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Abstract: Effects of external DC stimuli to the evolution of a neural network model are studied. It’s found that the
external DC stimuli can enhance the neural network’s average firing rate, induces the neural network to get to a balanced
state that exhibits rhythmic activity with high rate. The activity of the neural network can be affected by the synaptic
connection strength, the conduction delays, the external stimuli and so on. These parameters can serve as factors in
modulating the evolution of the neural network with different firing activities. Furthermore, these results may also relate
to the mechanism of memory and learning process.
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1 INTRODUCTION

For human being, the brain performs many sophisticat-
ed computational tasks with a fast speed and high preci-
sion unparalleled by present computers, such as image and
voice recognition. The mechanism of the brain achieves
such a function is helpful both to better understand the
brain and for the artificial applications induced by it[1].
Recent advances in brain research have generated renewed
awareness and appreciation that the brain operates as a
complex non-linear dynamic system, and synchronous and
phase-locked oscillations may play a crucial role in infor-
mation processing, such as feature grouping, saliency en-
hancing and phase-dependent coding of objects in short-
term memory [2, 3]. Learning is central to understand-
ing neuronal information processing, which has been s-
tudied from the molecular level up to the behavioral lev-
el. In more recent years, a new concept that temporal
order instead of frequency is more important in cellular
learning has been proposed. This new learning paradigm,
which known as spike-timing-dependent plasticity(STDP),
has rapidly get wide attention[1, 4]. Synaptic plasticity de-
scribes mechanisms that take place at the connection site
between two neurons (synapse), when the synaptic weight
related to the post-synaptic response to a single pulse is
strengthened (potentiation) or weakened (depression)[5].
The STDP model is a departure from traditional Hebbian
models of learning, which states that neurons that fire ac-
tion potentials together will have their interconnections
strengthened[4]. Perhaps because of STDP’s combination
of elegant simplicity, biological plausibility, and computa-
tional power, the research of STDP make a great progress
in many aspects. Previous studies have shown how STD-
P can implement input selectivity according to the spike-
time correlation structure of input spike trains for single
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neurons and feedforward networks [6, 7, 8]. STDP has al-
so been supposed to play a role in the hippocampus theta
phase precession phenomenon [9, 10]. Several more recen-
t studies of STDP have focused on parameterizing STD-
P with respect to factors such as rate, higher-order spik-
ing motifs, or dendritic location[11]. For example, Robert
Froemke and Yang Dan reported that the first spike pairing
in a train of triplet or quadruplet spike-pairings determines
whether long-term potentiation(LTP) or long-term depres-
sion(LTD) ensues in layer-2/3 pyramidal cells[12]. Simi-
lar findings were acquired in hippocampal cell culture by
Guo-qiangBis team[13]. Besides, the computational role
and functional implications of STDP have been explored
from many points of view [14, 15, 16].
Transcranial electrical stimulation (TES) with weak cur-
rents is actively investigated to treat a range of neurological
and psychiatric disorders [17, 18]. Low-intensity TES is al-
so used as a tool for cognitive research in healthy subjects
because of its safety profile [19, 20]. These studies lever-
age the induction of lasting changes, but evidently these
long-term effects must be mediated by immediate effect-
s during stimulation. Indeed, there is evidence that low-
intensity TES can affect ongoing brain activity [21, 22].
Animal studies indicate that electric fields will incremen-
tally polarize somatic membranes at levels below synaptic
background activity [23]. Yet, there is increasing evidence
that very weak electric fields can acutely modulate coher-
ent network activity, indicating that small incremental po-
larization of individual neurons can entrain ongoing net-
work dynamics when operating coherently on a population
of coupled neurons [24, 25]. Furthermore, Davide Reato
et al. explicate and differentiate the specific aspects of net-
work dynamics, especially endogenous oscillatory activity
[26].
The synaptic connection presented in a neural network ex-
erts significant impacts on its function. Traditionally, a
predefined topological structure is adopted in neural net-



work modeling, which may not reflect the true situation in
real-world networks such as the brain network. In this pa-
per we study a self-organized network (SON) model whose
synaptic connections evolve according to the spike-timing
dependent plasticity (STDP) mechanism. Specifically, we
investigate how the external weak direct current(DC) stim-
uli will influence the dynamical evolution and the emergent
topology of the network. We find that the external weak D-
C stimuli can significantly enhance the rhythmic activity of
the entire neural network. This result is related to the TES
which is now used to treat some neurological and psychi-
atric disorders. It may also have important implications on
the study and memory of the brain network.
The rest of this paper is organized as follows. We first in-
troduce the neural model, the neural network’s constitution
and the STDP rule used in this paper. Then we research
the evolution process of the neural network. The effects of
the external DC stimuli on the evolution of the network is
also investigated. We further study the changes of the av-
erage firing rate, the effects of conduction delays and the
percentage of excitatory neurons’ synaptic strength during
the evolution of the network. In the final section, the con-
clusions are given.

2 THE NEURAL NETWORK MODEL AND
THE STDP RULE

Each neuron in the network is described by the simple spik-
ing model [27]

v̇ = 0.04v2 + 5v + 140− u+ I
u̇ = a(bv − u)

(1)

with the auxiliary after-spike resetting

if v ≥ 30mv, then

{
v ← c
u← u+ d

(2)

Here variable v and u are dimensionless variables. v rep-
resents the membrane potential of the neuron and u repre-
sents a membrane recovery variable, which accounts for
the activation of K+ ionic currents and inactivation of
Na+ ionic currents, and it provides negative feedback to v.
Synaptic currents or injected currents are delivered via the
variable I . a, b, c and d are dimensionless parameters. The
parameter a describes the time scale of the recovery vari-
able u, b describes the sensitivity of the recovery variable
u to the subthreshold fluctuations of the membrane poten-
tial v, c describes the after-spike reset value of the mem-
brane potential v caused by the fast high-threshold K+

conductances and d describes after-spike reset of the re-
covery variable u caused by slow high-threshold Na+ and
K+ conductances. According to equation (2), the mem-
brane voltage and the recovery variable are reset when the
spike reaches its apex at +30mV . Depending on the val-
ues of the parameters, the model can exhibit many proper-
ties of biological neurons[28]. The resting potential of the
neuron model is between −70 and −60mV according to
the value of b. And the threshold potential can be as low
as −55mV or as high as −40mV , which depends on the
history of the membrane potential prior to the spike. We

use (b, c) = (0.2,−65) for all neurons in the network. For
excitatory neurons, we use the values (a, d) = (0.02, 8)
corresponding to neurons that can exhibit regular spiking
firing patterns. For inhibitory neurons, we use the values
(a, d) = (0.1, 2) corresponding to neurons exhibiting fast
spiking firing patterns.
In this paper, we simulated an anatomically realistic
network model that consisting of 1,000 cortical spik-
ing neurons with axonal conduction delays and synaptic
plasticity[29]. The network is composed by excitatory
(80%) and inhibitory (20%) neurons. The ratio of excitato-
ry to inhibitory neurons is 4 to 1, as in the mammalian neo-
cortex. Each excitatory neuron is connected to 100 random
neurons, so that the probability of connection is 0.1, again
as in the neocortex. And each inhibitory neuron is connect-
ed to random 100 excitatory neurons only. Each neuron is
described by the simple spiking model (1). The synaptic
connections among neurons have fixed conduction delays,
which are random integers between 1 ms and 20 ms. We
set 1ms delay to all inhibitory connections and 1 to 20 m-
s delay to all excitatory connections. The initial values of
excitatory weights are sij = 6 and the inhibitory weights
are sij = −5. In the network model, synaptic connections
are modified according to the spike-timing-dependent plas-
ticity (STDP) rule[15]. The function F (∆t) determines the
amount of synaptic modification arising from a single pair
of pre- and postsynaptic spikes separated by a time ∆t. The
function

F (∆t) =

{
A+ exp(∆t/τ+) if ∆t < 0
−A− exp(−∆t/τ−) if ∆t ≥ 0

(3)

provides a reasonable approximation of the dependence of
synaptic modification on spike timing observed experimen-
tally, where ∆t = tpre − tpost. The parameters τ+ and τ−
determine the ranges of pre-to-postsynaptic interspike in-
tervals over which synaptic strengthening and weakening
occur. A+ and A−, which are both positive, determine the
maximum amounts of synaptic modification, which occur
when ∆t is close to zero. Here, we set τ+ = τ− = 20ms,
A+ = 0.1 and A− = 0.12. If a spike from an excitatory
presynaptic neuron arrives at a postsynaptic neuron (possi-
bly making the postsynaptic neuron fire), then the synapse
is potentiated (strengthened). In contrast, if the spike ar-
rives right after the postsynaptic neuron fired, the synapse
is depressed (weakened). If pre- and postsynaptic neurons
fire uncorrelated Poissonian spike trains, there are moments
when the weight of the synaptic connection is potentiated
or depressed. We choose the parameters of the STDP rule
so that depression is stronger than potentiation. In contrast,
if the presynaptic neuron often fires before the postsynap-
tic one, then the synaptic connection slowly potentiates.
Indeed, such a connection causes the postsynaptic spikes
and should be strengthened. In this way, STDP strength-
ens causal interactions in the network. The magnitude of
potentiation or depression depends on the time interval be-
tween the spikes. For each fired neuron, we consider all its
presynaptic neurons and determine the timings of the last
excitatory spikes arrived from these neurons. Since these
spikes made the neuron fire, the synaptic weights are po-



tentiated according to the value of STDP at the presynaptic
neuron adjusted for the conduction delay. Notice that the
largest increase occurs for the spikes that arrived right be-
fore the postsynaptic neuron firing, that is, the spikes that
actually caused postsynaptic spike. Otherwise, when an
excitatory spike arrives at a postsynaptic neuron, we de-
press the synapse according to the value of STDP at the
postsynaptic neuron. Indeed, such a spike arrived after the
postsynaptic neuron fired, and hence the synapse between
the neurons should be weakened. We artificially keep the
synaptic weights sij between 0 and the maximal synaptic
strength sm, where sm is 10mV here. Other parameters
used in this paper are given in each case.

3 THE EVOLUTION PROCESS OF THE NEU-
RAL NETWORK

In this section, we focus on the evolution process of the
neural network. This neural network can spontaneously
self-organize into groups and generate patterns of stereo-
typical polychronous activity as is shown in Ref[29]. Here,
we mainly investigate the evolution process of the network
in two kinds of external environments. We choose the av-
erage firing rate of the neural network as the reference of
the evolution process. And the evoluting percentage of the
excitatory neurons’ synaptic strength during the evolution
process can also serve as a reference of the evolution pro-
cess.
When the neural network is under no stimuli, it exhibits
rhythmic activity with low rate at the beginning of the evo-
lution and the 200 inhibitory neurons(upper) in the network
fire more frequently than the excitatory neurons(below),
which we can see clearly in Fig. 1. As the synaptic connec-
tions of the network evolve according to the STDP rule, the
rhythmic activity disappears in the evolution process and
the spiking activity of the neurons becomes more Poisso-
nian and uncorrelated after an evolution time of 100s. The
spike raster of the network is shown in Fig. 2. The neural
network converges to a state with an approximate balance
of excitation and inhibition, which we can confirm by the
average firing rate of the network in Fig. 5. These phenom-
ena arise from the competition of the pre- and postsynaptic
neurons’ spiking times, which regulates the synaptic con-
nection strength between neurons.
Then we apply external weak DC stimuli to the neural net-
work with the strength of 0.5. In order to compare the
evolution processes of the network under the two environ-
ments, we draw the network’s spike rasters at the same time
during the evolution. Fig. 3 is the spiking activity of the
network when the evolution time is 2s. It also exhibits
rhythmic activity with low rate, which is similar with the
spiking activity of the network that under no stimuli. This
may be primarily related with the initial strengths of the
synaptic connection and the structure of the network. After
an evolution time of 100s, the neural network converges to
an approximate balance state which still exhibits rhythmic
activity with a higher rate as is shown in Fig. 4. This rhyth-
mic activity of the neural network is evidently caused by
the external weak DC stimuli. And more obviously rhyth-
mic activity can be found when we enhance the strength of
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Figure 1: The spike raster of the network without external
stimuli. The upper part that vertical axis exceeds 800 is
the records of inhibitory neurons while the down part is
the records of excitatory neurons. The network displays
high-amplitude rhythmic activity. The evolution time of
the network is 2s.
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Figure 2: The spike raster of the network without exter-
nal stimuli. The network displays uncorrelated Poissonian
activity. The evolution time of the network is 100s.

the external DC stimuli.
The average firing rate of the whole neural network under
different DC stimuli strength is also studied. As is shown
in Fig. 5, the average firing rate of the neural network is
high at the beginning of the evolution, then it quickly drops
to a lower point. After an evolution time of 100s, the fir-
ing rate of the network gets to an approximately fixed value
with small fluctuations. The four curves of the network’s
average firing rate in Fig. 5 have almost the same tendency
during the evolution, no matter the network is under exter-
nal stimuli or not. This may be caused by the structure of
the network, such as the axonal conduction delays and the
changes of the synaptic connection. As the external DC
stimuli are strengthened, the average firing rate of the neu-
ral network is also enhanced(see Fig. 5). Thus the external
weak DC stimuli can enhance the average firing rate of the
neural network.
We also investigate the effects of the axonal conduction de-



0 200 400 600 800 1000
0

200

400

600

800

1000

t (ms)

ne
ur

on

Figure 3: The spike raster of the network with external
weak DC external stimuli. The network displays obvious
rhythmic activity. The evolution time of the network is 2s
and the strength of the DC stimuli is 0.5.
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Figure 4: The spike raster of the network with external
weak DC stimuli. It is evident that the network displays
rhythmic activity. The evolution time of the network is
100s and the strength of the DC stimuli is 0.5.

lays on the evolution of the network. Here we just change
the conduction delays of excitatory neurons, where the con-
duction delays of inhibitory neurons are fixed to 1ms as
before. The firing rate of the neural network correspond-
ing to different ranges of conduction delays is shown in
Fig. 6. The maximal value of conduction delays D is in-
creased gradually with a step of 1ms from 1ms to 20ms.
The firing rate here is the average of the whole evolution
process when the range of conduction delays D is fixed.
As is shown clearly in Fig. 6, the conduction delays can
also influence the evolution of the network. The neural net-
work under different stimuli has almost the same average
firing rate when the conduction delay is 1ms. And the av-
erage firing rates of the neural network enhanced generally
when the maximal conduction delay is increased, though
the changes of the average firing rate are not regular some-
times.
We now check how the synaptic connection of the neural
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Figure 5: The average firing rate < F > of the whole neu-
ral network corresponding to the evolution time. From bot-
tom to top, the network is under different stimuli strengths
which are enhanced gradually.
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Figure 6: The average firing rate of the whole neural net-
work corresponding to conduction delays for different s-
timuli.
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Figure 7: Percentages of the synaptic connection weights
sij at three value levels during the evolution period of the
network. sm is the maximal synaptic weight of the net-
work.



network evolves when we apply weak DC stimuli to it. Be-
cause inhibitory synaptic weights are not plastic, whereas
excitatory synaptic weights evolve according to the STD-
P modification function F (∆t), we take the synapses of
the 800 excitatory neurons into account, instead of the w-
hole network. Fig. 7 is the evolution process of the synap-
tic connection when the strength of external DC stimuli is
0.8. The red line is the percentage of the synapses whose
strength are less than 0.1 ∗ sm during the evolution pro-
cess, the blue line is the percentage of the synapses whose
strength are more than 0.9 ∗ sm, and the black line is the
percentage of the others. It shows clearly that most of the
800 excitatory neurons’ synaptic connections converge to
either 0 or the maximum sm from the initial values after
the evolution time of 100s. So most of the connections be-
tween the neurons become either strong to sm or weak to
0, with only a few connections distribute sparsely between
the two polarized weights. We also tested the initial ex-
citatory synapses that are set to be other integers between
0 and sm, similarly polarized results can be obtained but
need different evolution times.

4 DISCUSSION AND CONCLUSION

Effects of the external DC stimuli to the evolution of the
network are investigated in details. As it is shown in the
third part, the rhythmic firing activity is found at the end of
the evolution time when the network is under external DC
stimuli, which is different from the evolution consequence
of the network without external stimuli. The synaptic plas-
ticity, the axonal conduction delays and the external DC s-
timuli play important roles in the evolution of the network.
The network structure determines the evolution tendency of
the average firing rate, and the external DC stimuli changes
the magnitude of the network’s average firing rate. Fur-
thermore, the percentage of excitatory synaptic strength in
three ranges is also found to be polarized after the evolu-
tion.
Our findings in this paper may be significant for further
studying the evolution of the neural network. Several prop-
erties of the neuronal network such as synaptic connection
strength, axonal conduction delays and different external s-
timuli can serve as parameters in modulating the evolution
of the neural network with different firing activities.
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