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Abstract

Computational electrochemistry, an important branch of electrochemistry, has

shown its advantages in studying electrode/electrolyte interfaces, such as the

structures of electric double layers. However, modeling electrochemical sys-

tems is still a challenge, especially in interface electrochemistry, because not

only solvation effects and ion distribution in electrolyte solutions should be

considered, but also the treatment of the electrode potential and the response

of electrolytes to applied potentials. Here, we review the latest development in

the field of computational electrochemistry. We first introduce various energy

models used in simulating electrolytes and electrodes at multiple scales. Then,

to better explain and compare between different methods, we discuss the cal-

culation methods of solution electrochemistry and interface electrochemistry

in separate. At last, we introduce the methods to electrify the interfaces in vari-

ous multiscale models. This review aims to help understand various levels of

methods in simulations of different scenarios in electrochemistry, and summa-

rizes a set of schemes covering multiple scales.
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1 | INTRODUCTION

Electrochemistry is a broad research area that concerns various spatial scales ranging from atomic scale involving reac-
tion mechanisms to macroscale focusing on industrial applications. Considering the wide range of scales, scale-
dependent protocols should be employed in both experiment and computation for a trade-off between accuracy and
efficiency. For example, in situ vibrational spectroscopy and ab initio molecular dynamics (AIMD) can be used to inves-
tigate the electrochemical reactions at the atomic scale.1 By contrast, the researchers who concern the scientific prob-
lems at the macro scale might use other measurements (e.g., impedance spectroscopy) or numerical methods to study
the performance of electrochemical devices.2 Moreover, it is very common that one has to deal with problems of multi-
ple scales in nature. Taking CO2 electroreduction in alkaline polymer electrolytes as an example, one needs to consider
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not only the proton transfer in the space charge layers of micrometer width in the polymer electrolytes, but also the
microscopic coordination environment of CO2 at the electrocatalyst surfaces.3,4 The examples mentioned above demon-
strate the need for a set of methods covering multiple scales in studying electrochemistry, and we will focus on the mul-
tiscale modeling methods in this review.

Among various multiscale modeling methods, the atomistic models allow us to “see” the systems directly, and hence
offer valuable insight into the detailed microscopic structures and physical properties at electrochemical interfaces. For
example, using the all-atom simulation method such as ab initio molecular dynamics (AIMD), the water structure on
the metal electrode can be directly observed under different electrode potentials.5 The methods at the quantum
mechanical (QM) level, however, suffer from high computational cost. As a result, such methods can only handle usu-
ally up to 1000 atoms with the current computing power, which significantly limits their applications to simulate com-
plex systems. For systems of large sizes, calculation at the classical molecular mechanical (MM) level is a better option
if the electronic structure information is less of a concern. For instance, solvation free energies of many ions and mole-
cules can be accurately obtained in the MM simulations without describing electronic structures.6 Furthermore, the
interfacial structures and capacitances of large-size systems can also be investigated in MM simulations if a non-active
electrode is employed, such as carbon electrode/room temperature ionic liquids (RTILs) interfaces in electric double
layer capacitors.7 However, suppose one wants to model even larger systems, such as polymer electrolytes in proton
exchange membrane fuel cell (PEMFC) and alkaline polymer electrolyte fuel cell (APEFC). In that case, it may be even
challenging for the MM models. The size problem could be alleviated by using the coarse-grained (CG) models, which
merge a set of atoms into some virtual entities having certain shapes and interactions among each other.8 The CG
models still involve discrete particles. If this level of structural information is not of concern, it can be further reduced
to continuum models, which only include the environment (i.e., implicit solvation) effects to the solutes/electrodes.
The continuum models are suitable for describing the solvation environment, especially in homogeneous solutions.
Extensive studies on the calculation of solvation free energies using implicit solvation models have been reported.6,9–15

By using thermodynamic cycles, fundamental quantities such as redox potentials and acidity constants can also be
obtained.16–20

This review aims to help readers focus on a full picture of simulation methods currently available in electrochemical
simulations. To this end, the key features of the simulation approaches applicable to solution electrochemistry and
interface electrochemistry are summarized in the four sections of this review. In the next section, the energy models
used in electrochemical simulations are introduced, which directly determine the model size and time scale of the simu-
lation. By applying these energy models in solution electrochemistry and interface electrochemistry, a variety of model-
ing methods have been developed in recent years. The characteristics and applications of these methods are introduced
in Sections 3 and 4, respectively. In Section 5, the methods and models to electrify the interfaces are discussed. Finally,
the review ends with some conclusion and outlooks.

2 | BRIEF INTRODUCTION OF ENERGY MODELS IN ELECTROCHEMICAL
SIMULATIONS

In view of the intrinsic multiscale nature of electrochemical processes, it is impractical to use only one level of energy
model in modeling electrochemical systems. Energy models are basic elements in multiscale modeling. The choice of
these basic elements depends on the specific scientific problems of interest. In this section, we give a brief overview
of the various energy models used in electrochemical simulations, the key features of these models, and the scopes to
which they can be applied (Figure 1).

The fundamental microscopic description of electrochemical simulations is the all-atom (AA) models. In this
models, all the chemical sites are explicitly introduced into the simulations, providing an atomic-level representation of
the system. In general, the AA model can be treated at the QM or MM level (Figure 1(a)).

In QM energy models, both solutes and solvents are treated at the level of electronic structure theory where energies
and forces are calculated from first principles (e.g., density functional theory [DFT]). Together with the information of
electronic structure, QM energy models are able to simulate electrochemical reactions, such as CO2 elec-
troreduction.19,22,23 Computational accuracy is largely determined by the density functionals used. For example, the
generalized gradient approximation (GGA) functionals often give poor predictions of electronic energies, which can be
significantly improved by hybrid functionals at the expense of much increased computational cost. Cheaper empirical
energy models, i.e. density functional tight-bonding (DFTB) models, is developed through parameterizing model
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Hamiltonians to give approximate electronic structures.24,25 Although DFTB models are generally less accurate than
the QM calculation, due to much reduced computational cost they have been successfully implemented in simulating
complex solutions consisting of bulky solutes, such as RTILs.26

In MM models, atoms are represented by point charges, and their interactions are described by parameterized force
fields accounting for bonding, dispersion and electrostatic forces.27 In particular, chemical bonds, as predefined in a
connectivity list, are modeled as harmonic springs omitting their quantum mechanical nature. Although several orders
of magnitude cheaper than typical DFT calculation (Figure 1(b)), the obvious shortcoming of the MM models is that
they cannot properly describe bond breaking and electron transfer processes. Nevertheless, MM energy models are com-
putationally cheap, and are able to handle very large systems such as macromolecules and RTILs. With elaborated force
field parameters fitting against accurate QM calculation or experiment, they can achieve similar accuracy to QM energy
models in some aspects, for example, electrolyte structures.28

In usual MM models, the charges of atoms are fixed in the calculation, thus completely omitting possible electronic
polarization in the process under study. To tackle this problem, the core–shell model is developed, which represents an
atom with a positively charged core and a negatively charged massless shell, linked by a harmonic spring. The core and
shell can move in the opposite direction in the presence of electrostatic interactions, and thus the polarization effect
can be introduced by the net dipole of the core–shell structure.29 In the application to gold electrodes, the core–shell
model successfully reproduced classical image charge potential of adsorbed ions.30 However, the linking between the
core and shell limits its flexibility of describing electric polarization in the presence of external electric fields. In con-
trast, the Siepmann–Sprik potential model31 describes the charge of each atom by Gaussian charge distribution, the
magnitude of which can be adjusted according to a variational procedure to maintain constant electrostatic potential
during calculation. Variability of the atom charges can better account for polarization effects of electrodes than the
core–shell model*. The Siepmann–Sprik potential model has thus been successfully applied to interface modeling of
metal and carbon electrodes.32

To address the inability of describing bond breaking in the normal MM models, reactive force field (ReaxFF) models
determine the bond connectivity on-the-fly according to the interatomic distances, which are assumed to directly relate
to bond orders between pairs of atoms. A ReaxFF model has been developed to study dissociation of carbon–carbon
bonds in hydrocarbons.33 Bond breaking can be also described by empirical valence bond (EVB) models34,35 and their
extension, multistate EVB (MS-EVB).36–38 In EVB models, the diabatic state of reactant (r) and product (p) are used to
parameterize a model Hamiltonian involving a 2 � 2 matrix of Hrr, Hpp and 2 off-diagonal Hrp. To describe bond break-
ing, the adiabatic ground state potential energy is calculated by diagonalizing the matrix.

If atomic details are irrelevant to the problem of interest, it might be possible to replace the AA models with coarse-
grained models in order to tackle larger size systems with lower computational cost (Figure 1(b)).39 The CG models

FIGURE 1 Energy models used in simulations of electrochemical systems. (a) Schematic diagram of the structural information and

model scales for these energy models. (b) Comparison of time and spatial scale among various energy models. (Reprinted with permission

from Ref. 21)
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improve the computational efficiency by reducing the number of degrees of freedom. For example, in order to describe
polymer electrolytes, structures and dynamics of polymer chains are largely irrelevant to local monomer structures or
high-frequency motions of individual atoms (e.g., water O–H vibrations),8,40 and hence the degrees of freedom in poly-
mer electrolytes can be reduced by grouping atoms in a monomer or a group of water molecules together into a single
CG bead. By this means, both the time scale and spatial scale of CG simulations can be greatly increased compared with
the MM energy model.

As for implicit models, the number of degrees of freedom is further reduced and only thermodynamically averaged
properties are retained to describe solvent environments. In general, the implicit energy models can be classified into
two types, that is, the continuum model41 and the structured implicit model (Figure 1(a)).42,43 The continuum model
describes the solvation environment with the macroscopic dielectric constant which is approximated from the densities
and charge distribution of solvent atoms. In comparison, the structured implicit model treats the distribution of solvent
atoms as an independent variable, then optimizes it based on their intermolecular interactions (e.g., pair potentials).44

Details of these two models will be introduced in the following section.

3 | SOLUTION ELECTROCHEMISTRY

The main challenge in the electrolyte modeling is how to describe the solvation environment of solutes adequately. In
general, solutes are described explicitly by QM or MM energy models, and implicit or explicit models can describe the
solvation environment. In implicit solvation models, only the thermodynamically averaged environment is described,
often used for calculation of solvation free energies. In comparison, the explicit solvation models can offer more
detailed information, such as hydrogen bonding structures in electrolyte solution. In this section, we introduce different
solvation models for solution electrochemistry, and evaluate their accuracy in calculating solvation free energies and
other thermodynamic quantities such as redox potentials.

3.1 | Implicit solvation models

3.1.1 | Continuum solvation models

Continuum models have been used as description for solvation of QM species for several decades,10,45–53 and great
efforts have been dedicated by pioneers to development and application of a variety of continuum models including the
widely used solvation models (the SMx family)54 polarizable continuum (PCM) model55 and Conductor-like Screening
Model (COSMO model).52 Fattebert and Gygi56 developed a continuum solvation model for first-principles molecular
dynamics simulations, which was later extended by Marzari et al.12,57 to include the contributions from cavitation and
dispersion. Nowadays, the practice of the continuum solvation model is to first create a cavity around the solute,
and then determine the dielectric constant as well as the charge distribution in the continuum solution. Therefore, chal-
lenges here in continuum models are how to determine the size of cavity surrounding the solute, and how to describe
the solution's response to the solute inside the cavity.

The approaches to determine the cavity size in the continuum solvation models can be categorized into two groups,
namely, the empirical atomic radii method and isodensity method. In the empirical atomic radii method, the cavity size
depends on the empirical atomic radii (van der Waals radii is often used) of each atom of the solute molecule.58,59 How-
ever, solute molecules usually have irregular shapes. To prevent the solvent response from being distributed in the
small gaps between solute atoms, a popular method is to define a solvent molecular cavity with a smooth surface.
The method first needs to estimate the surface that enclosing the volume in which the center of solvent molecules can-
not enter. Then, shrink the SAS by a certain distance, which equals the radius of the solvent molecule. This newly
formed smaller surface is called the solvent excluded surface (SES). At last, the location of the solvent response is deter-
mined.47,59 The advantage of this atomic radii based method is that the cavity size can be tuned to obtain accurate
results in a specific solvation simulation. The other, isodensity method correlates the cavity size to the electron density
of the solute.56 In this way, the cavity size can be determined based on the electron density of QM regions. Once the
cavity size and surface are determined, the transition of the dielectric function from solute region to continuum solvent
model is usually described by a smoothing function. The use of this smoothing function is to improve the numerical sta-
bility of computation near the QM/continuum boundary. Although the implementation of the smoothing function
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varies with models, different smoothing functions generally give similar results when simulating the same systems.12,60

In practice, discontinuities and singularities at the solute/solvent interface also can be repaired using the continuous
surface charge (CSC) approach. This approach first expands the apparent surface charge that builds up at the solute/sol-
vent interface in terms of spherical Gaussian functions located at each surface element in which the cavity surface is
discretized. Then the discontinuities in the surface derivatives are removed by effectively smoothing the regions where
the spheres intersect.61

After parameterizing the cavity size, we need to evaluate the solution's response to the solute. This response
includes all interactions between the solute and the continuum model, which can be divided into two parts, namely,
the electrostatic part and the non-electrostatic part. The electrostatic interactions of solvent molecules are described by
the solvent dielectric constant. The other part is rather complicated because it deals with the interactions near the cav-
ity interface. Generally, the contributions from the non-electrostatic interactions consist of four parts, that is, the forma-
tion energy of the cavity, the contribution due to thermal motion of the solute, the dispersion and repulsion interaction
between the solute and the continuum model. Once the solute surface area and cavity volume are determined, the sol-
vation free energy can be readily calculated. The electrostatic part can be directly obtained from the energy difference
between the solute in the solution and the gas phase. The term due to thermal motion of the solute in solution can also
differ from that in gas phase, and the difference can be estimated from approximated rotational and vibrational parti-
tions functions of the solute. The formation energy of the cavity is estimated by the product of the experimental surface
tension of the solvent and the surface area of the solute cavity. The last two terms, that is, the dispersion and repulsion
energies, are usually derived from empirical formulas.12,60 We recommend references46,48 for detailed descriptions of
the implicit solvation models.

Continuum solvation models such as SMx family, COSMO, and PCM can compute accurate solvation free energies
thanks to sophisticated parameterization procedures and flexibility granted by a number of empirical parameters.62–69

The solvation model density (SMD, one of SMx family) was used to represent the solvation effect in Dutra et al.'s63 work
studying the method of pKa calculation. The COSMO can reproduce comparable solvation effects with SMD, and was
employed in Bamford et al.'s69 work to determine the reaction pathway of B2(o-tolyl)4 and boranes in computation.
Tomaník et al.67 compared the performance of both SMD and PCM solvation models in their new proposed method for
the cluster-continuum calculation of solvation free energies. The mean absolute error (MAE) in these models are less
than 1 kcal/mol for neutral solutes and about 4 kcal/mol MAE for charged solutes. These models have been already
implemented in various quantum chemistry codes,† and recent models such as the self-consistent continuum model
(SCCS),12 have been devised to minimize the number of empirical parameters. With the continuous improvement by
follow-up works,58,60,70,71 the SCCS model relies on a much-reduced number of parameters, and is able to obtain solva-
tion energies with a reasonable MAE of about 1.2, 2.27, and 5.54 kcal/mol for neutral solutes, cations and anions,
respectively.60 Since considerable errors in continuum models come from the omission of self-dissociating species and
strong hydrogen-bond-forming compounds, the inclusion of a few explicit solvent molecules around the solute has
become a common practice to improve the accuracy of these difficult cases. However, if explicit solvent molecules were
included, the configurations of the whole cluster (i.e., orientation and diffusion of explicit molecules) involve much
more degrees of freedom. These extra degrees of freedom, as well as the treatment of explicit solvent molecules at the
QM level, can significantly increase the computational cost.

3.1.2 | Structured implicit solvation models

A more sophisticated alternative to the continuum solvation model mentioned above is the structured (cavity-less)
implicit solvation model, which directly treats the solvent distribution as an independent variable and optimizes it
based on the interaction of the solvent with the solute.42,72,73 Therefore, more detailed structure information such as
solvation shell structures and ion distribution can be obtained. Two types of structured implicit solvation models have
been developed, that is, the reference interaction site method (RISM)74,75 and the classical density-functional theory
(classical-DFT).43 The RISM model establishes integral equations on the solvent density based on correlation functions
and interaction potentials of the solvent, and the interactions with QM solute also use interaction potentials (such as
pair potentials in classical force fields).73,76 In contrast, the classical-DFT directly approximates the free energies
as functionals of the density of solvent molecules, and its interactions with QM solute can be solved by the joint
density-functional theory (JDFT). The JDFT proposes to join the electron density functional for the solute with
classical-DFT for solvents into a single variational principle for the free energy of the combined system.77–79 Otani
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et al.73 reformulated the three-dimensional RISM (3D-RISM) method80,81 and calculated the hydration free energy of
water and formaldehyde with errors of 2 and 4 kcal/mol compared with experiment, respectively. The JDFT model
developed by Arias et al.,79 involving a single solvent-independent parameter plus a single solvent-dependent parame-
ter, can compute the solvation free energies of organic molecules in water, chloroform, and carbon tetrachloride with
small error of 1.1, 0.6, and 0.5 kcal/mol, respectively. Based on the reported calculation of solvation free energies,79 the
structured implicit models, with smaller number of empirical parameters, show similar level of accuracy to the conven-
tional continuum model (e.g., PCM model). Thus, the structured implicit solvation methods are expected to have better
transferability to complex systems.

3.2 | Explicit solvation models

Turning to explicit solvation models, two points should be noted beforehand. First, unlike the implicit solvation model
involving an infinitely large solution environment, only a small number of explicit solvent molecules centered on the
solutes under open boundary conditions, are usually insufficient to represent the actual solution environment in
the condensed phase. In this case, it is common to apply the full periodic boundary conditions (PBC). A unit cell repli-
cates periodically such that sufficient solvent molecules are included to reproduce the solution environment in the sim-
ulation model. Second, solvent properties such as polarization and diffusion are explicitly described in the explicit
solvation models, giving rise to a large number of degrees of freedom in the simulated systems. Therefore, statistical
sampling is required to collect sufficient configurations to ensure the converge of thermodynamic properties of interest,
and computational techniques like molecular dynamics (MD) and Monte Carlo (MC) are often used to perform sam-
pling of configurational space.19,82 Since explicit solvent models can compute not only the solvation free energies, but
also electrolyte structures. In this section, we first briefly introduce free energy calculation with sampling methods
using explicit energy models, and then discuss various multiscale schemes, for example, QM/MM model, for free energy
calculation.

3.2.1 | Free energy calculation by explicit models

If the explicit solvation models are represented in purely the MM or QM level, solvation free energies can be
obtained by using various free energy calculation schemes, such as thermodynamic integration (TI) and free energy
perturbation (FEP).9,83–86 The FEP/TI scheme is commonly used for calculating free energy differences between
the initial and final state with a coupling parameter η (key equations are summarized in the middle panel in
Figure 2). A fictitious hybrid energy state can be defined as Hη ¼ 1�ηð ÞH0þηH1, with H1 and H0 the energy of the ini-
tial and final states, respectively. The derivative of Hη with respect to the coupling parameter corresponds to the energy
difference between the final and initial states at a fixed configuration (∂Hη=∂η¼ΔE¼H1�H0 ). ΔE is the vertical
energy gap and can be obtained from the electronic structure calculation as a total energy difference. ΔE is then aver-
aged over molecular dynamics (MD) runs for a sequence of values of η. Integration of the thermal average ΔEh iη along
the thermodynamic path (η from 0 to 1) converts vertical into adiabatic free energies ΔA. In solvation free energy calcu-
lations, initial and final states are computed by reversibly inserting the solutes in simulations. The same method can be
used to calculate adiabatic ionization energies (AIP) and adiabatic deprotonation energies (ADP), as indicated by blue
arrows in upper left panel of Figure 2, by replacing solutes in both initial and final state as X�=X and HX=X� ,
respectively.

Unfortunately, the calculated ionization free energy (ΔoxAX� ) and deprotonation free energy (ΔdpAXH) are not yet
equal to the AIP and ADP that we want to calculate, owing to the fact that the reference of the electrostatic potential is
uncertain in the standard Ewald summation under PBC and spurious interactions of particles in the cell and their peri-
odic images and neutralizing background.6,87 The energy of an anion X� under PBC is shifted by an unknown energy
e0V0 , as shown by an orange arrow in the bottom left panel of Figure 2. Consequently, the values of ΔoxAX� and
ΔdpAXH alone are yet to bear any physical meanings. On the other hand, the calculated deprotonation free energy of
aqueous hydronium (ΔdpAH3Oþ ) has the same shift e0V0 . If the aqueous hydronium is taken as reference ion, a mean-
ingful value of acidity constant for HX in aqueous solution and redox potential for X� with respect to the standard
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hydrogen electrode (SHE) can be obtained, as indicated by the red arrows in the bottom left panel of Figure 2. Using
the hydronium like structure as an approximated model for the solvated proton has been discussed and justified in
appendix of Ref. (88). The acidity constant in aqueous solution can be estimated by subtracting ΔdpAH3Oþ from ΔdpAXH.
Similarly, the redox potential versus SHE can be obtained by adding ΔdpAH3Oþ to ΔoxAX� .

As a feasible scheme in AIMD simulations, this method has been successfully utilized to calculate acidity constants
and redox potentials for a number of small inorganic and organic molecules.16,19,89–92 The computed results can be
directly compared with the experimental values with an error of about 1–2 pKa units for acidity constants but a much
larger error (ca., 0.5 V) in redox potential calculation using the GGA functional.91 Poor performance in redox potential
calculation, in fact, is due to the well-known delocalization error in DFT approximations, and this error can be reduced
to 0.2 V if hybrid functional, for example, HSE06, is employed.91,93 Although the AIMD based method can be readily
used for any solution in principle, it incurs a substantial computational cost, significantly limiting its application to
complex solutions having multiple components or sluggish dynamics.

3.2.2 | Quantum mechanical/molecular mechanical solvation models

The QM/MM model can tackle a larger spatial scale and time scale compared with the QM model, and thus is able to
alleviate finite size effects under PBC and extend the scope of application in simulating solution environments such
RTILs. Generally, solvent molecules in the vicinity of the solute are treated at the QM level, and the MM energy model
represents the remaining part to reduce the computational cost.94 The key to the QM/MM model is how to treat the
coupling between the QM and MM regions. Generally, this coupling consists of two parts, that is, the potential coupling
and the dynamic coupling.95 The potential coupling refers to the interactions between QM solutes and MM molecules,
and is often handled by pair potentials. Pair potentials can be divided into two parts, non-electrostatic interactions and
electrostatic interactions. The non-electrostatic part of pair potentials (i.e., van der Waal interaction) is usually
described by empirical formulas such as Lennard Jones potentials. In term of the electrostatic interactions, the

FIGURE 2 Schematic representation of the ab initio molecular dynamics based method for computing redox potentials and acidity

constants. (Reprinted with permission from Ref. 91)
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commonly used protocol is the electrostatic embedding, which couples interactions between the electron density and
nuclear charges in QM region and the point charges in the MM region.96–101 Calculation of electrostatic energies in
QM/MM simulations is a time-consuming process, and needs to treat the electrostatic interactions in the system which
includes classical point charges in the MM region, nuclei charges and electron densities in the QM region. To improve
the computational efficiency of this step, point charges based on electrostatic potentials can be employed to represent
QM solutes, although this method overestimates electrostatic interactions at short-range interactions.99 An approach to
avoid this problem is to use real space grids to represent electrostatic potentials for both QM and MM region.96,99,102

Figure 3(a) is an example of grid-based electrostatic embedding approach developed by Yamamoto et al.99 They pre-
calculated the electrostatic potentials on the grid points in the QM region, and interpolated them in MD simulations. In
this way, efficient sampling of MM molecules in the presence of QM molecules can be achieved. Kim et al.102 later
extended this grid-based electrostatic embedding method by including the geometric and electronic responses of solutes
to solvation effects in a self-consistent manner. This method, call as density functional theory in classical explicit sol-
vents (DFT-CES), can be further coupled with free energy calculation based on the two-phase thermodynamic (2PT)
model to calculate solvation free energies.

The other coupling between the QM and MM regions, that is, the dynamic coupling, needs to be considered when
molecules in the QM or MM region have the probability of transferring into the other's region. This coupling is crucial
in QM/MM calculation of the liquid phase in which molecules have high diffusivity. A simple and straightforward
approach to address this issue is to constraint QM and MM regions by applying restraining potentials, to prevent QM
and MM molecules from escaping their original region.103,104 Roux et al.103 developed a QM/MM model with

FIGURE 3 (a) Schematic view of grid-based treatment of electrostatic potentials. Only electrostatic potentials on the grid points are

employed in the QM/MM electrostatic embedding calculations, where blue and orange represent the QM and MM regions, respectively.

(Reprinted with permission from Ref. 99). (b) Schematic view of the QM/MM model with restraining potentials (dashed circle). Molecules

inside and outside the circle are QM molecules and MM molecules, respectively. The Rinner is the radius of the dashed circle. (Reprinted with

permission from Ref. 103). (c) Schematic representations of QM/(AA+CG) (left) and QM/AA/CG (right) models under PBC without the

Ewald summation technique. (Reprinted with permission from Ref. 20)
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restraining potentials (Figure 3(b)) to compute the solvation structures of Na+ and K+ in water, and obtained their
coordination numbers. In addition to restraining potentials, the adaptive QM/MM approach can be employed, which
allows the solvent molecules to be reclassified on-the-fly as QM or MM during the MD simulations. In this way, solvent
molecules entering into the active region can always be defined as the QM molecules. Common adaptive QM/MM
approaches also include a buffer zone to gradually transform the molecular description between the QM and MM
model.95 Although various adaptive QM/MM methods have been verified by comparing solvation structures with full
QM or conventional QM/MM simulations,28,105 adaptive methods are unable to achieve energy conservation yet. Dis-
cussions about the adaptive methods can be found in reference.95,106

Apart from explicit models developed under PBC, Yang et al.107,108 proposed an approach under open boundary
conditions to calculate redox potentials of the aqueous ruthenium and iron complexes in aqueous solutions. The imple-
mentation of open boundary conditions, achieved by employing a long cut-off distance of pair potentials, can avoid the
technical complications in computing charged systems under PBC. Based on their previous development, they further
developed a new multiscale scheme recently, that is, the QM/(AA + CG) model, which combines QM, MM, and CG,
three energy models.20 In this scheme, the redox center is represented by the QM energy model, and the environment
water molecules are represented by an integrated MM model and CG model (adaptive AA + CG model). The interac-
tions between atoms at a short distance are described at an explicit AA level, while the interactions at a long distance
are modeled at a CG level. Therefore, the QM/(AA + CG) model (presented in the Figure 3(c), left) can effectively
describe long-range electrostatic interactions compare to QM/MM models. Yang et al. also compared their QM/(AA
+ CG) model with another multiscale scheme, that is, the QM/AA/CG model (Figure 3(c), right) including also three
energy models of QM, MM, and CG. In the QM/AA/CG model, environment water molecules close to the QM redox
center are described by MM models, while water molecules far away from the QM region are grouped together and rep-
resented by a sophisticated CG model, which should be distinguished from the adaptive AA + CG model used in the
QM/(AA + CG) model. The calculated redox potentials of the aqueous ruthenium and iron complexes indicate that
the QM/AA/CG model is less accurate than the QM/(AA + CG) model, with the latter being in excellent agreement
with experiment (error within 0.1 eV). The authors suggest that the errors in redox potentials computed with the
QM/AA/CG model are due to the inaccuracy of the CG model in describing QM/MM electrostatic interactions.

3.2.3 | Other explicit models for electrochemical applications

One advantage of explicit models over continuum models is that they can provide structural and dynamic information of
electrochemical systems, such as electrolyte structures109 and ion diffusion.110 With the current computing power, AIMD
can normally simulate the structures of the systems on the order of 1000 atoms at a time scale of 10–100 ps. However, it is
insufficient for many scenarios in electrochemistry which require simulations of a much larger spatial scale and longer time
scale. Semi-empirical DFTB models are usually 1000 times faster than the standard DFT calculation, offering a good option
for modeling larger-sized systems. For example, Perlt et al.26 compared the RTILs structures obtained from multiple DFTB
models with the QM model, and suggested that the DFTB models are a promising method for future large-scale simulation.
In addition, an elaborate parameterized MM energy model can also calculate very reasonable structural and dynamic results
compared with AIMD. For example, the MS-EVB model111,38 can even give better diffusion coefficients of H+ and OH� ions
in electrolytes than the DFT model at the GGA level.112 Despite the promising progress, the MMmodels may not be effective
in describing the folding behaviors of polymer electrolytes, and the CG models are proven to be a better choice for studies of
polymer membranes.40,113 Using a CG model, Zhuang et al.114 studied the influences of the side chain length of alkaline
polyelectrolytes and water content on the conductivity of the polyelectrolytes. If it is necessary to include the electronic struc-
tures in large systems, the embedding models, that is, QM/(AA + CG) or QM/AA/CG model in Figure 3(c), are feasible mul-
tiscale approaches.20 Recently, Voth et al.115 combined the ideas of QM/MM and CG modeling into a unified “QM/CG-MM”
method, which describes the entire surrounding of the QM region by CG models.116,117

In summary, different solvation models have their special characteristics suitable for certain types of applications.
From the QM, MM, to the CG models, scales of simulations increase significantly. However, this is based on reducing
the number of degrees of freedom of solvents, which inevitably reduced the structural information contained in solva-
tion models. QM models include adequate structural information at the atomic level compared with hybrid models
(such as QM/MM and QM/(AA + CG)) or implicit models. For example, the QM model is often used for the cases
where solvent molecules play a vital role, for example, strong hydrogen-bond interactions and charge transfers between
the solute and solvent molecules. However, the computational cost limits the use of the QM model. It is required to
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choose a suitable model according to the problems of interest, to balance the accuracy and efficiency of our computa-
tion. This is the scenario where we started to consider using cheaper models such as MM, CG models and hybrid
models. Moreover, implicit solvation models can account for the solvation effects of most solutes in homogeneous solu-
tion with low computational cost. Thus, they are often employed in solvation energy calculations.

4 | INTERFACE ELECTROCHEMISTRY

Electric double layers (EDL) at the electrode/electrolyte interfaces are where electrochemical reactions occur and are of
paramount importance in electrochemistry. However, microscopic understanding of the EDL is still lacking due to its
complexity and difficulty to probe. Thanks to the development of computational methods, modeling has shown great
potential in studying the interface of the electrode and the electrolyte in the past few years, and provided valuable
insight into EDL structures and dielectric properties.5 One of the key characteristics of EDL is its capacitance measuring
the ratio of change in surface charge density to potential change. It can be obtained by voltammetry experiment, and
thus can serve as a benchmark quantity for modeling methods. Replacing finite size solutes in the models described in
the last section with two-dimensional infinite electrode surfaces, we turn to modeling of interface electrochemistry.
In the following, we omit similar simulation details and focus on the performance of EDL modeling.

4.1 | Quantum mechanical/implicit interface models

Similar to the solution, the QM/continuum models for interfaces describe the electrodes and solvents by QM and con-
tinuum models, respectively. A vacuum gap, like the cavity in the continuum solvation models, is included between the
electrode (QM) and the electrolyte (continuum), as shown in Figure 4(a). The vacuum thickness x1 shown in Figure 4
(a) is usually determined by the isodensity method with smoothing functions used to smoothly transform dielectric

FIGURE 4 (a) Schematic illustration of QM/continuum interface model. The electrode is represented by QM model, and the large blue

region is the implicit electrolyte region. The red curve represents the variation of the dielectric constant from the QM electrode (i.e., 1) to the

bulk of solution continuum (i.e., 78). (b) Comparison between computed and experimental capacitances of Ag(100) in aqueous solution. Toy

models consist of non-linear solvent and electrolyte ions response with vacuum gap thickness x1 and extended distance x2 (i.e., distance

between ionic radius r and vacuum thickness x1, and x2 ¼ r�x1) to the surface. (Reprinted with permission from Ref. 59). (c) Comparison

between potentials of zero charge computed by the JDTF surface model at the DFT-GGA level and experimental data122
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constant from electrodes to continuum solutions (see the red curve in Figure 4(a)). Smoothing functions may take dif-
ferent forms in different models, but have the same purpose of improving numerical stability of calculation. In contin-
uum interface models, the distribution of electrolyte ions is often described by the Poisson–Boltzmann (PB) model.56,118

If the electrode is charged, ions in electrolytes gather around the charged electrodes. However, the PB model cannot
properly describe this charge accumulation because the PB model lacks the description of the repulsion between ions.
As a result, it overestimates ionic concentrations at the charged surface.119,120 The Modified Poisson–Boltzmann (MPB)
model121 adds a “packing limit” on the ions to account for the finite size of the ions, in which a maximum ion concen-
tration determined by the ionic radius r, is imposed to limit close packing of ions at the charged surface. Specifically
adsorbed species often require quantum mechanical treatment, and thus should be included in the QM region. The
charges in the continuum model described by the MPB can only accumulate in the outer Helmholtz layer. Thus,
the distance (i.e., ionic radius r) between ions and the surface is longer than that for solvent molecules. Using the
proper ionic radius in the QM/continuum interface model, Sundararaman et al.59 successfully predicted the capacitance
curve in excellent agreement with experimental results (Figure 4(b)).

In addition to the continuum models mentioned above, solutions can also be described by structured solvation
models, for example, the RISM and JDFT model. Treatment of interactions between electrodes and electrolyte in these
structured interface models are very similar to those in the liquid phase simulations (Section 3.1.2). Figure 4(c) shows
the potential of zero charge (PZC) of various single-crystal metal surfaces predicted by the JDFT method versus experi-
mental values.72 The linear correlation with unit slope between the theoretical and experimental data indicates that the
JDFT model can reasonably predict the PZC of the metal surfaces. Recently, Wang et al.123 employed the JDFT method
to investigate the charging behavior of the Ag(111) electrode in NaF aqueous solutions.

4.2 | Explicit interface models

4.2.1 | Quantum mechanical or molecular mechanical interface models

AIMD is often used in calculation of interface electrochemistry, and the results can be used as benchmark for other models
to verify their accuracy.124 By using the AIMD interface model, Le et al.125 successfully calculated the PZC of metal/water
interface with an error of less than 0.1 eV. They further concluded that at the PZC condition, interface dipole potentials are
determined by the charge redistribution from chemisorbed water to the metal electrodes (Figure 5(a)) while water orienta-
tion has a negligible contribution. Le et al.1 then investigated the EDL of Au(111)/water interface (Figure 5(b)) and revealed
the existence of three characteristic, potential-dependent water configurations (“parallel,” “one-H-down,” and “two-H-down”
water) at the Au(111)/water interface. Recently, Le et al.5 simulated the electrified Pt(111)/water interfaces and found that
the coverage of chemisorbed water molecules increases when shifting the potential from negative to positive, which follows
the Frumkin adsorption isotherm. The coverage change of chemisorbed water molecules can induce significant interface
dipole potential change, and result in a negative capacitive response (Figure 5(c)). These works demonstrate the importance
of electronic structure description of the interface in correctly treating electrode potential and dielectric response of interface
water, which can only be accounted for in AIMD simulations.

Simulations at the interface can also use MM energy models.7,30–32 As introduced in the Section 2, two commonly used
methods to describe energy models of electrodes are the core–shell model and the Siepmann-Sprik potential. Recently, Henzi
et al.30 proposed a core–shell model for gold electrode. This core–shell model has good compatibility, as it only consists of a
Lennard-Jones potential and a harmonically coupled pair of opposite charges for every metal atom. However, the charged
shell in the core–shell model is tethered to the positively charged core and cannot move freely. Therefore, this core–shell
model cannot reproduce internal charge distribution of metal electrodes in the presence of external electric fields.30 To
describe internal charge distribution in simulations, the Siepmann–Sprik potential can be used. This method constant poten-
tial electrodes that screen the field inside the bulk region of electrodes, and this method has been implemented in many
interface simulations, for example, modeling electric double layer capacitors.7,31,32

4.2.2 | Quantum mechanical/molecular mechanical interface models

In QM/MM interface models, the regions for which the QM or MM model is used can be flexible, and depend on the
topics of interest in interface electrochemistry. For example, Kim et al.4 recently extended their DFT-CES model to
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interface simulations between silver surface and water/EMIM-BF4 mixture electrolytes (Figure 6(a)). In this DFT-CES
interface model, the silver surface and water/EMIM-BF4 mixture electrolytes are described by QM and MM energy
models, respectively. This multiscale model can be used for the statistic sampling up to the nanosecond time scale,
affording sufficient simulation time to equilibrate bulky ions like EMIM+ and BF�

4 in the electrolyte solution. To study
chemisorption on metal surfaces, Hutter et al.126 proposed an image charge augmented QM/MM (IC-QM/MM) method.
This IC-QM/MM method combines a QM described nitrobenzene molecule and the Siepmann-Sprik potential described
Pt(111) electrode, and hence can reproduce the electric response of the nitrobenzene charge density to the induced
charges of the electrode (Figure 6(b)). All the above QM/MM schemes performed under PBC, while a non-PBC
QM/MM method was developed by Stecher et al.101 for a study of the water splitting reaction on rutile TiO2. This non-
PBC QM/MM method avoids complexity under PBC due to charged defects in oxide electrodes. In this non-PBC
QM/MM model, a final exterior shell of point charges is added at the outer boundary of the finite MM region to repro-
duce the full electrostatic potential of the surface inside the QM region (Figure 6(c)).

The importance of chemisorbed water at metal/water interfaces has been demonstrated by using AIMD simulations,
which indicates the charge transfer between solutions and electrodes needs to be properly considered. Thus, AIMD
should be the recommended method for modeling active interfaces where solvent molecules or other reactive species
chemisorb on the electrode surfaces. Of course, the downside is its high computing cost significantly limiting the time
scale and model size of the simulations. The QM/MM and QM/implicit model usually set the boundaries between the
energy models right at the electrode-electrolyte interface, and thus are not suitable to account for the effect of charge
redistribution at the interface. Recently, Marzari et al. proposed an interface model that includes a few layers of QM sol-
vation molecules to describe the chemisorbed solvents at the interface.71,127 However, how to determine the location of

FIGURE 5 (a) Snapshot of the Pt(111)/water interface model (top), and the projected density of states (PDOS) plots (bottom) of Pt and

water molecules at the interface computed by the PBE functional. In this figure, water molecules adjacent to the Pt surface with the dipole

pointing away from the surface is called watA. The PDOS of watA is lower than the Fermi level of the Pt electrode, which proves that there

are a few water molecules close to the surface (i.e., watA) chemisorb on Pt. (Reprinted with permission from Ref. 125). (b) Potential-

dependent evolution of the hydrogen-bond network of interface water. Insets are structure models of interface water in the corresponding

potential regions. (Reprinted with permission from Ref. 1). (c) Capacitance model of the Helmholtz layer. Decomposition of differential

Helmholtz capacitance CH (blue) as a function of electrode potential U into two constituent components, i.e. the normal capacitance Csol

(green) of interface water and the capacitance CA (red) due to chemisorbed water. The inset indicates that Csol and CA are connected in

series. (Reprinted with permission from Ref. 5)

12 of 23 YANG ET AL.



the boundary between explicit and implicit solvation model is still an open question, which also exists in QM/MM
interface models. Specifically, the challenge is how to minimize the effect of solvation structures near the QM/implicit
(or QM/MM) boundary on the EDL structures when varying electrode potential, and at the same time, keep explicit sol-
vent molecules in the QM region as few as possible. If a large number of QM solvent molecules are included at the
interface, the number of degrees of freedom will increase significantly, and the consequence is that statistical sampling
becomes inevitable, leading to an increase in the computational cost.

5 | ELECTRIFYING INTERFACE MODELS

Modeling interface electrochemistry requires to maintain the electrode potential of a working electrode with respect to
a reference electrode. Keeping the electrochemical potential of electrons under control, inevitably leads to fluctuation
of the number of electrons in the working electrode. The method for constant electrode potential is simulating this elec-
trode in grand canonical ensemble.128–133 As an alternative, the variation of electrode potentials can also be achieved by
varying the charges of electrode in a half-cell model in canonical ensemble. The other choice rather than a half-cell
model is directly simulating a full-cell in canonical ensemble134,135 since the number of electrons is conserved in the
full-cell model. In this section, we summarize the methods for controlling electrode potentials in half-cell models (both
canonical and grand canonical ensemble) and full-cell models.

5.1 | Half-cell models

In order to maintain constant chemical potentials, half-cell models in the grand canonical ensemble use an external
electron reservoir to adjust the number of electrons in the system. This significantly differs from the standard DFT
implementation in which ground state electron densities are obtained through optimization of Kohn–Sham
(KS) orbitals in the self-consistent field (SCF) iterations with the total number of electrons fixed. Rather, one can resort

FIGURE 6 (a) Side view of the QM/MM interface model including the water/EMIM-BF4 mixture as the electrolyte on Ag(111) surface.

(Reprinted with permission from Ref. 4). (b) Model of nitrobenzene on Au(111). Isosurface of the electrostatic potential obtained with full

DFT (left) and QM/MM model (right). The transparent isosurface is from the conventional QM/MM model, and the solid isosurface is from

the IC-QM/MM model. (Reprinted with permission from Ref. 126). (c) Schematic illustration of the electrostatic QM/MM cluster embedding

model used for the TiO2/water interface. (Reprinted with permission from Ref. 101)
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to the grand canonical DFT (GC-DFT) formalism in which the number of electrons are determined in the SCF loop to
target at a specified electron chemical potential.128,131 This GC-DFT optimization procedure, however, is usually very
expensive and difficult to converge. One way to go around this problem is to use multiple standard fixed-number DFT
calculations in an outer loop which is considered as converged until a trial number of electrons gives a pre-set electron
chemical potential.136 Another interesting approach developed by Otani et al.130 enables AIMD simulations at constant
electrode potential. In this scheme, the simulation system is connected with a fictitious potentiostat, analogous to the
Nose–Hoover thermostat in constant temperature MD calculation. An appealing feature is that the dynamic fluctuation
of electrons is separate from the electronic structure calculations such that the standard fixed-number DFT implemen-
tation in existing AIMD codes can be used with only minor modifications. The dynamics derived by using the potential
energy of extended system follows correct statistics, and the generated MD trajectory samples the grand canonical
ensemble at the pre-set electron chemical potential. Bouzid and Pasquarello133 use this method to simulate the electri-
fied Pt water interfaces under bias potentials but with a different potential reference scheme.

One common issue for constant potential approaches is that charge fluctuation under PBC can have spurious effects
on potential reference and energetics, rendering consistent assessment of potentials and total energies difficult. Thus,
calculations with fixed number of particles (i.e., canonical ensemble) have been often used in studies of interface elec-
trochemistry. In the canonical ensemble approaches, the surface charge densities on the electrodes are controlled
instead, and the corresponding electrode potentials are then calculated. In the simulation models, the charges on the
electrodes need to be compensated by counter charges to keep the simulation cells neutral under PBC. The counter
charges are placed near the EDL in explicit solvation models,137 or described by some form of charge distribution in the
implicit models.76,127,131,138

To obtain the electrode potential at a given surface charge density of the electrode, the Fermi level of the electrode
needs to be aligned to a consistent reference. The implicit interface model can use the electrostatic potential of bulk
electrolyte solution as reference when varying the surface charge of the electrode. As only the electrostatic effects are

FIGURE 7 (a) Schematic illustration of alignment of electrostatic potentials between metal/water interface model (left) and pure water

model (right) in the computational standard hydrogen electrode scheme. (Reprinted with permission from Ref. 125). (b) Schematic

representation of the AIMD full-cell model used to realize an electrolytic cell. The figure on the left shows the alignment between two metal

electrodes before (superscript “ini”) and after (superscript “fin”) charge transfer. The figure on the right shows a doped semiconductor

electrode allows for controlling the position of the Fermi level. (Reprinted with permission from Ref. 134)
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included in the implicit solvation models, the electrostatic potential of the bulk electrolyte is essentially the same as the
vacuum level. Therefore, the electrode potential can be converted to the SHE scale by subtracting the absolute SHE
potential (i.e., 4.44 eV according to Trasatti).

Similarly, aligning potentials in the explicit interface models also need a consistent reference. Early works such as
Taylor et al.139 and Duan et al.140 introduced the vacuum layer in the metal/water interface model, and thus the electro-
static potential of the vacuum can be used as the reference. Same as in the implicit interface model, electrode potentials
can be calculated with reference to the vacuum potential, and then converted to the SHE scale by subtracting the abso-
lute SHE potential. Alternatively, the potential can be referenced to the SHE scale directly by subtracting the
deprotonation energy of aqueous hydronium (ΔdpAH3Oþ ). This scheme is presented in the Figure 7(a). The value of

ΔdpA
ið Þ
H3Oþ for interface model and ΔdpA

wð Þ
H3Oþ for bulk water model are different due to the uncertainty of electrostatic

potential reference under PBC. This indicates that ΔdpA
ið Þ
H3Oþ should be recalculated for every interface model with dif-

ferent chemical composition. Expensive calculation of ΔdpA
ið Þ
H3Oþ can be avoided by aligning the electrostatic potential

of bulk solution in interface model (ϕ ið Þ
wat) with its counterpart in bulk water model (ϕ wð Þ

wat).
125 As a result, the ΔdpA

wð Þ
H3Oþ ,

which is calculated once in bulk water model, can be readily converted into ΔdpA
ið Þ
H3Oþ by adding the difference between

ϕ ið Þ
wat and ϕ wð Þ

wat.

Finally, it is worth pointing out that equilibrium electrochemical conditions also specify constant electrochemical
potentials of electrolyte ions. In half-cell models, this, in principle, also requires fluctuating numbers of ions (e.g., H+)

FIGURE 8 (a) Schematic illustration of imposing an finite field in a periodic cell, as demonstrated by a parallel plate capacitor at

constant electric field, E, and at constant electric displacement, D. σm is the surface charge density on the metal electrode, and σp is the

polarization surface charge density of the dielectric material. (Reprinted with permission from Ref. 142). (b) Interface models of classical

polarizable electrodes under applied potentials. Top: Electrolyte-centered supercell under 2D PBC, with fixed applied potential between two

electrodes. Bottom: Conductor-centered supercell under 3D PBC, with a finite field and a single electrode in which all atoms are set to have

the same electric potential. (Reprinted with permission from Ref. 135)
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if the ions undergo chemical transformation at electrode surfaces. Computational treatment with constant electrochem-
ical potentials of ions is still rare. A notable exception is the work of Rossmeisl et al.,141 in which a generalized scheme
is proposed to investigate the effects of both electrode potential and pH. They calculate a series of interface models
corresponding to a variety of pH, and then employ a post-processing procedure to determine the electrode potential of
each configuration, from which the grand potential is constructed.

5.2 | Full-cell models

In addition to the commonly used half-cell models, there are some promising methods using full-cell interface
models which have been recently proposed for modeling electrified interfaces.134,142 The full-cell models simulated in
the canonical ensemble are effectively equivalent to the setup in electrochemical experiment. In contrast to the half-cell
models, both electrochemical potentials of the electrons and electrolyte ions in the full-cell models can be kept constant
without the need of changing the number of particles, as the counter electrode and bulk solution can be regarded as res-
ervoirs for electrons and electrolyte ions, respectively. The full-cell simulations with 2D PBC were already implemented
in the MM calculation.32

However, AIMD modeling of electrochemical full-cell systems faces a challenge of how to adjust the electrode
potential, because the Fermi level is kept constant throughout the cell in the SCF DFT calculation (left scheme in
Figure 7(b)). Consequently, no electric field is allowed between the two electrodes. In order to create a potential bias
across the cell, Surendralal et al.134 proposed a simulation method using a doped semiconductor (either p-type or n-type
doping) with a large band gap as the counter electrode, and a dipole correction scheme to treat the potential change
along surface normal direction under PBC. In this way, the charges on the metal electrode and the doped semiconduc-
tor (i.e., inert Ne electrode) are redistributed, and thus the electric field between two electrodes is generated, as pres-
ented in the right scheme of Figure 7(b). In the implementation, dopant charges are introduced by changing the
nuclear charges of the Ne atoms in the semiconductor counter electrode. This method was then applied to studying
the hydrogen evolution reaction (HER) that occurs during the initial corrosion of the Mg/water interface under anodic
polarization.134

A finite field MD simulation method recently developed by Sprik et al. holds great promise in simulating electrified
interfaces in full-cell models.143–148 Finite field MD simulations adopt the constant electric field Hamiltonian intro-
duced by Stengel, Spaldin and Vanderbilt,149 in which an electric field, E, or displacement, D, acting as an electrostatic
boundary condition is imposed to account for the interaction between the periodic system with the fixed field, as illus-
trated in Figure 8(a). Through computing the polarization of the full periodic cell during MD simulations, one can
derive the electrical properties such as dielectric constants and EDL capacitances. Zhang and Sprik tested the method
in a simple point charge model consisting of a NaCl aqueous solution confined between two oppositely charged
walls,143 and later applied it to simulation of the interface between a polar NaCl crystal slab and a NaCl aqueous solu-
tion.144–146 Using constant, D, MD simulation, they were also able to calculate the dielectric constant of liquid water at
increased speed of convergence.147 These calculations were performed based on the classical force field models, and the
first application with AIMD was modeling electrified semiconducting TiO2 water interfaces to calculate the capaci-
tances of the Helmholtz double layer at acidic and alkaline conditions.148 Note that in all the above mentioned studies
at both MM and QM level, the electrode surfaces are non-polarizable, in the sense that the net surface charges are fixed
during MD simulations, even for the QM models of semiconductor TiO2 surfaces charged by protons, not electrons.

The ideal would also be to extend the finite field MD method to simulate metallic electrodes that can be polarized
with induced charges under applied potentials or fields. In a full PBC cell, the presence of the finite field can polarize a
single metallic slab immersed in electrolyte solution such that the two surfaces of the slab are induced with opposite
charges, leading to a potential drop at the two electrode/electrolyte interfaces. This amounts to a full-cell setup with the
two short-wired surfaces of a single electrode slab, simultaneously representing both the cathode and anode in an elec-
trochemical cell. Combining the classical polarizable electrode model enabled by the Siepmann–Sprik potential,
Salanne, Sprik, and co-workers implemented the finite field MD method to model metallic electrodes in contact with
an aqueous ionic solution at a constant potential.135 They validated this attractive approach by showing the polarization
of the single metallic slab with correct charge distribution compared with the results obtained from an early 2D PBC
implementation, as illustrated in Figure 8(b). This advance opens a promising way to modeling electrochemical inter-
faces at controlled potentials or fields. Note that the finite field AIMD has yet to been applied to metallic systems so far
due to various technical difficulties.
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6 | CONCLUSION AND OUTLOOK

This review introduces a variety of computational methods used for electrochemical simulation. We first summarize a vari-
ety of choices of energy models for multiscale simulations, ranging from quantum mechanical, molecular mechanical, to
coarse grained and continuum models. We then introduce some applications of various models and their combinations for
targeted problems in solution and interface electrochemistry. In interface electrochemistry, we stress that water chemisorp-
tion can have a significant impact in determining electrode potentials and EDL capacitances, particularly on active electrode
surfaces. In these cases, AIMD can serve as good benchmark for the development of efficient multiscale embedding schemes.
Furthermore, we discuss the methods of controlling electrode potentials for both half-cell models and full-cell models. In the
half-cell mode, enforcing constant potential in simulation requires sophisticated grand canonical ensemble approaches,
which can be implemented at either the SCF DFT level or MD level. Alternatively, one can use a “sample and measure”
approach, in which a series of electrified interface models with different surface charge densities are constructed in separate,
and then the corresponding electrode potentials are calculated afterward with each DFT calculation performed with fixed
number of particles. On the other hand, the full-cell mode resembles the experimental setup, and the electrochemical poten-
tials of electrons and ions can be applied without the need of changing the number of particles in periodic cells. Some early
implementations, i.e. the finite field MD method at both classical and quantum mechanical level, have demonstrated that
the full-cell models are a very promising approach for modeling electrochemical interfaces.

During the last decade, machine learning (ML) methods have been changing our simulation protocols.150–154 Fitting
quantum mechanical calculation data, the ML models can accurately reproduce potential energy surfaces, allowing for
much faster sampling of configurational space with ab initio accuracy. The latest development of Deep Potentials
(DP) can speed up the AIMD calculation by the stunning 106–108 times.152–154 This certainly gives us the hope for
modeling realistic electrochemical cells at the accuracy of quantum mechanical level, in particular combining the DP
models with finite field MD in a full-cell mode. However, the ML potentials reply on local representation of atomic
environment, which may be inappropriate for treating long range electrostatic interactions that are essential in electro-
chemistry. Thus, the first hurdle to overcome is how to effectively incorporate long range electrostatic interactions in
the ML potentials.155 When combining with finite field MD, the ML potentials also need to include field response.
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ENDNOTES

* The Siepmann-Sprik potential has been implemented in the Lammps program (https://github.com/zhenxingwang/
lammps-conp) and the MetalWalls program (https://gitlab.com/ampere2/metalwalls).
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† Implicit solation models can be found in the following quantum chemistry codes: PCM and SMD are recommended
by Gaussian16 program (http://gaussian.com/scrf/?tabid=7) for continuous representation of solvent effect, COSMO
is implemented in TURBOMOLE program (https://www.turbomole.org/) or nwchem program (https://www.
nwchem-sw.org/), and the implimentation of SMx family can also be found at the website https://comp.chem.umn.
edu/solvation/comparison.htm.
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