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Abstract. This work proposes a detection-based tracking algorithm able to locate and keep the identity of multi-
ple people, who may be occluded, in uncontrolled stationary environments. Our algorithm builds a tracking graph
that models spatio-temporal relationships among attributes of interacting people to predict and resolve partial
and total occlusions. When a total occlusion occurs, the algorithm generates various hypotheses about the
location of the occluded person considering three cases: (a) the person keeps the same direction and speed,
(b) the person follows the direction and speed of the occluder, and (c) the person remains motionless during
occlusion. By analyzing the graph, our algorithm can detect trajectories produced by false alarms and estimate
the location of missing or occluded people. Our algorithm performs acceptably under complex conditions, such
as partial visibility of individuals getting inside or outside the scene, continuous interactions and occlusions
among people, wrong or missing information on the detection of persons, as well as variation of the person’s
appearance due to illumination changes and background-clutter distracters. Our algorithm was evaluated on
test sequences in the field of intelligent surveillance achieving an overall precision of 93%. Results show
that our tracking algorithm outperforms even trajectory-based state-of-the-art algorithms. © 2015 SPIE and IS&T
[DOI: 10.1117/1.JEI.24.1.013015]
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1 Introduction
Multiple people tracking is very important for the develop-
ment of video surveillance technology. It provides useful
information that can be used to classify pedestrian activities,
such as walking, running, jumping, and waiting for some-
thing, among others. Multiple people tracking remains as
an open problem when people move in real environments,
such as parks, schools, shopping malls, lobbies, airports, bor-
ders, and so forth. This problem is challenging since in this
domain the number of persons within the scene may vary
over time and their dynamics are subject to sudden changes.
Moreover, their clothing cannot be specified in advance and
illumination changes and background-clutter distracters
affect their perceived appearance. Another equally important
issue is the occlusion mainly caused by the interaction
among people.

In this work, we address the problem of multiple people
tracking in uncontrolled sceneries using a single camera. Our
solution deals with major problems, such as appearance
changes of the individual’s clothing, partial and total occlu-
sions among persons, and confusion of identities of nearby
or interacting targets. For this, we propose a detection-based
tracking algorithm able to estimate the location and deter-
mine the trajectory of each person in a set of video frames.
Our algorithm associates people trajectories with available
detection responses and analyzes the interaction among tar-
gets to predict partial and total occlusions. Our algorithm
keeps different hypotheses about the location of occluded
people in order to avoid losing them during total occlusions.

Our algorithm can track people when there are false positives
(FPs) and false negatives (FNs) in the person’s detection
measurements. Results show that our tracking algorithm
outperforms state-of-the-art algorithms.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 explains the detail
of the proposed tracking algorithm. Section 4 shows exper-
imental results of multiple people tracking in uncontrolled
environments and it also presents a comparison of our
results with other state-of-the-art approaches. Finally, Sec. 5
presents the conclusions of our work.

2 Related Work
The process of tracking multiple people consists of a target
detection and representation stage and a temporal association
stage. When people are separated and do not occlude each
other, this process can be easily solved by running multiple
independent trackers,1 such as the bounding-box-based
tracking,2 the hybrid appearance-guided particle filter,3 or
the CamShift-guided particle filter.4 However, in real scen-
eries, interactions and occlusions among people occur mak-
ing both tracking stages difficult problems.

Some works in the literature have focused on improving
the detection and representation stage to deal with partial
occlusions. Senior et al.2 use appearance models and prob-
abilistic maps to localize people and vehicles blobs that were
partially overlapped. Similarly, Vezzani et al.5 proposed
a probabilistic appearance-based approach that allows the
estimation of the pixel-wise shape of each person during
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occlusions. Both approaches are vulnerable to misclassifica-
tion for similarly colored objects at object interactions. Wu
and Nevatia6 use body part detectors learned by boosting
weak classifiers based on edgelet features. The combined
detection responses and the part detection responses provide
the observations used for tracking. Dalal and Triggs7 propose
a method for detecting people using the histogram of ori-
ented gradient (HOG) descriptor and a linear support vector
machine (SVM) classifier. Lin et al.8 present a hierarchical
part-template matching approach for human detection and
segmentation. In their approach, human shapes are matched
with an edge map using a Bayesian maximum a posteriori
(MAP) framework approach that combines local part-
based and global template-based features. Andriluka et al.9

propose a dynamic limb-model based on a hierarchical
Gaussian process latent variable model. This model is used
to improve people detection performance by generating
reliable people-tracklets in image sequences.

Since even a partial occlusion can mislead trackers, lead-
ing to fragments or total loss of tracks, some works have
dealt with the occlusion problem by using a multiview con-
figuration. Khan and Shah10 develop a planar homographic
occupancy constraint to localize people on the ground plane.
Tracking is performed by minimizing an energy function that
combines occupancy information and spatio-temporal prox-
imity. Munoz-Salinas et al.11 present an extension of particle
filters to the Dempster-Shafer theory of evidence. To detect
target occlusions, an occupancy map is calculated separately
for each camera using a depth-ordering scheme. The evi-
dence of visible people collected from all the cameras is
fused to obtain the best estimation of target locations.
Kaucic et al.12 propose a method to link fragments of
paths over sensor gaps by clustering spatially close pairs of
fragments with a similar appearance and motion. Although
a multiview configuration reduces the degree of occlusion,
it does not solve the occlusion problem in settings in which
there are plenty of occlusions caused by the interaction of
multiple people. Ryu et al.13 confirm this assertion and sug-
gest a method to strategically place the cameras in order to
minimize occlusions to tracking objects systems.

In this work, we address the tracking of multiple people
task with a single-view configuration by strengthening the
temporal association stage. The temporal association meth-
ods commonly used to track several objects are nearest
neighbor (NN), global nearest neighbor (GNN), joint prob-
ability data association (JPDA), and multiple hypothesis
tracking (MHT).14–16 The NN and GNN algorithms14,16 esti-
mate the most likely assignment of the detection measure-
ments with the existing trajectories in polynomial time.
These algorithms are reliable when there is a moderate den-
sity of objects in the scenery and when the movement or
change in the appearance of the object from frame to
frame is low. However, these methods fail when the FP
rate or the FN rate in the detection measurements increase,
occlusions between objects occur, changes in the object
appearance are significant, or when the maneuvers of the
objects are complex. The JPDA algorithm17 provides a sub-
optimal approximation of the Bayesian filter for a constant
number of objects. Its main disadvantage is that it consumes
a lot of computational cost (nondeterministic polynomial-
time (NP)-hard). The JPDA algorithm is reliable in sceneries
with a moderate density of objects. However, this algorithm

presents the problem of interference from nearby objects.
This influence may create collisions between objects that
are moving in parallel, damage the recognition of the object,
or damage the information used for its discrimination. The
MHT16 algorithm exhaustively enumerates all the possible
hypotheses of the object estimations over a specific number
of recent frames to choose the most likely estimation. Unlike
the NN, GNN, and JPDA algorithms, in which a temporal
association decision is irrevocable and is taken based on
information from two consecutive frames, the MHT algo-
rithm delays the temporal association decision until enough
information of measurements from multiple frames is avail-
able to avoid wrong associations. Theoretically, the MHT
algorithm finds the best solution to the problem but it is
computationally expensive (NP-hard). This work proposes
a solution to the problem in polynomial time.

Other works prefer to avoid tracking errors by temporal
association algorithms that optimize the trajectories through
the whole sequence analysis. Zhang et al.18 define the tem-
poral association problem as an MAP problem. The problem
is mapped to a data flow network that does not allow over-
lapping between the trajectories. The optimal association of
the trajectories is done using an algorithm that minimizes the
network flow-cost. Wang et al.19 also map the multitarget
tracking problem to a network-flow. They solve the MAP
problem using a global optimization framework that uses
mixed integer programming. They show that the spatial loca-
tion of the missing objects can be inferred from the estima-
tion of the location of the other objects. Yang and Nevatia20

formulate the tracking problem as an energy minimization
problem, and propose an online learned condition random
field approach for efficiently finding good tracking solutions
with low energy costs. Collins21 presents an iterative
approximate algorithm to the multidimensional assignment
problem under general cost functions. This algorithm uses
a snake energy trajectory cost function to measure the quality
of a proposed trajectory. Song et al.22 analyze the statistical
properties of segments of trajectories to develop assignments
between them so that they can form larger trajectories.
They propose a stochastic method based on the evolution
of an association graph which has trajectories segments as
nodes and affinity scores as weights. The association is
done by estimating the MAP of connections between seg-
ments. Brendel et al.23 formulate multitarget tracking as
the maximum-weight independent set problem. They address
the long gaps by iteratively linking smaller similar tracks into
larger ones and splitting long unviable tracks until conver-
gence. Some other works address the problem of temporal
association by building up a graph where each node repre-
sents the observation of an object and the edges denote their
path.24–26 These works are based on the principle of adding
measurements when an object is not detected and removing
them when they correspond to false detections. They solve
the temporal association task by adding edges to the tracking
graph using algorithms that find the shortest path.

Taking into account the weaknesses of previous work, in
Reta et al.,27 we proposed a tracking strategy to track multi-
ple people from the information of two consecutive frames.
We introduced a description of a tracking graph approach
based on human interaction rules able to maintain the
tracking of people through occlusions. We presented an
occlusion function that determines the depth ordering of
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targets when an occlusion occurs and enables the successful
update of people models. We tested our approach using con-
trolled detection measurements obtained by adding noise to
the ground truth. In the CAVIAR28 benchmark sequences,
we achieved an accuracy of 89.8% demonstrating that our
approach yields robust tracking of people during partial or
total occlusions.

In this work, we propose a novel tracking algorithm able
to individually track multiple people in uncontrolled station-
ary environments. This work presents a significant extension
of our previous approach. First, we propose a people detec-
tion scheme based on a human silhouette model that is able
to find persons partially occluded (see Sec. 3.1). Second, we
suggest a person’s representation that is able to adjust to
appearance changes due to variable illumination as well
as deal with partial occlusions and changes in motion (see
Sec. 3.2). Third, we present a temporal association algorithm
that builds a graph structure whose main objective is to keep
the tracking of people through occlusions (see Sec. 3.3,
Algorithm 1). We also propose a similarity matching process
that associates detection measurements with available people
trajectories based on appearance and spatial motion similar-
ity and location proximity (see Sec. 3.3.2). Our temporal
association algorithm has a time complexity of Oðn3Þ,
where n is the number of tracked targets, which is regulated
by the execution time of the similarity association process.
Finally, we extend experiments to test sequences in the field
of intelligent surveillance so that we show our tracking algo-
rithm is robust under different sceneries with various people
interactions and occlusion events.

3 Proposed Work

3.1 Detection of Persons
This work proposes a detection scheme able to find multiple
people who may be partially occluded in stationary scener-
ies. The detection scheme examines areas in the scenery
where there is the presence of motion in order to locate tar-
gets that fit into a human silhouette model.

In our scheme, we first model the background of the sce-
nery by building a mixture of Gaussian probability map that
uses local texture features and invariant color features.29

Because this map is adaptive to illumination changes as
well as to the addition and removal of stationary objects,
moving foreground regions are well-defined by a threshold
filtering.

Second, we model the human silhouette by building a
template in the form of an active basis, which is formed
by a composition of Gabor wavelet elements that can be
slightly perturbed so that the template is deformable. The
active basis template is learned from images of persons in
different poses and clothing30 by the shared sketch algo-
rithm.31 After that, the fitting of the active basis template to
a test image is achieved by the computational architecture of
sum-max maps.31 This architecture alternates between sum
maps and max maps. The sum maps result from local filter-
ing operations for detecting edge segments and shapes. The
max maps result from local maximization operations that
track shape deformations. In general, this architecture builds
a log-likelihood map of the deformed active basis that can be
interpreted as a shape filter map.

Finally, in order to detect people with different sizes, our
scheme obtains shape filter maps at different scales to then

find the best fits of the active basis template. We calculated
the local maximum responses of all of the shape filter maps
on the areas that correspond to moving foreground regions.
To avoid over-fitting of the template through the multiples
scales, once the global maximum response of the active
basis template is obtained, the foreground region occupied
by its silhouette is marked as occupied. Then, to find more
persons in the scene, the search of subsequent maximum
responses is repeated over the vacant areas of the foreground
regions.

Figure 1 shows our people detection scheme in a test
image.

3.2 Persons’ Representation
Each person to be tracked is represented by his shape,
appearance, and motion models.

The “human body shape” is modeled as an ellipse region
with a parameter vector S ¼ ðxc; yc;ϕ; rx; ryÞ, where ðxc; ycÞ
is the center of the ellipse, ϕ is its orientation angle according
to the x axis, and ðrx; ryÞ are the half-radii of the ellipse.

In this work, the parameters of the shape model of the
object are computed directly from the bounding box location
of the measurement provided by our people detection scheme.

The “appearance of the object” in the image is represented
by histogram q, which describes the color distribution of the
pixels inside the object’s area S. To generate the q histogram,
the color cube is divided intom equal-size bins. The function
b: S ⊂ R2 → f1; : : : ; mg is defined to map the pixel at loca-
tion pj to the index bðpjÞ of the bin corresponding to its
quantized color u. The color density distribution for each
bin q̂ðuÞ is then computed as

q̂ðuÞ ¼ 1

jSj
X
pj∈S

κ½bðpjÞ − u�; (1)

where κ is the Kronecker delta function and jSj denotes the
cardinality of S. The factor 1∕jSj imposes the conditionP

q̂ðuÞ ¼ 1 to normalize the resulting histogram q ¼
fq̂ðuÞgu¼1;: : : ;m.

In our experiments, each histogram is calculated in the
RGB cube using bins of 16 × 16 × 16 size on the elliptical
region that models the shape of the object.

The “motion of the object” is represented by the list
M ¼ ½x̂; P̂�, where x̂ is the estimated state vector that
includes parameters of the object’s position and velocity,
and P̂ specifies the covariance of the state estimation
error. Unlike our previous work27 where the motion of the
object was represented by parameters of the affine transfor-
mation from its optical flow estimation, in this work we use
the Kalman filter theory32 to predict and correct the dynamic
model of the object from a series of incomplete and/or noisy
measurements.

3.3 Temporal Association Algorithm
LetG ¼ hN;Ei; be a tracking graph, where N ¼ fNo ∪ Nhg
is the set of nodes of the graph that represents detected peo-
ple measurements (No) and hypotheses of people that are not
visible (Nh).

Each node n ∈ N is identified by its index k at time t as
ntk. Each node has a list of attributes Atrtk ¼ ½idtk; Stk; qtk;Mt

k�
that describes the represented person, where id is the identity
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of the tracked object, S is the shape model of the object,
q is the color histogram that describes its appearance, and
M is a list of parameters that describes its motion.

A directed edge ðnt−1i ; ntjÞ ∈ E between two nodes in con-
secutive time steps is defined for two cases: (a) if ntj ∈ No,
the similarity association process that matches tracked
objects with detection measurements must be satisfied,
i.e., ðnt−1i ; ntjÞ ∈ max SimilarityðNt−1

i ; NtÞ, (b) otherwise,

Algorithm 1 Temporal association algorithm.

Input: I: a sequence of images with people.

Onput: G ¼ hNo; Nh; Ei;: tracking graph.

Main variables

N : set of nodes of the graph.

E : set of edges of the graph.

No : represents visible objects.

Nh : represents hypotheses of non detected or occluded objects.

μρ: threshold value for the appearance similarity metric.

μg : gate radius of the validation region.

m: required frames to prune hypotheses in the graph.

λ: percentage of overlapping among predictions of objects.

V: set of detected objects in the image.

O: set of objects in an occlusion event.

T : total number of frames.

t : current frame.

superscript t : it refers to the objects in frame t.

subscript k : it refers to the k ’th object in the frame.

S: it refers to the shape area attributes.

St−1jt : it refers to the prediction area attributes.

G ¼ h∅;∅;∅i;

Set values for μρ, μg , m, and λ

for t : 1: : : T do

Assoc ¼ ∅

V ¼ PeopleDetection (I t )

O ¼ Occlusion (Nt−1; λ)

π ¼ SortOcclusionTargets (O)

foreach vk ∈ V do

Nt
ok

¼ AddNoteToGraph (G; vk ; t , “No”)

if St
ok

∩ St−1jt ≠ ∅ then

Fmax ¼ MaxSimilarity (Nt
ok
; Nt−1

j : St
ok

∩ St−1jt ; μρ; μg )

if Fmax ≠ ∅ then

AddEdgeToGraph (G;E; ðFmax; Nt
ok
Þ)

Assoc ¼ fAssoc ∪ Fmax ∪ Nt
ok
g

end

end

end

foreach nj ∈ Nt
o \ Assoc do

Fmax ¼ MaxSimilarity (nj ; Nt−1 \ Assoc; μρ; μg )

if Fmax ≠ ∅ then

AddEdgeToGraph (G;E; ðFmax; nj Þ)

Assoc ¼ fAssoc ∪ Fmax ∪ njg

end

end

UpdateAttributes (Nt
o)

foreach ai ∈ Nt−1 \ Assoc do

Nt
h1

¼ AddNoteToGraph (G; ai ; t , “Nh”)

AddEdgeToGraph (G;E; ðai ; Nt
h1
Þ)

UpdateAttributes (Nt
h1
;∅, 0, “the person retains

his velocity and direction”)

if FirstOcclusion (ai ;O; π) then

Nt
h2

¼ AddNoteToGraph (G; ai ; t , “Nh”)

AddEdgeToGraph (G;E; ðai ; Nt
h2
Þ)

UpdateAttributes (Nt
h2
;O; π, “the person follows

the velocity and direction of the occluder”)

Nt
h3

¼ AddNoteToGraph (G; ai ; t , “Nh”)

AddEdgeToGraph (G;E; ðai ; Nt
h3
Þ)

UpdateAttributes (Nt
h3
;∅, 0, “the person remains

motionless during occlusion”)

end

end

G ¼ PruneHypothesis ðG;mÞ

end
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if ntj ∈ Nh is a predicted successor of nt−1i ∈ N then the edge
is generated as a hypothesis trajectory to keep the identity of
objects that are missing or occluded.

Algorithm 1 shows our novel tracking algorithm.
Basically, our algorithm works as follows:

An iteration begins with a set of the object hypotheses
trajectories built in the previous frame. For each hypothesis,
a prediction is performed to estimate the location of the
object in the current frame. Additionally, individual’s mea-
surements are obtained by our detection scheme to choose
who should be tracked in every frame. Occlusion relation-
ships between trajectory hypotheses are also obtained to
determine which of those hypotheses correspond to objects
that are occluded, as well as who occludes who in each
occlusion set.

The process of linking tracked objects with candidate tar-
gets is performed in two stages. In the first stage, predictions
for which area intersects with measurement areas are found.
Then, the matching pairs are estimated by maximizing the
total distance of the similarity of their appearance and spatial
motion. In a second stage, predictions and measurements
that were not matched in the first stage, but are inside the
validation gate, are found. After that, the matching pairs
are estimated by maximizing the total distance of the simi-
larity of their appearance and position.

For both stages, current measurements are linked with
predictions of tracked objects if their matching pairs satisfy
an appearance similarity threshold. Otherwise, a hypothesis
tracking for the new measurement is generated. This hypoth-
esis will have to be confirmed in subsequent frames to deter-
mine if it is a measurement that corresponds to an object
entering to the field of vision or if it is an FP measurement
generated during the detection stage.

For each prediction that is not supported by a measure-
ment, the algorithm assesses whether the object got out
from the field of vision of the scene, or the object is
being occluded, or it was simply not detected due to back-
ground noise. For the last two cases, a tracking hypothesis is
generated to predict the location of the object. Of course, this

hypothesis keeps the direction and speed of the tracked per-
son. As a special case, when the total occlusion event occurs
for the first time, two additional hypotheses are generated
considering situations in which the person follows the direc-
tion and speed of the occluder, and the person remains
motionless during occlusion.

To complete the iteration, contradictory occlusion
hypotheses are pruned, hypotheses generated by FPs in
the detection measurements are eliminated, and hypotheses
corresponding to objects getting out of the scene are
finalized.

The subsequent sections describe in detail three main
components of our algorithm. Section 3.3.1 describes how
our temporal association algorithm detects occlusions
among people and sorts the objects involved in them (func-
tions: Occlusion and SortOcclusionTargets, lines: 6 and 7).
Section 3.3.2 describes the similarity association process
between candidate targets and tracked associations carried
out by our algorithm (function: MaxSimilarity, lines: 11
and 16). Finally, Sec. 3.3.3 describes how to update the
attributes of the objects that are being tracked (function:
UpdateAttributes, lines: 20, 24, 28, and 31).

3.3.1 Occlusion relationships

To represent possible occlusions among people, we verify
which areas of the predicted regions of nodes overlap.
Each prediction area is identified by its index k at time
t as Stjt−1k and is estimated by using the prediction step of
the Kalman filter.32

We then build a set of binary relationships O between
these overlapped regions as follows:

O ¼
(
ðnt−1i ; nt−1j Þjidi ≠ idj;

jStjt−1i ∩ Stjt−1j j
jStjt−1i j þ jStjt−1j j

> λ

)
; (2)

where the restriction idi ≠ idj prevents occlusion relation-
ships among hypotheses generated for the same object, and

Fig. 1 People detection scheme. (a) The active basis template is learned from images of persons in
different poses and clothing. The fitting of this template to a test image gives as result a log-likelihood
map that can be interpreted as a shape filter map. (b) Shape filter maps at different scales are obtained to
facilitate the detection of people with different sizes. The search of local maximum responses of all of
the maps is reduced to the moving foreground regions (only a shape filter map is shown in the figure).
(c) and (d) The fit of the template at different iterations produces as result the detection of multiple
people. True positives and false positives (FP) in the detection measurements are also shown in these
figures.
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the threshold λ is established as the overlapping-percentage
indicator to identify a possible occlusion.

To sort the elements in each occlusion pair of the set O,
we defined the function πij ∈ fþ1;−1g between objects
i and j, where πij ¼ þ1 means i occludes j, and πij ¼ −1
means j occludes i. To determine who occludes who, we
first verify whether the tracked nodes in the occlusion set

are visible or not in the current frame. A node nt−1k ∈ O
is visible at time t if its appearance model matches against
the model of a measurement detected on the overlapped
region. In this case, we represent the corresponding succes-
sor of nt−1k that is visible at time t as ntk 0 ∈ Vt.

Then, occlusion function π is evaluated in the current
frame as follows:

πti 0j 0 ¼

8><
>:

þ1 if nti 0 ∈ Vt; ntj 0 ∈= Vt or nti 0 ∈ Vt; ntj 0 ∈ Vt; upycðnti 0 ; Stjt−1j Þ > downycðnti 0 ; Stjt−1j Þ
−1 if nti 0 ∈= Vt; ntj 0 ∈ Vt or nti 0 ∈ Vt; ntj 0 ∈ Vt; upycðnti 0 ; S

tjt−1
j Þ < downycðnti 0 ; S

tjt−1
j Þ

πt−1ij otherwise

; (3)

where upyc and downyc are the areas of the given shape
region up and down the center of the reference object,
respectively. The comparison of these area functions
allows estimating the spatial ordering of the objects by
considering the global alignment of their shape regions.
This feature stands out against our previous work27 in
which a local alignment of objects was achieved by a com-
parison between the largest value of the y-coordinate of
the regions.

As we can see in Eq. (3), occlusion relationships are
deduced from the spatial visibility of the objects in the cur-
rent frame. For cases where objects are not visible, their
order before the occlusion is kept by inheriting the previous
value of the occlusion function.

3.3.2 Similarity association process

According to the person models described in Sec. 3.2, we
define similarity metrics that allow us to evaluate if a tracked
person can be spatially and temporally linked with a candi-
date target.

The similarity of appearance between the color q of the
tracked object and the color p of a candidate target is defined
by the Bhattacharyya coefficient ρ as

ρðp; qÞ ¼ Σu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ðuÞq̂ðuÞ

p
; (4)

where p̂ðuÞ and q̂ðuÞ are the normalized color densities of
the histogram bin u. The coefficient ρ is in the range ½0;1�,
where ρ ¼ 1means that the two histograms are identical, and
ρ decreases as the histograms differ.

The spatial motion between the predicted region Sq of
the tracked object and the region Sp of a candidate target
is measured by the Hamming distance δ as

δðSp; SqÞ ¼ 1 −
jSp ∩ S̄qj þ jSq ∩ S̄pj

jSpj þ jSqj
: (5)

Metric δ takes values in the range ½0;1�, where δ ¼ 1
means the two regions are identical, and δ decreases as
the regions differ.

The proximity between the central points cp and cq of the
object regions Sq and Sp is computed by the well-known
Euclidian distance dðcp; cqÞ.

We also define a validation gate to delimit the area where
temporal correspondences may occur. The validation gate is
approximated by a circular region with the center at the pre-
diction area and an established gate radius μg.

Detection measurements that lie inside the prediction
gates are compared with their predictions in order to link
tracked objects with candidate targets. The following simi-
larity association process is proposed to set up these match-
ing pairs.

1. Find from the predictions which area intersects with
the measurement areas. If any prediction is found,
then skip to step 5.

2. Compute the ρ and δ distances between the measure-
ments and predictions obtained in step 1.

3. Choose the predictions that maximize the ρ and δ coef-
ficients by using the Hungarian algorithm.33

4. Accept the predictions as matching pairs of their
respective measurements if their ρ coefficients satisfy
the appearance similarity threshold μρ.

5. Find from the predictions which measurement areas
are inside their validation gates μg, but where neither
is in the matching pairs. If any prediction is found,
then the process finishes.

6. Compute the ρ and d distances between the measure-
ments and predictions obtained in step 5.

7. Choose the predictions that minimize the 1 − ρ and
d coefficients by using the Hungarian algorithm.33

8. Accept the predictions as matching pairs of their
respective measurements if their ρ coefficients satisfy
the appearance similarity threshold μρ.

Step 1 to step 4 of the process allow linking detection
measurements with available people trajectories based on
similarity metrics of appearance and spatial motion.
Step 5 to step 8 of the process allow the matching based
on similarity and location proximity metrics of the detection
measurements that are inside the validation gate with the
remainder of people trajectories that were not previously
allocated.

3.3.3 Attributes update

To update the attributes of the objects, it is necessary to check
if they appear in an occlusion relationship. This is done in
order to know which object is occluded by which other
object in the relationship. Knowing this information, the
attributes update is carried out as follows:

• The “appearance model” of a tracked person is updated
with the appearance model of his current measurement
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when the person is absent from any occlusion. If we
detect that the person is being occluded, the appearance
model of the tracked person is kept constant.

• The “shape model” of a tracked person is updated with
the shape model of his current measurement when
the person is not being occluded, otherwise the shape
model of the tracked person is updated with the model
of his prediction area.

• The “motion model” is updated with the motion model
calculated from his current measurement given that the
person is not being occluded. If we detect that the per-
son is being occluded, the motion model of the tracked
person may be updated in three different cases. Case 1
states that the tracked person evolves independently
during the occlusion event, keeping his velocity and
direction. As this assumption can be violated during
target interactions, case 2 states that the tracked person
acquires the velocity and direction of his occluder.
Case 3 states that the tracked person remains motion-
less during the occlusion.

4 Experimental Results

4.1 Data Sets
We evaluated our tracking algorithm with respect to refer-
ence sequences focusing on intelligence surveillance. We
conducted tests in diverse real-world environments with
complex situations of targets’ interactions and occlusions.

We used CAVIAR28 sequences to assess the performance
of the algorithm in indoor environments. These sequences
were captured in a corridor of a shopping mall in which
a variable number of people in the scene perform activities,
such as walking, talking, getting in and getting out of
shops, waiting for someone else, and so on. The evaluation
of our algorithm is carried out in the seven most challeng-
ing video sequences: TwoEnterShop3, TwoEnterShop2,
ThreePastShop2, ThreePastShop1, TwoEnterShop1,
OneStopOneWait1, and OneStopMoveEnter1.

PETS34 sequences allow us to assess the performance of
our algorithms in outdoor environments. The sceneries of
these sequences are filmed by multiple cameras focused
on the crosswalk of a university. The sceneries involve actors
who are walking either alone or in pairs. Actors also perform
other activities, such as meeting with people, waiting for
someone else, changing directions, as well as getting in
and getting out of the scene. The evaluation of our algorithm
is performed independently in four video sequences of the
Dataset S2: People Tracking, Scenery: L1 from view 005
to view 008.

UCO35 sequences are recorded in a laboratory room of a
university from six cameras’ points-of-view. The evaluation
of our algorithm is performed independently in 24 video
sequences of the Datasets p2v1, p2v2, p3v1, p3v2 from
view 1 to view 6. The number of people in these sequences
varied from 2 to 3, due to the limited field-of-view of the
scenery. Although people were instructed to move around
freely in the environment, they generated complex situations
of frequent interactions and occlusions.

4.2 Evaluation of Our Detection Scheme
Our proposed detection scheme was able to locate multiple
possibly interoccluded humans from static images. We
evaluate our people detection scheme on the CAVIAR28

dataset. This dataset has ground truth detection information
available. We compare our results with the Dalal and Triggs7

method which, as our detection scheme, is able to detect
multiple humans in images with a moderate density of peo-
ple. The Dalal and Triggs method uses HOG feature vectors
and a trained SVM classifier to detect persons in images.

In Fig. 2, we show a comparison of our detection scheme
with the HOG-SVM method7 for the CAVIAR28 dataset.
For all of the test sequences, our detector achieved a better
performance than the HOG-SVM method. This is mainly
because our detection method is more robust to partial
occlusions than the HOG-SVM method. Our method was
designed to detect people with a visibility higher than

Fig. 2 Comparison of our detection scheme with the histogram of an oriented gradient-support vector
machine method7 for the CAVIAR28 dataset.
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30%, whereas HOG-SVM can detect people with a visibility
higher than 65%.

In the images of the CAVIAR sequences, our detection
scheme achieved a precision of 87% and a recall of 62%,
whereas the HOG-SVM method achieved a precision of
51% and a recall of 43%. Our detection scheme outperforms
the HOG-SVM method in both precision and recall metrics
because the FP and FN indices achieved by our scheme are
lower. This happened because the detection decision of our
scheme was taken by examining information from a shape
detection filtering as well as from a motion detection filter-
ing. Furthermore, the true positive metric of our detection
scheme acquires a much higher value than the HOG-SVM
method. Thus, our scheme achieved a high precision perfor-
mance. This took place because our detection scheme was
designed to deal with partial occlusions and to be tolerant
to changes in the perceived 2D silhouette of the persons.
On the other hand, the HOG-SVM method is unable to han-
dle a large amount of within-class shape variations of the
human body.

4.3 Evaluation of Our Tracking Algorithm
All of the test sequences show real sceneries where inter-
actions and occlusions between individuals frequently
occur. Complex situations of a variable number of interacting
persons in the scenery are represented in the test sequences.
There are also persons getting in and getting out from the
field of vision of the camera. Additionally, there are severe
occlusions that occur in long intervals of time. In some
sequences, there are people wearing clothes with similar

appearance features. There are also cases of individuals that
change their trajectory when they interact with other people
in the scenery.

Figure 3 shows visual examples of the results of our
tracking algorithm for the sequence OneStopMoveEnter1
of the CAVIAR28 dataset. Figure 4 shows visual examples
of the results of our tracking algorithm for the sequence
S2-L1-View_008 of the PETS34 dataset. Figure 5 shows vis-
ual examples of the results of our tracking algorithm for
the sequence p3v1view1 of the UCO35 dataset.

In Figs. 3 through 5, ellipses in the solid line style re-
present nodes of tracked targets that match with a detection
measurement. Ellipses in the dashed line style represent the
predicted successor of nodes for missing or occluded targets.
Ellipses in a light gray color represent nodes that have to be
confirmed by a detection measurement at subsequent frames.
This happens in order to assign an identity to the new target
or to show that the trajectory was generated by an FP in the
detection measurements.

In Fig. 3, an FP is detected in a deferred way and its
tracking immediately ends [Figs. 3(a) and 3(e)]. FN is accept-
ably handled by generating hypothesis’ trajectories that keep
the direction and speed of the tracked persons [Fig. 3(b), ID 4
and ID 7]. The occlusion between people with ID 5 and ID 6
is successfully resolved as shown in Figs. 3(d) through 3(f).
The occlusion between people with ID 4 and ID 6 is also
resolved as shown in Figs. 3(b) and 3(d). In Fig. 3(c), a tra-
jectory was initialized for the measurement with ID −14.
This measurement was not associated with the estimated tra-
jectory of a person with ID 4 as there were significant var-
iations in her attributes. However, one of the hypotheses built

Fig. 3 Results of our temporal association algorithm in the sequence OneStopMoveEnter1 of the
CAVIAR28 dataset. In this crowd sequence, groups of people walk collectively along the corridor.
Occlusion between persons with ID 4 and ID 6, and persons with ID 5 and ID 6, is successfully resolved.
Timely detection of FP prevents the misleading correction of trajectories of people who walk close
[frames (a) and (e)].
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Fig. 5 Results of our temporal association algorithm in the sequence p3v1view1 of the UCO35 dataset.
Interactions and occlusion among persons are successfully resolved even when there are changes in the
illumination of the scenery. Our algorithm can also track targets with partial visibility [frames (d)–(f)].
Keeping the tracking of objects in these situations is possible due to the robustness of the update in
the people’s attributes.

Fig. 4 Results of our temporal association algorithm in the sequence S2-L1-View_008 of the PETS34

dataset. People are tracked correctly even when they are walking close [frames (a)–(d)]. Occlusion
between persons with similar attributes is successfully resolved [frames (c)–(e), ID 4 and ID 1].
However, occlusion also produced identity switches between interacting persons with similar attributes
[frame (f), ID 4 and ID 2]. This kind of error can be avoided by a better tuning of the parameters involved in
the similarity association process.
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for the person with ID 4 at the beginning of the occlusion
allows her to be correctly tracked in Fig. 3(d).

In Fig. 4, groups of persons with similar appearance
attributes are walking at the same speed and direction (ID
3, ID 5, and ID 6). They are tracked correctly even though
they are walking too close and there are missing people’s
measurements [Figs. 4(a) through 4(c)]. Complex inter-
actions and occlusions between the persons with ID 1 and
ID 2 are successfully resolved [Figs. 4(b) and 4(c)].
Occlusion of the person with ID 1, who remains motionless
during the event, is correctly handled even when his occlusor
with ID 4 has similar features [Figs. 4(d) and 4(e)].
Occlusion between the persons with ID 4 and ID 2 switches
their identities during the event. This happened because they
were placed too spatially close with very similar features of
appearance and size. In order to correctly handle the associ-
ation of identities in these conditions, for our algorithm,
a better tuning of the parameters of the similarity association
process is required.

In Fig. 5, partial and total occlusions commonly occur
among individuals. The person with ID 1 keeps his identity
although he is occluded over and over again by the other
persons in the scene. The person with ID 2 keeps his identity
whereas there are changes in his attribute of size during the
tracking. The person with ID 3 is successfully tracked in
spite of the fact that his appearance attributes vary due to
the partial visibility of his body and changes in the illumi-
nation of the scene. Keeping the tracking of objects in these
situations is possible due to the robustness of the update in
the people’s attributes.

Figure 6 shows sample results of tracking methods for the
CAVIAR28 dataset. As we can see in this figure, our method
is able to track the persons that are partially occluded. Visual
results of our method show the location of the persons more
accurately than the other methods.

Table 1 shows the metrics we used to quantitatively evalu-
ate our algorithm. These metrics were obtained from Song
et al.22 work. Table 2 shows a comparison of the results of

Fig. 6 Sample results of tracking methods for the CAVIAR28 dataset. Frames of row 1 are from the
OneStopOneWait1 sequence. Frames of row 2, row 3, and row 4 are from the OneStopMoveEnter1
sequence. Row 1 shows results of the tracking method using Bayesian combination of edgelet
part detectors.6 Row 2 shows results of a stochastic graph evolution framework used for tracking.22

Row 3 shows results of the tracking method of global data association using networks flows.18

Row 4 shows the results of our tracking algorithm.
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our algorithm for the CAVIAR28 dataset with some of the
state-of-the-art algorithms. Table 3 shows the evaluation
of our tracking algorithm in the reference sequences of
CAVIAR,28 PETS,34 and UCO.35

The suitable handling of trajectory’s hypotheses allows
our algorithm to produce a continuous and stable tracking
of people when there are FNs in the detection measurements
as well as events of occlusion. This quality is illustrated in
the results of Tables 2 and 3 through the MT and PT evalu-
ation indicators which measure the track completeness. The
Frag and IDS indices are errors that indicate the lack of con-
tinuity of the tracks. In the evaluation of our algorithm, these
indices are small in all of the reference sequences. This hap-
pened because we described the attributes of the people in
detail, and also because we designed our temporal associa-
tion algorithm to be robust to complex interactions and
occlusion situations.

Compared with state-of-the-art algorithms, our algorithm
performs well, especially if we consider that its nature is
sequential, i.e., the temporal association is made without delay
once the measurement information between two consecutive
frames is available. This is worthy because we achieved
better tracking results than trajectory-based algorithms such
as those proposed by Zhang et al.18 and Song et al.22

Experiments show that our algorithm is effective for
tracking multiple people in sceneries, where there are vary-
ing illumination conditions as well as lack of restrictions
about the clothing and motion directions of the interacting
individuals. In general terms, our algorithm performs suc-
cessfully during interaction and occlusion situations, such
as: (1) people who walk in opposite directions during occlu-
sions, (2) people who walk in duo toward the same destina-
tion, and (3) people who remain motionless during an
occlusion for a long period of time.

5 Conclusions
This work addressed the problem of tracking multiple people
under uncontrolled sceneries. It proposed a solution to the
problem of partial and total occlusion using information
acquired by a single camera.

Our temporal association algorithm builds a tracking
graph to model the appearance, shape, and motion attributes
of the tracked persons, as well as the interactions among
them. The algorithm associates people detected in the current
frame with available trajectories of people using a similarity
matching process based on the appearance and spatial

Table 2 Comparison of tracking algorithms for the CAVIAR28 dataset.

Reference GT MT (%) PT (%) ML (%) Frag IDS

Global data association using network flows18 140 85.7 10.7 3.6 20a 15a

Bayesian combination of edgelet part detectors6 140 75.7 17.9 6.4 35a 17a

Stochastic graph evolution framework22 75 84 12 4 6 8

Basic particle filter22 75 53.3 36 10.7 15 19

Our proposed tracking algorithm 72 88.9 11.1 0 21 6

aThe number of fragments and identity switches were obtained using traditional metrics. The metrics we adopted are more stringent.

Table 3 Evaluation of our proposed tracking algorithm in surveillance
sequences.

Reference GT MT (%) PT (%) ML (%) Frag IDS

CAVIAR 72 88.9 11.1 0 21 6

UCO 101 97 3 0 28 6

PETS 111 93.7 5.4 0.9 17 5

Table 1 Evaluation metrics for object tracking.

Metric name Definition

GT (ground truth) Number of ground truth trajectories.

MT (mostly tracked) Percentage of GT trajectories which are covered correctly by the tracking algorithm more than 80% of the time.

PT (partially tracked) Percentage of GT trajectories which are covered correctly by the tracking algorithm between 20% and 80% of the time.

ML (mostly lost) Percentage of GT trajectories which are covered correctly by the tracking algorithm less than 20% of the time.

Frag (Fragments) The number of times that the ID of a tracked target changed along a GT trajectory.

IDS (ID switches) The number of times that a tracked target changes its ID with another target.
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motion similarity, and the location proximity. Our algorithm
analyzes the spatio-temporal relationships between trajecto-
ries represented in the tracking graph to handle wrong or
missing information in the detection stage. The algorithm
also allowed the prediction of partial or total occlusions,
and the estimation of the location of the people that were
occluded in a period of time.

Our algorithm is robust to variations in the people’s cloth-
ing appearance, size, and motion of the persons, and partial
and total occlusions. This happens because the update of the
person’s attributes is carried out depending on how people
interact in the scene and how they take part in the occlusion
events.

Our algorithm was tested using detection measurements
provided by our proposed people detection scheme, unlike
our previous approach tested which used noisy detection
measurements obtained by the ground truth. In the reference
sequences of CAVIAR,28 PETS,34 and UCO,35 our tracking
algorithm achieved an overall precision of 93%. In these
reference sequences, we demonstrated that our algorithm
yields robust tracking of partially and totally occluded
people, even when they are occluded over long periods of
time. In the CAVIAR28 sequences, we demonstrated that
our detection-based algorithm outperforms even trajectory-
based state-of-the-art algorithms.

As future work, we propose two research lines. As a first
line, we will apply the proposed method to images sequences
containing persons using a camera in movement. Initially,
we can use a pan-tilt camera, which allows movement in
the vertical and horizontal planes. This task requires the
background model to adapt to the scene movement. It
also requires a reasoning engine that allows reevaluating
the tracked objects’ positions and their interaction from
the newly available information. As a second line, we
plan to extend our method to track objects of different
class (i.e., persons, vehicles, luggage, etc.) in a stationary
scenery. This requires adapting the detection scheme to rec-
ognize an object among those of different classes. Then we
need to define a specific data representation for each object
class. Additionally, we need to adapt the interaction cases
and the similarity metrics to properly deal with the interac-
tion of objects of different classes.
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