands outperformed the method based on the fixed 
frequency bands in terms of accuracy.  

Keywords—Electroencephalogram (EEG); brain-computer 
interface (BCI); emotion recognition; frequency band 

I. INTRODUCTION 

Emotion recognition has emerged as a notable research 
topic in this field as it provides a window on the user’s internal 
mental state. There existing many techniques used for 
automatic emotion recognition that are based on facial 
expressions, verbal speech, or body language. However, these 
techniques are limited by the observation of external indicators 
of emotion, which can be easily subject to deception. For this 
reason, researchers have been exploring the human emotion 
based on physiological signals such as electrocardiography 
(ECG), electromyogram (EMG), electroencephalograph (EEG),  
galvanic skin response (GSR), or multimodal approaches. 
These modalities capture the physiological changes associated 
with emotional states.  

Compared to periphery physiological signals, EEG signals 
have been proven to provide more insights into the emotional 
processes and responses. Furthermore, since EEG has been 
widely used in BCIs, the study of EEG-based emotion 
detection may provide great values for improving user 
experience and performance for BCI applications. Currently, 
several studies have been initiated to recognize emotions from 
EEG signals [1]. Chanel et al. reported an average accuracy of 
63% by using EEG time-frequency information as features and 
support vector machine (SVM) as a classifier to characterize 

EEG signals into three emotional states [2]. Choppin et al. used 
neural networks to classify EEG signals from three emotions 
and achieved 64% classification accuracy [3]. Ishino and 
Hagiwara categorized users’ status into four emotional states 
using neural networks with accuracies range from 54.5% to 
67.7% for each of four emotional states [4]. However, the use 
of EEG-based BCIs for emotional recognition is still in its 
infancy. 

Power  spectra of the EEG were often assessed in different 
frequency bands to examine their relationship with the 
emotional states [5]. Many studies have reported several 
spectral changes and brain regions, which are associated with 
emotional responses, such as the theta (θ: 4-7 Hz) power 
changes at right parietal lobe [6], the alpha (α: 8-13 Hz) power 
asymmetry at the anterior areas of brain [7], the beta  (β: 14-30 
Hz) power asymmetry at the parietal region [8], and the 
gramma (γ: 31-50 Hz) power changes at the right parietal 
regions [9]. Most of works focused only on EEG spectral 
power changes in a fixed frequency band, or in a large range of 
frequency bands covering from 4 to 50 Hz [1]. However, the 
most discriminative bands vary between subjects. Furthermore, 
neuropsychological research has shown the importance of 
asymmetric activation/ deactivation between the two cortical 
hemispheres for emotion processing [10]. Olofsson et al. 
reported the ERD/ERS responses to pictures of facial 
expressions in the gamma band [11]. The Common Spatial 
Pattern (CSP) algorithm is effective in constructing optimal 
spatial filters that discriminates two classes of EEG 
measurement in ERD/ERS patterns [12]. However, the success 
of CSP in BCI applications greatly depends on the proper 
selection of suitable frequency bands.  

To address these problems, the objective of this study is to 
explore a new method to select suitable subject-specific 
frequency bands instead of using fixed frequency bands for the 
emotion recognition. An EEG-based BCI is proposed to detect 
two basic emotional states (happiness and sadness) during 
viewing facial expressions. We further evaluate the online 
performance for the emotion recognition. 



II. METHODS 

A. Stimuli and Graphic User Interface (GUI)  

The stimuli used in this study are illustrated in Fig. 1. 
Facial expression pictures were used as stimuli to transmit 
emotions. The stimuli consisted of two kinds of emotional 
facial expression pictures, which are smiling and crying, 
corresponding to happiness and sadness emotional states. The 
smiling and crying facial pictures were taken of Chinese people. 
All pictures were cropped to remove extraneous background, 
but the outlines of faces, including hairstyles, were preserved. 
In addition, all of the pictures were modified using Adobe 
Photoshop 7.0 (Adobe, San Jose, CA) to produce identical 
overall luminance and contrast on a white background. The 
emotional contents of these pictures were measured by a self-
assessment manikin (SAM) [13] containing 9 scales for both 
valence and arousal dimensions. Each subject was required to 
label every picture using SAM after the experiments. The 
evaluation results of the valence-arousal scales were 
(2.41±0.71, 4.37±1.31) and (7.33±1.73, 4.21±0.67) for smiling 
and crying facial pictures, respectively.  

 
Fig. 1. Excerpt of a sequence of facial expression stimuli. The first two are 
pictures with happy facial expressions and the last two are pictures with sad 
facial expressions. 

A facial expression picture was set at the center of a 22-
inch LED monitor (the area ratio of the picture and monitor: 
0.2). Each picture was presented for 8 seconds. The subject 
was instructed to focus on the smiling face or the crying one 
during its presentation. 

B. Data Acquisition System 

A NuAmps device (Compumedics, Neuroscan, Inc., 
Abbotsford, Australia) was used to capture scalp EEG signals 
for data acquisition. Each user wears an EEG cap (LT 37) with 
Ag–AgCl electrodes. The EEG signals are referenced to the 
right mastoid. Two channels, “HEOG” and “VEOG”, for eye 
movements were excluded, and are not shown here. According 
to the standard 10–20 system, the EEG signals used for 
analysis were recorded from 18 electrodes (“Fp1,” “Fp2,” “F3,” 
“F4,” “FC3,” “FC4,” “C3,” “C4,” “TP7,” “CP3,” “CP4,” “TP8,” 
“P7,” “P3,” “P4,” “P8,” “O1,” and “O2”). The impedances of 
all electrodes were kept below 5 kΩ. EEG signals were 
amplified, sampled at 250 Hz, and band-pass filtered between 
0.1 and 60 Hz. 

C. Data Processing and Algorithm 

For our proposed BCI, the emotion recognition included 
three progressive stages: feature selection of frequency bands, 
feature extraction based on CSP, and classification using SVM. 
Fig. 2 shows the data processing procedure. The analysis 
methods and algorithms used in this study are described below. 

  
Fig. 2. Architecture of the proposed emotion recognition method including 

three progressive stages: feature selection of frequency band, feature 
extraction using CSP, classification using SVM. 

1) Feature selection of subject-specific band: The 
objective of feature selection is to extract a subset of features 
by removing redundant features and maintaining the 
informative features. In this study, we focus on the feature 
selection of frequency bands. First, we employ a filter bank 
that bandpass filters the EEG signals collected in training 
phase into multiple bands. Speciafically, the multiple 
frequency bands cover frequency components from 4 to 52 Hz. 
In this study, the number of frequency bands is 12, and each of 
frequency bands has identical width of 4 Hz. Second, spatial 
filtering is performed on  each of these bands using the CSP 
algorithm. Thus, each pair of bandpass and spatial filter yield 
CSP features that are specific to the frequency range of the 
bandpass filter. Next, a 10-fold cross-validation using SVM is 
applied to the CSP features of each frequency band. 
Specifically, in a 10-fold cross-validation, the whole EEG 
dataset is divided into ten subsets. The SVM is trained with 
nine subsets of CSP feature vectors, whereas the remaining 
subset is used for testing. Ten different accuracies are then 
obtained for the entire 10 folds. The average accuracy is taken 
as the performance evaluation criteria to sort the frequency 
bands. Four of the most discriminative frequency bands 
corresponding to the four highest accuracies are selected. Note 
that the number of the seleted frequency bands is empirically 
set to four for all subjects in this paper. 

2) Feature extraction using CSP: In this process, the EEG 
data are copied and bandpass filtered over the four selected 
frequency bands. After bandpass filtering, we extract a 
segment (0–8000 ms for the facial picture presetation) of EEG 
data for each channel and each frequency band. A CSP 
transformation is then applied to this EEG segment to obtain 
features for classification as below. First, a CSP spatial filter, 
W , is obtained using two emotional classes of training data 
that correspond to the emotional states of happiness and 



sadness, respectively. We then extract the CSP features using 
this filter for each trial: 

10
fm log ( ( ))

T
Tdiag W EE W 

where fm  denotes the feature vector, W  is a submatrix 
composed of the first three rows and the last three rows of W , 
and E  is an EEG data matrix corresponding to one trial. In Eq. 
(1), ( )

T
Tdiag WEE W  is a vector composed of all entries on the 

diagonal line of the matrix 
T

TWEE W , and the operator 
10

log (.)  is 
used to calculate the logarithm of each entry of the vector. In 
this study, we select the top three components and the bottom 
three components from W , which best separate the two 
emotional state classes. Furthermore, their logarithm variances 
are calculated and a 6-D feature vector is constructed for each 
frequency band. A feature vector of a trial is then obtained by 
concatenating all CSP feature vectors of all frequency bands. 

3) Classification using SVM: SVM is a linear discriminant 
that maximizes the separation between two classes based on 
the assumption that it improves the classifier’s generalization 
capability. An SVM classifier is first obtained based on the 
two classes of feature vectors of training data associated with 
happy and sad emotion states. For a trial of test EEG, a feature 
vector is first obtained as above and then fed into the SVM 
classifier to determine the emotion state. 

D. Experimental procedures 

Two experiments including an offline and online 
experiments were conducted in this study. In this study, the 
data of the first experiment were used for training. Six 20 to 
33-year-old healthy subjects from the local research unit 
attended the experiments. During the experiments, the subjects 
were seated in a comfortable chair and instructed to avoid 
blinking or moving their body.  

1) Experiment 1 (offline): The collected data in this 
experiment consisted of 40 trials, with 20 trials for happy 
facial expressions and 20 for sad facial expressions. The two 
emotional states appeared in a random order. At the beginning 
of each trial, a fixation cross was first presented at the center 
of the GUI to capture the subjects’ attention. After 2 s, a 
picture of happy or sad facial expression was presented at the 
centre of the GUI. The subjects were asked to pay attention to 
the picture for 8 s. There was a 10 s break between two 
consecutive trials. We used this dataset to identify the most 
effective frequency bands for each subject, and further trained 
an SVM classifier, which were then used in the BCI algorithm 
in the online Experiment 2. 

2) Experiment 2 (online): This experiment was composed 
of 40 trials, with 20 trials for happy facial expressions and 20 
for sad facial expressions. The procedure of each trial was 
similar to that in Experiment I. However, after the facial 
expression presentation for 8 s, the BCI algorithm 
predicted/determined the emotion state. If the detection result 
was correct, a positive feedback consisting of a smiling or 

crying face (the same as the stimulus in this trial) and an 
auditory applause appeared for 4 s; Otherwise, no feedback 
was given.  

3) Performance evaluation: In this study, the online 
accuracy was calculated as the ratio of the number of all 
correct predictions among the total number of presented trials. 
Furthermore, we compared the online accuracies of subject-
specific frequency bands with those of theta (θ: 4-7 Hz), alpha 
(α: 8-13 Hz), beta (β: 14-30 Hz), gamma (γ: 31-50 Hz), and 
the wide frequency band (4-50 Hz). Here, for each frequency 
band and each subject, the data of Experiment 1 were used for 
training an CSP spatial filter and an SVM classifier, whereas 
the data of Experiment 2 were used for test. In this way, the 
accuracies of the fixed frequency bands were calculated. 

III. RESULTS 

A. Results of Experiment 1 

The results of twelve frequency bands based on the 10-fold 
cross-validation for the six subjects were summarized in Table 
1. We found that accuracies varied much with the frequency 
bands and the suitable frequency bands were not always the 
same for different subjects. We determined four frequency 
bands with the highest accuracies for the online evaluation 
(Experiment 2).  

TABLE I.  ACCURACY BASED ON 10-FOLD CROSS-VALIDATION FOR 
EACH FREQUENCY BAND AND EACH SUBJECT IN EXPERIMENT 1 

Frequency 
band range 

(Hz) 

Accuracy based on 10-fold cross-validation (%) 

Subject1 Subject2 Subject3 Subject4 Subject5 Subject6

4-8 52.5 50 55 47.5 52.5 45 

8-12 60 65 60 67.5 55 55 

12-16 72.5 62.5 52.5 72.5 45 40 

16-20 67.5 57.5 57.5 60 57.5 62.5 

20-24 52.5 52.5 65 57.5 50 62.5 

24-28 37.5 67.5 62.5 40 67.5 70 

28-32 50 50 42.5 47.5 65 62.5 

32-36 55 42.5 65 52.5 62.5 70 

36-40 65 52.5 62.5 60 65 67.5 

40-44 62.5 57.5 67.5 62.5 72.5 55 

44-48 67.5 60 65 65 67.5 65 

48-52 55 62.5 60 57.5 75 60 

a. Numbers in bold represent the top four accuracies based on an individual band for each subject 

B. Results of Experiment 2 

The average online accuracies for six subjects were 70%, 
65%, 75%, 80%, 82.5% and 72.5%, respectively. Table 2 
summarized the online accuracies based on subject-specific 
frequency bands and those based on fixed frequency bands. 
The results in Table 2 showed that subject-specific frequency 
bands yielded a superior average test accuracy of 74.17%, 
whereas the average accuracies of all subjects for fixed 
frequency bands were 50.42%, 61.25%, 57.92%, 62.92%, and 



58.33% for theta, alpha, beta, gamma, and the whole range of 
frequency band, respectively. A paired t-test was performed to 
the accuracies shown in Table 2. A significant difference of 
accuracy rates was observed between subject-specific 
frequency bands and each of the other fixed frequency bands 
(all p<0.05). 

TABLE II.  ONLINE ACCURACIES BASED ON SUBJECT-SPECIFIC BANDS 
AND THE ACCURACIES BASED ON FIXED FREQUENCY BANDS. 

Subjects 
Accuracy based on different frequency bands (%) 

Theta Alpha Beta Gamma All 
Subject-specific 

bands 

Subject1 50 65 50 52.5 57.5 70 

Subject2 50 62.5 52.5 50 57.5 65 

Subject3 55 57.5 60 72.5 62.5 75 

Subject4 47.5 70 55 62.5 57.5 80 

Subject5 52.5 60 65 77.5 57.5 82.5 

Subject6 47.5 52.5 65 62.5 57.5 72.5 

Average 50.42 61.25 57.92 62.92 58.33 74.17 

b. Numbers in bold represent the best accuracy based on different frequency bands for each subject 

IV. DISCUSSION AND CONCLUSION 

For real-time emotion detection, an important task is to 
distinguish the emotional states based on the ongoing EEG 
signals. In this paper, we proposed a new BCI method to 
classify two different emotion states (happiness and sadness). 
Unlike the conventional method based on the fixed frequency 
bands, our proposed method selected the subject-specific 
frequency bands with informative features. Two experiments 
involving six subjects were conducted to validate our method 
and BCI system. The data analysis results demonstrated that 
our method based on subject-specific frequency bands 
outperformed the method based on the fixed frequency bands 
in terms of accuracy. 

Based on the results of Experiment 1 (Table 1), several 
important observations could be drawn. First, we found that the 
accuracies varied much with the frequency bands for each 
subject and the frequency bands suitable for classification 
varied for different subjects. Therefore, it is necessary for 
searching the suitable frequency band for each subject. Second, 
most of the selected frequency bands were in the gamma band. 
This result confirmed that compared to the other bands, the 
gamma band was more related to the emotion states of 
happiness and sadness. 

For the results of Experiment 2 (Table 2), an averaged 
online accuracy of 74.17% for two-class emotion recognition 
was achieved. Superior performance was obtained compared to 
the state-of-the-art results in [14], [3] and [13]. In fact, the 
authors of [14] reported an average accuracy of  73% by using 
EEG signals to categorize users’ status into two emotional 
states during image viewing. In [3], Chanel et al. proposed an 
emotion recognition system that uses EEG to classify two 
emotional states. Their system achieved an average accuracies 
of 72% for naïve Bayes and 70% for Fisher discriminant 
analysis. Bradley et al. classified arousal and valence emotions 
and obtained an average accuracy of 70% for two classes [13]. 

Overall, the results of our method are promising, which has 
verified our hypothesis that the frequency band for emotion 
recognition may be subject-specific. The future study will be 
focused on a large number of subjects to further validate our 
method and BCI system. 
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