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Abstract Global warming has altered the thermodynamic and dynamic environments of climate systems, affecting the
biogeochemical processes between the geosphere and atmosphere, which has significant impacts on precipitation extremes and
the terrestrial carbon budget of ecosystems. Existing studies have reported a hook structure for precipitation extreme-temperature
relationships but have rarely examined the underlying physical mechanisms. Previous studies have also failed to quantify the
impact of precipitation on ecosystem productivity, hindering the assessment of future extreme climatic hazards and potential
ecosystem risks. To reveal the thermodynamic driving mechanisms for the formation of global precipitation extremes and
ecohydrological effects, this study utilizes over ten multisource datasets (i.e., satellite, reanalysis, climate model, land surface
model, machine learning reconstruction, and flux tower measurements). We first assess the response of water-heat-carbon flux to
precipitation extremes and explain the underlying physical mechanisms behind the hook structures in terms of atmospheric
thermodynamics and dynamics. Based on outputs from five global climate models (GCMs) under ISIMIP3b, we project future
changes in the hook structures as well as their impacts on precipitation extremes. Finally, we discuss the impact of precipitation
on the terrestrial carbon budget by using outputs from the CLM4.5 model. The results show that precipitation extremes are
usually accompanied by strong exchanges of water and heat and demonstrate a nonlinear relationship between precipitation and
ecosystem productivity. The intensity (duration) of extreme precipitation is intensifying (decreasing) over most areas of the
globe, whereas three-dimensional precipitation events are becoming more concentrated. Atmospheric dynamics play a key role in
shaping the hook structure. The structure is not stable; it shifts under climate change and is projected to result in a 10–40%
intensification in precipitation by the end of this century. Moderate levels of precipitation contribute to carbon assimilation in
ecosystems, and the response of the carbon budget to precipitation is relatively stable under climate change.
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1. Introduction

Since the second industrial revolution, humans have widely

used fossil fuels, which has led to a sharp rise in greenhouse
gas concentrations in the atmosphere, altering the energy
budget balance and changing the biogeochemical cycle of the
Earth’s geosphere and atmosphere. As the spatiotemporal
distribution of water resources is becoming more im-
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balanced, hydrometeorological extremes (e.g., rainstorms
and flooding) are occurring more frequently, posing a major
challenge to the sustainable development of ecosystems and
human society (Wing et al., 2022; Piao et al., 2022). Pre-
cipitation is an important process and a key element of the
hydrological cycle, and the frequency and intensity of pre-
cipitation extremes have significantly intensified in most
areas of the globe since the beginning of the 21st century.
These changes have led to a series of water-related disasters,
such as flash flooding, urban waterlogging and debris flows,
with annual losses of over $30 billion globally (Roxy et al.,
2017). For example, several large-scale and heavy rains
occurred along the Yangtze River in 2020, resulting in a
river-scale flood hazard and causing direct economic losses
of nearly ¥70 billion. In July 2021, Zhengzhou in Henan
Province was hit by a series of heavy rainstorms, which
affected 14.814 million people and a large area of crops and
caused direct economic losses of ¥133.715 billion. To cope
with the above challenges, it is necessary to investigate the
evolution mechanisms of precipitation extremes under cli-
mate change.
Precipitation extremes not only have major impacts on

socioeconomic development but also pose lasting and irre-
coverable damage to terrestrial ecosystems, which severely
threatens national food security and ecological security.
From 1979 to 2008, three major global grain yields showed
large interannual variations; climate change accounted for
32–39% of these fluctuations, while precipitation was a de-
cisive factor in grain yields through most regions of China,
South Asia and the U.S. (Vogel et al., 2019). Precipitation
affects ecosystems through physiological, chemical, physical
and associated processes, such as by altering the growth
environment of vegetation (including oxygen supply, light
and temperature), thus affecting plant respiration and pho-
tosynthesis as well as changing their nutrient supply chan-
nels. In recent years, some attention has been directed at
investigating the impacts of precipitation events on ecosys-
tem productivity. For example, Zampieri et al. (2017) found
a dynamic response relationship between precipitation, soil
moisture and crop yield; heavy rain is prone to lead to nu-
trient loss and flooding stress in rice, thus resulting in crop
yield reductions. Jian et al. (2021) found that short durations
of heavy precipitation may cause physical damage to plants,
and sustained cold temperatures and weak radiation during
long durations of precipitation events can further increase the
risk of crop yield reductions. Vegetation plays a key role in
the earth’s carbon cycle; plants assimilate carbon in the form
of organic carbon through photosynthesis. As the largest flux
in the earth’s carbon cycle, a change in gross primary pro-
ductivity (GPP) affects the entire carbon cycle, but the spa-
tiotemporal dynamics of GPP are also affected by climate
change. Green et al. (2020) found that the relationship be-
tween GPP and precipitation differed greatly under different

vegetation types and climatic conditions; precipitation and
GPP were significantly and positively intercorrelated in the
savanna region, while in the Amazon rainforest, increased
precipitation weakened vegetation photosynthesis. Overall,
the impacts of precipitation extremes on terrestrial ecosys-
tem productivity and the carbon budget are still poorly un-
derstood.
With ongoing global changes and associated ecological

research, a complicated feedback phenomenon in the land-
vegetation-water–atmosphere system has been reported,
which not only determines the energy and water balance in a
basin or at a regional scale but also plays an important role in
affecting the global climate system (Wen et al., 2019). Some
studies have attempted to examine the evolution mechanisms
of precipitation extremes from the perspective of atmo-
spheric thermodynamics. According to the Clausius-Cla-
peyron (C-C) thermodynamic relationship, Allan and Soden
(2008) found that the atmospheric water vapor holding ca-
pacity increases at a rate of approximately 6.8% °C–1 (C-C
scaling) with warming temperature. As water vapor in the
troposphere (especially that in the boundary layer) is the
material basis for precipitation generation, numerous studies
have established governing equations for atmospheric water
vapor content and examined the response of daily global
precipitation extremes to climate warming. The results of
these studies have shown that precipitation extremes in most
regions of the globe show a sub-C-C scaling rate (less than
6.8% °C–1) or a negative rate (Zeder and Fischer, 2020). A
few studies have found that the response of precipitation
extremes to climate change varies at different temporal
scales, and the scaling rates of subdaily (e.g., hourly or
minutely) precipitation extremes may exceed 6.8% °C–1

(Lenderink and Van Meijgaard, 2008; Prein et al., 2017;
Fowler et al., 2021). Recently, some studies have reported
that precipitation extremes in most regions of the globe show
a hook structure with near-surface temperatures, where ex-
tremes first increase and then decrease (Yin et al., 2018;
Sullivan et al., 2020). The hook structure has prompted ex-
tensive discussions on the application of the C-C thermo-
dynamic relationship. For example, Utsumi et al. (2011) and
Gao et al. (2018) attributed the hook structure of daily pre-
cipitation extremes to a decline in precipitation duration at
higher temperatures. Barbero et al. (2018) hold that relative
humidity (RH) plays an important role in modulating pre-
cipitation extremes in Australia and that the dew point
temperature can represent the water vapor condition better
than air temperature. Wang et al. (2017) and Gao et al. (2020)
found that a change in RH is a key driver for shaping the
hook structure, and the cooling effects of precipitation and
weather systems on temperature also play important roles.
Roderick et al. (2019) further found that when the air tem-
perature exceeded 28°C, the total column water vapor
(TCWV) of tropical areas decreased with warming tem-
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perature, thus resulting in precipitation declines. Overall, the
occurrence and development of precipitation depend both on
water vapor content and on the stability of atmospheric
stratification, which involves complex atmospheric thermo-
dynamic and dynamic effects, which are related to water and
heat factors (such as humidity, vertical velocity and con-
vective available potential energy (CAPE)). Previous studies
have rarely investigated the comprehensive driving me-
chanisms for extreme precipitation evolution, and the ther-
modynamic and dynamic responses of these events as well as
their ecohydrological effects are still poorly understood.
To reveal the thermodynamic driving mechanisms of

global precipitation extremes and their ecohydrological ef-
fects, this study utilizes over ten multisource datasets (i.e.,
satellite, reanalysis, climate model, land surface model,
machine learning reconstruction, and flux tower measure-
ments). We first assess the response of water-heat-carbon
flux to precipitation extremes and examine the impact of
hydrometeorological variables (e.g., temperature, precipita-
tion, soil moisture and terrestrial water storage) on an eco-
system carbon budget. We then investigate changes in the
intensity and duration of both subdaily and daily precipita-
tion extremes and examine the frequency, coverage area and
average intensity of three-dimensional precipitation events.
Based on extended Clausius-Clapeyron relationships, we
identify the scaling structure of multitemporal precipitation
extremes and their peak point temperature (Tpp). We attribute
the hook structures to vapor and energy factors (i.e., RH,
CAPE and TCWV) and attempt to explain the physical
mechanisms of the hook structures. Using projections from
five global climate models (GCMs) and three shared socio-
economic pathways (SSPs) under ISIMIP3b, we project the
shifts in the hook structures and their impacts on precipita-
tion extremes. Finally, we investigate the impacts of pre-
cipitation on ecosystem carbon budgets by using outputs
from the CLM4.5 model.

2. Data and materials

2.1 Multisatellite precipitation, GRACE and reanalysis

The MSWEP-V2 dataset is a second-generation global
multisatellite quantitative precipitation product released by
Princeton University, with spatiotemporal resolutions of 3 h
and 0.1°. It integrates multiple satellite retrieval data (in-
cluding CMORPH, GridSat, GSMaP and TRMM, etc.), over
70,000 ground stations (including WorldClim, GHCND,
GSOD and GPCC) and reanalysis data (ERA-Interim and
JRA-55) and has been corrected by global runoff observa-
tions (Beck et al., 2019). In this study, the 3 h precipitation
data from the MSWEP-V2 dataset from 1979 to 2017 are
used.
ERA5 is a fifth-generation atmospheric reanalysis dataset

produced by the European Centre for Medium Range
Weather Forecasts (ECMWF), which has provided hourly
meteorological data with a spatial resolution of 0.25° glob-
ally since 1979 (Nogueira, 2020). In this study, we collect
hourly precipitation, 2 m temperature, 2 m dew point tem-
perature, air pressure, moisture flux convergence (MFC),
latent heat flux, sensible heat flux, convection inhibition
energy (CIN), CAPE and TCWV from 1979 to 2020. We also
use hourly RH at the 1000 hPa level and finally integrate all
the variables into a daily scale.
The GRACE/GRACE-FO satellite can effectively reflect

the gravity changes caused by snow and ice, surface water,
soil water, groundwater, and human factors, thus enabling
the monitoring of the terrestrial water storage anomaly
(TWSA) signal (Sun et al., 2015; Deng et al., 2022). The
latest sixth generation (RL06) products generated by the Jet
Propulsion Laboratory (JPL) of the California Institute of
Technology in the U.S., the Center for Space Research
(CSR) at the University of Texas at Austin, and NASA’s
Goddard Space Flight Center (GSFC) are used in this study.
These products all provide monthly equivalent water height
data based on the mass concentration block (mascon) solu-
tion. The three GRACE/GRACE-FO datasets are inter-
polated to a 0.5°×0.5° grid, and the global monthly TWSA
series during 2002–2020 are finally obtained by averaging
these products at each time step.

2.2 FLUXNET2015 dataset and climate model outputs

The FLUXNET2015 dataset contains observational records
from 212 flux towers around the world, providing a new way
to assess carbon-water-energy exchange processes between
the biosphere and atmosphere. In this study, 69 flux stations
with more than 5 observational years were screened, cover-
ing a variety of vegetation types, including grasslands,
evergreen needleleaf forest, evergreen broadleaf forest, de-
ciduous broadleaf forest and croplands (Figure 1). To in-
vestigate the processes for the water and carbon budget of
ecosystems, we use several variables, such as 30 min (or
hourly) precipitation, soil water content (including all soil
layers), GPP and total ecosystem respiration (TER). TER
contains both vegetation autotrophic respiration and soil
heterotrophic respiration. These data are processed following
a consistent and uniform processing pipeline. We use pre-
cipitation and soil moisture that are gap-filled using the
marginal distribution method. NEP is obtained using a
variable friction velocity (u*) threshold for each year, with
references selected on the basis of model efficiency, and is
partitioned into GPP and TER following the night-time
partitioning method. We also use a 4D solar-induced chlor-
ophyll fluorescence (SIF) dataset with a spatial resolution of
0.5° covering 2000–2020, which is generated by training a
machine learning algorithm on the daily OCO-2 SIF ob-
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servations with colocation nadir BRDF-adjusted reflectance.
For the purpose of projecting future climatic conditions,

the outputs of GCMs under the Coupled Model Inter-
comparison Project Phase 6 (CMIP6) are used. Compared
with its predecessor (CMIP5), CMIP6 is constrained by a
matrix framework of both SSP and the representative con-
centration pathway (RCP). As the GCM outputs have coarse
spatial resolution and large systematic biases, Lange (2019)
employed a parametric quantile mapping approach based on
trend preservation to correct the biases of eleven daily
variables (e.g., precipitation and temperature) and released
these data under three SSPs (SSP126, 370, and 585) under
ISIMIP3b. During the bias correction procedure, this dataset
takes the interdependence of different variables into con-
sideration and is produced at a uniform spatial resolution
(0.5°×0.5°). The ISIMIP3b dataset includes outputs from
five GCMs: GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-
HR, MRI-ESM2-0 and UKESm1-0-LL. In this study, the
daily average temperature and total precipitation from three
SSPs and five GCMs (15 scenarios) under the ISMIP3b are
used, and the historical (future) period is set to 1985–2014
(2071–2100).
To simulate the response of ecosystem productivity to

climate change, it is usually necessary to build coupled
models of earth system models and land surface models. As
ISIMIP3b has not released carbon flux data, the corrected
outputs of GFDL-ESM2 M under the ISIMIP2b framework
are used to drive the CLM4.5 model, and monthly carbon
flux data under two RCPs (RCP2.6 and RCP6.0) from 1985
to 2099 are obtained. The CLM4.5 outputs contain GPP,
autotrophic respiration and heterotrophic respiration, and the
TER and NEP data are further calculated. CLM4.5 is the land
surface module of the community earth system model.
Compared with the previous version, the parameterization
scheme of CLM4.5 is greatly improved, and it can describe
various aspects of land surface processes, including surface

heterogeneity, biogeophysical processes, hydrologic cycles,
biogeochemical processes, human impacts and ecosystem
dynamic processes. To ensure data consistency when in-
vestigating the impacts of future precipitation on an eco-
system carbon budget, precipitation and temperature data of
GFDL-ESM2M under ISIMIP2b are also obtained. The data
from 2006 to 2014 under RCP2.6 are blended into the his-
torical period to achieve consistency for the same research
period under ISIMIP3b.

2.3 Other datasets

To validate the performance of the reanalysis dataset, this
study uses temperature data from HadISD developed by the
Met Office Hadley Centre (Smith et al., 2011). HadISD has
been checked and corrected for strict quality control and
contains subdaily meteorological data from 9278 stations,
covering the period from January 1931 to September 2021.
In this study, 3 h near-surface temperatures during 1979–
2020 are selected; for those stations providing hourly data,
we obtain the 3 h data through temporal transformation.
The goal of the Global Land Data Assimilation System

(GLDAS) is to process satellite- and ground-based ob-
servational data products using advanced land surface
modeling and data assimilation techniques to generate opti-
mal fields for land surface states and fluxes. The latest
GLADS-2.2 assimilates CLSM outputs and GRACE/
GRACE-FO satellite signals, which has produced a daily
TWSA series with 0.25° spatial resolution during 2003–2020
(Save et al., 2016). Following the processing procedures of
GRACE/GRACE-FO, we subtract the mean field of
GLADS-2.2 from 2004 to 2009 and then obtain the daily,
global TWSA series.
CERES (Clouds and the Earth’s Radiant Energy System) is

an important part of the Earth observation project, which has
advanced the International Satellite Cloud Climatology

Figure 1 Global land use/cover types and 69 selected flux towers. Data source: MODIS MCD12Q1.
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Project (ISCCP) and Earth Radiation Budget (ERB) ob-
servations. CERES involves a high level of data fusion.
During the CERES period, the team processed data from 7
CERES instruments, 2 MODIS, 2 VIIRS and 20 geosta-
tionary imagers, and these were integrated to achieve climate
accuracy in radiative fluxes from the top to the bottom of the
atmosphere (Loeb et al., 2005). This study selects the net
radiation flux at the top of the atmosphere from the SYN
dataset in the CERES system, which blends CERES flux
observations, MODIS-retrieved cloud characteristics and
Earth synchronous satellite imaging products. The radiation
data were subjected to a quality control process and cali-
bration and were generated at 1° and hourly resolutions. In
this study, we only use data from 2000 to 2020.

3. Methods

3.1 Deriving near-surface relative humidity and spe-
cific humidity

The C-C thermodynamic equation can be used to describe
the nonlinear relationship between saturation vapor pressure
(esat) and temperature (T) (Koutsoyiannis, 2012):

e T e L
R T T( ) = exp 1 1 , (1)s

v

v
sat 0

0

where T0=273.16 K and es0=611 Pa are integration constants
and Lv and Rv refer to the latent heat of vaporization
(2.5×106 J kg−1) and vapor gas constant (461 J kg−1 K−1),
respectively.
As the dew point temperature (Tdew) represents the tem-

perature at which water vapor is saturated under constant
water vapor content and pressure, it can be used to measure
the actual water vapor pressure with the C-C relationship.
Relative humidity can be deduced by substituting T2m and
Tdew into eq. (1) as RH=esat(Tdew)/esat(T2m).
The specific humidity (SH) refers to the ratio of the water

vapor mass to the total air mass, which can be estimated by
near-surface pressure (p) and Tdew (Simmons et al., 1999):

q e T
p e T= 0.622 ( )
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3.2 Binning scaling between extremes and temperature

The binning scaling technique can describe the nonlinear
relationship between different variables well and has been
widely used to evaluate the response of precipitation ex-
tremes to global warming (Wasko et al., 2019). In each grid
or station, the daily precipitation intensity and the same-day
temperature data are paired and placed into 12 bins by
clustering temperature such that the near-surface tempera-
tures are similar in each bin. Within each bin, precipitation
intensities are ranked to determine the five largest pre-

cipitation events with intensities exceeding the 99th per-
centile extreme, and the mean temperature of the events in
this bin is used to represent local temperature.
The differential form of the C-C relationship can be ex-

pressed as (Yin et al., 2021a):

de
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As convective intensity is closely governed by atmo-
spheric moisture availability, in the absence of relative hu-
midity change, an exponential regression could be
established in linking precipitation rates to the near-surface
temperature variation δT (Yin et al., 2021b):

( )P P= 0.01 + 1 , (4)p
T

2 1

where P1 and P2 indicate different precipitation extremes
averaged by the five largest events in each bin, and αp de-
notes the scaling rate.
Numerous studies have classified the scaling types of

precipitation extremes into three categories: monotonic in-
creasing, monotonic decreasing and a hook structure. To
detect the scaling types, the temperature at which precipita-
tion peaks, Tpp, is identified from the locally weighted re-
gression smoothing (LOWESS) approach. If Tpp is located in
the highest (or lowest) temperature bin, the scaling type is
monotonically increasing (or decreasing). Otherwise, the
scaling type is identified as having a hook structure. In a
hook structure, the regression curve is fitted only up to Tpp
(Yin et al., 2018, 2021a). To investigate the impacts of at-
mospheric thermodynamics and dynamics on precipitation
extremes, we also estimate the temperature scaling rate of
TCWV, CAPE and RH during precipitation extremes.
Both the MSWEP-V2 and ERA5 datasets are used to

characterize the scaling relationship between multitemporal
precipitation extremes and daily average temperature, and
the LOWESS method is used to identify the scaling types.
When evaluating the temperature scaling of subdaily pre-
cipitation extremes, we still employ the daily average tem-
perature because the subdaily temperatures are highly
influenced by boundary layer activities and are not suitable
for measuring the atmospheric moisture content (Lenderink
and Van Meijgaard, 2008). In previous climate change im-
pact assessments, only precipitation events with rates over
0.1 mm were considered when defining an extreme event
(e.g., Yin et al., 2018; Sullivan et al., 2020), which is a “wet-
event” definition scheme. More recently, a few studies have
found that the occurrence of precipitation events has been
altered due to climate change and human activities. As the
wet-event definition method may achieve results contrary to
the real situation (Appendix Figure S1, https://link.springer.
com), some studies suggest that all data should be used in
defining an extreme precipitation event, which is called an
“all-event” scheme (Schär et al., 2016). In this study, we
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adopt these two definitions to estimate the 99th percentile
precipitation in temperature bins and then investigate the
response of precipitation extremes to climate change.

3.3 Spatiotemporal identification of three-dimensional
precipitation events

Previous studies have usually examined the changes in pre-
cipitation extremes at a given time scale (e.g., daily or
hourly). However, severe precipitation events that cause
large amounts of damage usually exhibit a certain space-time
continuity. For example, precipitation over a longer duration
or larger coverage area is likely to trigger more severe flood
hazards and socioeconomic losses (Dwyer and O’Gorman,
2017; Blöschl et al., 2020). In this study, we assume pre-
cipitation to be a three-dimensional event (longitude-lati-
tude-time) and examine its changes. The three-dimensional
precipitation events are identified by employing the fol-
lowing steps.
(1) Identifying precipitation patches. A minimum pre-

cipitation threshold P0 (0.1 mm/3 h in this study) is set to
identify the wet-day state of each grid. For each time step t,
global precipitation events are clustered into several patches
with consideration of spatial continuity, and then the matrix
of patches (L) is obtained.
(2) Identifying the temporal continuity of precipitation

patches. As precipitation events with wide coverage and long
duration receive more attention in the field of climate
change, we omit small patches that cover less than the
minimum precipitation area A0 (five grids in this study). As
shown in Figure 2, it is assumed that there are precipitation
patches Et−1 and Et at t−1 and t at two adjacent time steps,
respectively, and their overlap area A on the two-dimensional
projection plane is calculated. If A>A0, Et−1 and Et are clus-
tered into the same precipitation event; otherwise, they be-
long to different precipitation events (Xu et al., 2019).
(3) Extracting three-dimensional precipitation events. We

repeat step (2) until the final time step, and then all the

precipitation patches with spatiotemporal continuity are un-
iquely labeled.
The average intensity (IE) of three-dimensional precipita-

tions is calculated as follows:

I
G P

NT
= , (5)E

t

NT

j

N
j t j t j

j

N
j

=1 =1
, ,

=1

where NT and N denote the lasting time and covering grid
number, respectively; ωj denotes area weights at different
latitudes, and Pt, j is precipitation intensity at time t and grid j;
Gt, j is an indicator function, when Gt, j≥P0, Gt, j=1; otherwise,
Gt, j=0.

3.4 Assessing the response of the ecosystem carbon
budget to precipitation events

GPP, TER and NEP are often used to evaluate the carbon
budget processes of an ecosystem. Chlorophyll fluorescence
rereleases energy at longer wavelengths after light absorp-
tion during vegetation photosynthesis, which can directly
reflect the electron transfer rate during the light reaction
process, and the electron transfer rate is regulated by the
carbon reaction rate of photosynthesis. Therefore, chlor-
ophyll fluorescence remote sensing technology has been
regarded as one of the most important breakthroughs in the
field of vegetation remote sensing in the last decade, and SIF
is also used as an ideal proxy for GPP during plant photo-
synthesis (Zhang et al., 2020). We first calculate the mean
values of SIF on clear days (delayed 1–2 days after pre-
cipitation events) and during the whole study period, with the
aim of evaluating the impact of precipitation on ecosystem
carbon assimilation. To analyze the SIF response to different
precipitation intensities, we classify the precipitation events
during the warm season into three bins (segmented by the
10th and 50th percentile intensities). Finally, in each in-
tensity bin, we examine the differences in the mean values of

Figure 2 Schematic for identifying three-dimensional precipitation events.
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SIF on clear days after precipitation events and on all clear
days.
To analyze the response of the ecosystem carbon budget to

precipitation, we further use the measurement data (soil
moisture, precipitation, air temperature, GPP, TER, and
NEP) from 69 flux stations across the globe. At each site, the
warm season is defined as days when running 7-day mean
temperatures are higher than the 60th percentile of the daily
temperatures. We sort the observed daily precipitation and
temperature at the flux tower sites into 10×10 percentile bins
at each site and calculate the mean anomalies of GPP, TER,
and NEP in those bins across the 69 sites. The binning
method can well describe the relationship between multiple
variables; please refer to Zhou et al. (2019) for detailed
processing procedures. To comprehensively examine the
effects of different hydrometeorological factors on the car-
bon budget, air temperature is further replaced by soil
moisture and TWS for the above binning analysis, using both
daily TWS data from GLADS-2.2 and monthly TWSA series
from the GRACE/GRACE-FO dataset. Finally, with carbon
flux data simulated by the CLM4.5 model under ISIMIP2b,
we assess the impact of different precipitation intensities on
the carbon budget under climate change.

4. Results and discussion

4.1 Response of water-heat-carbon flux to precipitation
extremes

By using the empirical distribution method, the threshold for
precipitation extremes (i.e., 90th percentile of daily pre-
cipitation intensity) during 1979–2020 is estimated by the
ERA5 dataset, and then the spatial distribution of global
precipitation extremes is presented. Tropical oceans have
higher precipitation extremes, and the intensity of pre-
cipitation extremes in coastal lands is usually higher than that
in inland areas, suggesting the important role of the ocean in
supplying moisture for precipitation generation (Figure 3a).
To analyze the response of the land-atmosphere system to
precipitation extremes, we calculate the average difference
of each factor during heavy precipitation (precipitation in-
tensity exceeding the 99th percentile) and non-precipitation
days (precipitation intensity less than 1 mm d−1). The con-
sidered hydrometeorological variables mainly involve three
types: (1) humidity factors, including RH, SH, TCWV and
MFC; (2) energy factors, including sensible and latent heat
flux (upward positive), CAPE and CIN; and (3) atmospheric
dynamic factors, represented by vertical velocity (upward
positive). Humidity, energy and atmospheric dynamic factors
play key roles in convection and precipitation generation in
the atmospheric boundary layer, which are highly correlated,
so it is often difficult to identify the driving forces behind
individual factors on precipitation. Therefore, this study

comprehensively analyzes their impact on precipitation. As
shown in Figure 3, there are significant differences in these
water-heat variables between precipitation and non-
precipitation conditions. During precipitation extremes,
MFC is enhanced (Figure 3b), indicating that the suction
function of the surrounding water vapor is an important
factor feeding precipitation extremes. Land and ocean show
different heat exchange patterns; precipitation is accom-
panied by phase transition, the land boundary layer releases a
large amount of latent heat (Figure 3e), and the sensible heat
flux transmitted from the surface to the atmosphere is wea-
kened (Figure 3d), thus cooling the near-surface temperature
of most global lands (Figure 3f). The ocean provides suffi-
cient moisture for atmospheric convection, and the latent
heat even decreases in some sea areas during precipitation
extremes (Figure 3e). As a result, the ocean becomes the
main heat source, and the heat transmitted to the atmosphere
increases in most sea areas (Figure 3d), thus warming the air
temperature above the ocean (Figure 3f). CAPE is an im-
portant indicator for describing atmospheric thermal char-
acteristics, representing the maximum potential energy of air
blocks for convection, which is often used to measure the
instability of atmospheric stratification and the development
of convection intensity (Yin et al., 2022). CIN represents the
energy that prevents air blocks from rising from the ground
to the height of free convection. A high CIN indicates that
the atmosphere tends to be stable, which hinders the gen-
eration of thunderstorms and is often regarded as an energy
indicator opposite to CAPE. As shown in Figure 3j, CAPE
(CIN) during precipitation extremes increases (decreases),
and the vertical velocity is significantly enhanced (Figure
3l), suggesting that strong energy transport and upward air
movement contribute to enhanced precipitation. The air up-
draft process provides a large amount of water vapor to the
middle and upper atmosphere, resulting in increases in both
RH and SH (Figure 3g–3h), and contributes to TCWV en-
hancement (Figure 3i). The increase in atmospheric water
vapor content further promotes increases in convection and
in the formation of precipitation extremes, suggesting a
complex feedback mechanism between precipitation and the
water-heat exchange process of the land-atmosphere-ocean
system. The feedback process between water-heat variables
and precipitation extremes on land is generalized in Figure
S2.
After deriving the warm season (i.e., three continuous

months of the highest temperature months) for the global
grids (Figure S3a), we calculate the average difference be-
tween the SIF values of clear days after precipitation events
and the SIF values of dry days during the warm season.
Higher GPP often occurs after precipitation events (Figure
3c), suggesting the important role of precipitation in pro-
viding water conditions for vegetation photosynthesis and
ecosystem carbon assimilation. Figure S4 presents the dif-

7Yin J, et al. Sci China Earth Sci



ferences between the mean SIF of clear days after pre-
cipitation events under different intensities and the mean SIF
of all clear days during the warm season. During a pre-
cipitation event, although the daily precipitation intensity
only reaches the 10% threshold of the cumulative distribu-
tion function, SIF in most regions of the globe is higher than
the average state (Figure S4a), which further confirms the
important role of precipitation on vegetation photosynthesis.
In some alpine regions, the SIF after precipitation is lower
than the average state because snow and glaciers may pro-
vide the necessary water conditions for vegetation, and fur-
ther precipitation may exceed the required water for
vegetation growth. Precipitation events in this region may
also be accompanied by low radiation and cold temperatures,

which can negatively affect vegetation growth. When the
daily precipitation increases to a certain intensity, SIF will
not continue to increase with increasing precipitation. Under
some conditions over humid areas, SIF may decrease with
increasing precipitation intensity (Figure S4b, S4c), imply-
ing that a linear function cannot be directly used to measure
the relationship between precipitation and ecosystem pro-
ductivity; therefore, a complex nonlinear response relation-
ship should be considered. Following the method illustrated
in Section 3.4, Figure 4 presents the results of the response
pattern for the carbon budget to precipitation considering a 1-
day lag. Compared with precipitation, air temperature shows
stronger effects on the ecosystem carbon budget. Plant
photosynthesis and respiration reach an average state only

Figure 3 Global daily precipitation extremes and their impacts on water-heat-carbon variables. (a) Spatial distribution of global 99th percentile daily
precipitation extremes. (b), (d)–(l), Anomalies of variables in precipitation extremes. (c) Differences in average SIF values on clear days after precipitation
and on all non-precipitation days.
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when the air temperature rises to a certain degree. When soil
moisture is too high (e.g., over 80% percentile), the carbon
exchange rate between the vegetation and atmosphere is

significantly reduced, which may be due to constraints to the
root function caused by waterlogging stress, thus limiting the
uptake of water and nutrients by vegetation. These conclu-

Figure 4 Impacts of precipitation, temperature, soil moisture and TWS on the ecosystem carbon budget. The first, second and third columns represent
anomalies of GPP, TER and NEP, respectively. The abscissa represents precipitation percentiles, while the ordinates of each row indicate temperature, soil
moisture, TWS from GLADS, and TWS from GRACE. The binning probability is averaged from 69 global flux tower results.
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sions are also confirmed by two TWS datasets as well as by
2-day lags (Figure S5). It is further found that moderate
precipitation can promote photosynthesis and respiration
rates, while excessive precipitation (e.g., over the 90th per-
centile) may reduce NEP. When soil moisture is lower than
the 20th percentile, NEP will be weakened by either a very
low (less than the 30th percentile) or very high (heavier than
the 70th percentile) level of precipitation.
When soil moisture reaches the 40th–50th percentile,

heavy precipitation may reduce NEP, but the NEP is still
higher than the average state. The above results show that the
ecosystem carbon budget is affected by multiple factors, and
it can be evaluated well only when multivariate processes are
taken into consideration. Generally, vegetation growth and
carbon assimilation lead precipitation, temperature, soil
moisture, and the TWS range to be in the average state
(40th–70th percentile); extremely cold/hot or dry/wet con-
ditions weaken the carbon assimilation capacity of the eco-
system.

4.2 Spatiotemporal evolution pattern of global pre-
cipitation extremes

The global long-term trends in the intensity of daily and
subdaily precipitation extremes are estimated by using the
MSWEP-V2 and ERA5 datasets, respectively. First, the daily
maximum 3 h (1 h) precipitation and daily total precipitation
are calculated based on the MSWEP-V2 (ERA5) dataset.
The daily precipitation extremes in each year are extracted
by the 99th percentile of the daily series, and subdaily ex-
tremes are represented by the 99th percentile of the daily
maximum 1 h (ERA5) or 3 h (MSWEP-V2) precipitation
intensity. Finally, the long-term trend for the annual extremes
is investigated in each grid. In the past 40 years, the intensity
of precipitation extremes has significantly increased in most
areas of the globe (Figure 5a, 5d). The trends in some regions
might differ from different datasets; the MSWEP-V2 dataset
shows that the precipitation intensity over the tropical ocean
is decreasing, while the ERA5 dataset suggests an overall
tendency toward intensification of precipitation extremes.
Figure 5e and 5f shows that the trend in the annual average
duration of global precipitation events is shortening, sug-
gesting that the temporal distribution of precipitation events
has been altered and precipitation events are becoming more
concentrated.
To further explore the spatiotemporal distribution of pre-

cipitation extremes, three-dimensional precipitation events
are identified by the MSWEP-V2 dataset (1979–2017), and
then the monthly occurrence, average coverage grids and
intensity over ocean and land are calculated. As shown in
Figure 6, more three-dimensional precipitation events occur
over the ocean than over land, and the coverage area (in-
tensity) over the ocean is larger (lower) than that over land.

In the past 40 years, the average coverage area (frequency
and intensity) of three-dimensional precipitation events over
land and ocean has decreased (increased) significantly, fur-
ther confirming that the spatiotemporal distribution of global
precipitation extremes is more concentrated and that short-
duration, heavy precipitation events have occurred more
frequently.

4.3 Temperature scaling of global precipitation ex-
tremes and hook structures

Figure 7a–7d presents the scaling types of precipitation ex-
tremes as well as the Tpp of the hook structure under the all-
event definition. High latitudes generally show a monotonic
increasing scaling type, and the middle latitudes usually have
a hook structure. Tropical lands usually show a mono-
tonically decreasing scaling type, while tropical oceans
generally have a hook structure or a monotonically increas-
ing type. Compared with the precipitation extremes at the
subdaily (1 or 3 h) scale, the daily precipitation extremes are
more likely to exhibit a monotonic increasing type. Com-
paring the results of the all-event and wet-event schemes, it is
found that the scaling structures of precipitation extremes in
tropical land regions show large differences (Figure S6). For
example, in the Indian Peninsula, Indochina Peninsula, parts
of Africa, and northern Australia, precipitation extremes
under the wet-event (all-event) definition show a monotonic
decreasing (hook) type, implying the important role of dif-
ferent definitions of precipitation extremes on scaling
structures. The scaling rates of multitemporal precipitation
extremes in high latitudes are usually lower than 6.8% °C–1

(sub-CC scaling), while some regions of the mid-latitudes
show a scaling rate of approximately 6.8% °C–1. Tropical
lands generally show a negative scaling rate, while some
areas in the tropical ocean show a higher scaling rate (over
20% °C–1), which may be explained by the greater amount of
moisture present in the ocean, but moisture transport to land
is constrained. The scaling rates of daily and subdaily pre-
cipitation extremes are similar over most regions of the
globe, albeit with large degrees of uncertainty and spatial
heterogeneity. Under the wet-event (all-event) definition,
central America, southern Africa, the Indian Peninsula, the
Indochina Peninsula and northern Australia show negative
(positive) scaling rates for precipitation extremes. In south-
central Australia and some regions of east and middle Asia,
the wet-event and all-event definitions show near C-C and
super C-C scaling rates, respectively. We further assess the
scaling rates of precipitation extremes at different temporal
scales by using HadISD temperature and MSWEP-V2 pre-
cipitation and find very few differences from the reanalysis
results (Figure S7). The above results show that the scaling
types and rates are similar under multitemporal precipitation
extremes, while different extreme definition methods have
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significant impacts on the response pattern.
According to the C-C thermodynamic relationship, the

saturated vapor pressure in the atmosphere nonlinearly in-
creases with increasing temperature. Why do global pre-
cipitation extremes exhibit a hook structure? To illuminate
this issue, the trends in TCWV, CAPE and RH for daily
precipitation events exceeding the annual 99th percentile are
estimated. The CAPE and TCWV in precipitation extremes
increased significantly (Figure 8c, 8d), while the RH in most
regions of the globe showed a decreasing trend (Figure 8a,
8b). W further estimated the temperature scaling rates of RH,
CAPE and TCWV and found that CAPE usually had a
scaling rate of over 6.8% °C–1 (Figure 8e), suggesting its
positive role in intensifying precipitation extremes. The
TCWV shows sub-C-C scaling and even a negative rate in
the tropics (Figure 8g), which is because the actual atmo-
spheric vapor pressure is determined by both esat and RH.

Although esat increases with warming temperature at a rate of
C-C scaling, the RH decreases significantly with temperature
in a hotter environment (Figure 8f). The constraints due to
the water moisture supply in a hot environment reduce the
scaling rate of TCWV and thus limit precipitation in-
tensification, suggesting that the hook structure might be
attributed to dynamic constraints.
To explore the influences of global precipitation extremes

on the terrestrial water cycle, we further estimate the long-
term trends in several variables (i.e., daily average top of
atmospheric net flux, daily near-surface temperatures, and
monthly TWS of GRACE/GRACE-FO). Under the impact
of the “greenhouse effect”, the atmospheric radiation budget
has been altered, and global net radiation has increased
significantly (Figure 8h). As a result, global near-surface
temperatures are greatly warming (Figure 8i), and the at-
mospheric water vapor holding capacity is therefore in-

Figure 5 Global trends in the intensity and duration of multitemporal precipitation. (a), (b), Subdaily precipitation intensity; (c), (d), daily precipitation
intensity; (e), (f), precipitation duration. The right bar indicates average trends in each latitude band.
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creasing. Despite the dynamic constraints, precipitation ex-
tremes over most regions of the globe are still increasing
(Figure 5). In the context of global warming, the TWS over
most regions of the globe shows a drying tendency (Figure
8j), which seems to be contrary to the intensification of
precipitation extremes. To investigate this issue, we estimate
the Spearman correlation coefficient between TWSA (from
both GLDAS and GRACE/GRACE-FO) and near-surface
temperatures in the warm season and plot the binning
probability averaged from global grids. We find that both
monthly and daily TWSA have a negative correlation with
near-surface temperatures globally (Figure S8). Increases in
precipitation extremes do not imply a wetting tendency on
land, and most parts of the globe are becoming dry, which
might be due to the comprehensive influences of soil, eva-
potranspiration, vegetation physiology, rapid urbanization,
industrial and agricultural water withdrawal, water diversion,
and overextraction of groundwater (Wang et al., 2021).

4.4 Projections of global precipitation and impacts on
the carbon budget

The spatiotemporal evolution pattern for precipitation is
particularly complex. With the outputs of five GCMs under
ISIMIP3b, we estimate the changes in daily precipitation
extremes (99th percentile) late in this century (2071–2100)
with the baseline of the historical period (1985–2014) under

three SSPs. All 15 scenarios projected a significant in-
tensification in global precipitation extremes in the future
climate. Precipitation extremes exhibit the highest rate of
increase (15–40%) under SSP585; SSP126 shows a rela-
tively lower rate of increase, but most global regions still
have an increase rate of over 10% (Figure 9).
Why do precipitation extremes increase under the con-

straint of a hook structure? To probe this issue, Figure 10
presents future changes in the scaling type projected by the
GCMs. As the scaling types can be classified into three ca-
tegories during both historical and future periods, there are
nine possible categories for future changes. For example, ‘D-
H’ indicates that the scaling type changes from a monotonic
increasing type (D) to a hook structure (H) under climate
change (Figure 10). As shown in Figure 10, precipitation
extremes in most parts of the globe present a hook structure
during both historical and future periods, and their Tpp values
are projected to increase by 1–5°C by the end of this century.
These results indicate that the scaling structures are unstable
and can dynamically shift with climate warming. Despite
being constrained by atmospheric dynamics, the precipita-
tion intensity at Tpp increase with shifts in hook structures.
Portions of the tropics show a monotonic decreasing type
during both historical and future periods, but the precipita-
tion extremes are still projected to increase. This is because
the D-type scaling curve shifts toward the warming side in
future climates, resulting in an intensification in precipitation

Figure 6 Interannual changes in the pattern of global three-dimensional precipitation events over land and ocean. The blue solid line and shading indicate
monthly average values and 95% confidence intervals, respectively, and the red line represents trends.

12 Yin J, et al. Sci China Earth Sci



extremes for the coldest temperatures (Tpp of the D-type
curve). Although the results are accompanied by uncertainty
originating from the different GCMs (e.g., UKESM1-0-LL
usually projects a stronger changing signal), the main con-
clusion of future precipitation intensification is robust.
To investigate the impact of future precipitation on the

ecosystem carbon budget under climate change, we quanti-

fied the response of GPP, TER, NEP, autotrophic respiration
(Raut), and soil heterotrophic respiration (Rhet) to pre-
cipitation by using outputs from the Earth system model
(ESM) and community land surface models. Due to the lack
of daily carbon flux data under the model simulations, we
conduct the analysis at a monthly scale. First, the warm
seasons in each grid are identified by using the historical

Figure 7 Scaling structure, peak point temperature and scaling rate of global precipitation extremes under the all-event definition. (a)–(d), Scaling structure
and peak point temperature of subdaily ((a), (b)) and daily ((c), (d)) precipitation extremes. (e)–(h), Scaling rate of subdaily ((e), (f)) and daily ((g), (h))
precipitation extremes. The right bar indicates the average scaling rate of each latitude band.
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temperature outputs of GFDL-ESM2 M (Figure S3b), and
then the carbon flux anomalies under two different water
stresses are calculated under two RCPs. Figure 11 (Figure
S9) presents the anomaly of carbon budget fluxes in months
with precipitation exceeding the 90th (below the 10th) per-
centile with reference to the overall warm season. It is found
that photosynthesis and respiration of ecosystems are higher
in most regions of the globe when precipitation is abundant,
except in a few alpine, plateau or coastal areas. Net eco-

system productivity is higher under moderate precipitation
conditions across most regions of the globe, but it is lower in
some coastal or humid regions, which may be caused by
differences in water conditions arising from regional topo-
graphic and climatic conditions. To test the sensitivity of
different precipitation threshold effects on the carbon budget,
Figures S10 and S11 present the carbon budget flux
anomalies under conditions in which the high/low pre-
cipitation conditions are defined by 99 and 1%, respectively.

Figure 8 Trends and scaling rates of different meteorological variables during 1979–2020. (a)–(d), Trends in relative humidity, CAPE and TCWV during
precipitation extremes. (e)–(g), Scaling rate of near-surface temperature with CAPE, relative humidity and TCWV. (h)–(j), Trends in top of atmospheric net
flux, near-surface temperature and terrestrial water storage.
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It is found that the main conclusions still hold true, but the
differences in NEP are more significant than those under the
90/10% conditions. Moreover, the different RCPs have very
few impacts on the ecological effects of precipitation, and
there is no significant difference in the response of the
ecosystem carbon budget to precipitation conditions in the
historical and future periods. Overall, the CLM4.5 projects
that moderate precipitation contributes to carbon assimila-
tion in ecosystems, and the response of the carbon budget to
precipitation is stable under climate change.

5. Conclusions

This paper utilizes MSWEP-V2, ERA5 atmospheric re-
analysis, GCM outputs, CLM4.5 outputs, HadISD mea-

surements, GLADS system, GRACE/GRACE-FO dataset,
global flux tower measurements, a machine-learning-gener-
ated dataset, and radiation from the CERES project. We first
assess the response of the water-heat-carbon flux to pre-
cipitation extremes and examine the impacts of hydro-
meteorological variables (e.g., temperature, precipitation,
soil moisture and TWS) on the ecosystem carbon budget. We
then investigate changes in the intensity and duration of
precipitation extremes at different time scales and examine
the frequency, coverage area and average intensity of three-
dimensional precipitation events over global lands and
oceans. Based on the extended C-C relationship, we identify
the scaling structure of multitemporal precipitation extremes
and their Tpp and explain hook structures by examining the
impacts of vapor and energy factors (i.e., RH, CAPE and
TCWV) on precipitation. Using projections from five GCMs

Figure 9 Relative changes in precipitation extremes by the late century under three SSPs.
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and three SSPs under ISIMIP3b, we project the shifts in the
hook structures and their impacts on precipitation extremes
and finally investigate the impact of precipitation on the
ecosystem carbon budget by using outputs from the CLM4.5
model.
This study investigates the thermodynamic driving me-

chanisms of global precipitation extremes and ecohy-
drological effects and finds complex feedback mechanisms
between precipitation and water-heat transport in the land-
vegetation-atmosphere system. Precipitation provides im-
portant water conditions for ecosystem productivity and
carbon assimilation, but a severe rain event can reduce
ecosystem productivity. The carbon budget processes are
governed by multiple factors, such as temperature, soil

moisture and TWS, and temperature plays a dominant role.
In the past 40 years, the average coverage area (frequency
and intensity) of three-dimensional precipitation events over
lands and oceans has decreased (increased) significantly,
further confirming that the spatiotemporal distribution of
global precipitation extremes has become more concentrated
and that short-duration heavy precipitation events have oc-
curred more frequently. The precipitation extremes in high
latitudes are usually of a monotonically increasing scaling
type, while those of the middle-latitude regions show a hook
structure. Tropical land regions generally have a mono-
tonically decreasing scaling type, while the tropical oceans
show a hook structure or a monotonically increasing scaling
type. In high- and mid-latitude regions, precipitation ex-

Figure 10 Changes in scaling structures and peak point temperatures of precipitation extremes under three SSPs.
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tremes generally show sub C-C scaling, while tropical lands
(oceans) show a negative (super C-C scaling such as over
20% °C–1) scaling rate. The scaling types and rates are si-
milar under multitemporal precipitation extremes, while the
different methods for defining extremes have significant
impacts on the response patterns. CAPE shows a scaling rate
of over 6.8% °C–1, while TCWV and RH have a sub C-C
scaling or a negative rate, respectively, suggesting that the
declines in precipitation extremes in hotter environments as
well as the hook structures can be attributed to atmospheric
dynamics. In the context of global warming, the Tpp of the
hook structure is projected to increase 1–5°C, and the scaling
curves are shifting toward a warmer environment, which is
projected to result in a 10–40% intensification in precipita-

tion extremes by the end of this century. Moderate levels of
precipitation contribute to ecosystem carbon assimilation,
and the response of the carbon budget to precipitation under
climate change is stable.
This study only explores the trends in three-dimensional

precipitation events; it is necessary to further examine their
response patterns to atmospheric thermodynamics and dy-
namics and to evaluate the feedback mechanisms of the soil-
vegetation-atmosphere-ocean Earth systems. The underlying
physical mechanism for the formation of the hook structures
is very complex. In this study, only the impacts of RH, CAPE
and TCVW on precipitation are explored. The increases in
convective precipitation under high temperatures, the chan-
ges in cloud microphysical structure, the decreases in wet

Figure 11 Anomalies in carbon variables under high precipitation extremes (higher than 90% percentile) during historical and future periods.
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event duration, the cooling effects of precipitation and sea-
sonal changes in temperature are also important for shaping
the hook structures (Sullivan et al., 2020; Gao et al., 2020);
therefore, these mechanisms should be further quantified.
Ocean and land areas generally show different characteristics
for extreme precipitation evolution, and their thermo-
dynamic/dynamic response mechanisms may be different. It
is necessary to further explore the microphysical mechan-
isms for the evolution of extreme precipitation events over
ocean and land areas. Climate change, rapid urbanization, the
construction of water conservancy projects and other influ-
encing human activities affect extreme weather and climate
events. This study mainly considers the impact of climate
change, and future studies should be conducted to explore
the impact of human activities on extreme precipitation and
biogeochemical cycles.
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