About
122
Publications
40,679
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,609
Citations
Introduction
Additional affiliations
September 2011 - August 2015
Publications
Publications (122)
Recent observations have shown a fast decrease in thickness and area of Pyrenean glaciers in some cases leading to a stagnation of ice flow. However, their transition to a new paraglacial stage is not well understood. Through the combination of uncrewed aerial vehicles imagery, airborne LiDAR, ground-penetrating radar and ground temperature observa...
Given rapid glacier thinning and retreat observed in the Pyrenees in recent decades, an updated glacier inventory and continuous mass balance assessments are important to understand the ongoing variability and changes of these very small glaciers (< 0.5 km²). The mass balance years 2021/22 and 2022/23 were characterised by prolonged extreme heat wa...
Snowmelt drives a large portion of streamflow in many mountain areas of the world. However, the water paths from snowmelt to the arrival of the water in the streams are still largely unknown. This work analyzes for first time the influence of snowmelt on spring streamflow with different snow accumulation and duration, in an alpine catchment of the...
Glaciers are globally retreating due to climate change, and the Pyrenees Mountain range is no exception. This study uses the Open Global Glacier Model (OGGM) to explore the dynamics of the Monte Perdido glacier, one of the largest remaining glaciers in the Pyrenees. We explored three calibration approaches to assess their performances when reproduc...
Snow patterns in ice-free areas of Greenland play important roles in ecosystems. Within a changing climate, a comprehensive understanding of the snow responses to climate change is of interest to anticipate forthcoming dynamics in these areas. In this study, we analyze the future snowpack evolution of a polar maritime Arctic location, Qeqertarsuaq...
Snowmelt drives a large portion of streamflow in many mountain areas of the world. However, the water pathways since snow melts until water reaches the streams, and its associated transit time is still largely unknown. Such processes are important for drawing conclusions about the hydrological role of the upstream snowpack after melting. This work...
The Aneto glacier, although it may be considered a very small glacier (<0.5 km2), is the largest glacier in the Pyrenees. Its surface and thickness loss have been continuous in recent decades, and there have been signs of accelerated melting in recent years. In this study, thickness and surface losses of the Aneto glacier from 1981 to 2022 are inve...
Expanding shrubs in the Arctic trap blowing snow, increasing snow height and accelerating permafrost warming. Topography also affects snow height as snow accumulates in hollows. The respective roles of topography and erect vegetation in snow accumulation were investigated using a UAV-borne lidar at two nearby contrasted sites in northern Quebec, Ca...
The Aneto Glacier, although it may be considered very small (<0.5 km2), is the largest glacier in the Pyrenees. Its shrinkage and wastage have been continuous in recent decades, and there are signs of accelerated melting in recent years. In this study, changes in the area and volume of the Aneto Glacier from 1981 to 2022 are investigated using hist...
Accurate knowledge of the seasonal snow distribution is vital in several domains including ecology, water resources management, and tourism. Current spaceborne sensors provide a useful but incomplete description of the snowpack. Many studies suggest that the assimilation of remotely sensed products in physically based snowpack models is a promising...
In mountain areas, the phenology and productivity of grassland are closely related to snow dynamics. However, the influence that snow melt timing has on grassland growing still needs further attention for a full understanding, particularly at high spatial resolution. Aiming to reduce this knowledge gap, this work exploits 1 m resolution snow depth...
Accurate knowledge of the seasonal snow distribution is vital in several domains including ecology, water resources management, and tourism. Current spaceborne sensors provide a useful but incomplete description of the snowpack. Many studies suggest that the assimilation of remotely sensed products in physically based snowpack models is a promising...
This study extends knowledge of the evolution of glacier shrinkage in the Cocuy‐Güican Mountains since the maximum glacier extent of the Little Ice Age (LIA). Mass balance data for the Ritacuba Glacier since 2009 was acquired and compared with available data for the Conejeras Glacier (Los Nevados National Park). This study also investigated the hyd...
This study updates information on the evolution of glacier shrinkage in Cocuy-Güican mountains since the maximum glacier extent of the Little Ice Age (LIA), and presents the first mass balance data of Ritacuba glacier since 2009, that is compared to the available mass balance for the Conejeras Glacier (Los Nevados National Park). This study also di...
The duration of the seasonal snowpack determines numerous aspects of the water cycle, ecology and the economy in cold and mountainous regions, and is a balance between the magnitude of accumulated snow and the rate of melt. The contribution of each component has not been well quantified under contrasting topography and climatological conditions alt...
Understanding those processes in which snow dynamics has a significant influence requires long-term and high spatio-temporal resolution observations. While new optical space-borne sensors overcome many previous snow cover monitoring limitations, their short temporal length limits their application in climatological studies. This work describes and...
In 2015, a new automatic weather station (AWS) was installed in a high elevation site in Gredos mountains (Central System, Spain). Since then, a surprisingly high number of heavy precipitation events have been recorded (55 days with precipitation over 50 mm, and a maximum daily precipitation of 446.9 mm), making this site a hotspot in Spain in term...
Pyrenean glaciers are the largest in southern Europe. Their survival is threatened by climate change, highlighting the significance of their study. This research presents an assessment of changes in the glacierized area and thickness of Pyrenean glaciers from 2011 to 2020, using high-resolution optical satellite, airborne lidar and UAV images. The...
Rain-on-snow (ROS) events can trigger severe floods in mountain regions. There is high uncertainty about how the frequency of ROS events (ROS) and associated floods will change as climate warms. Previous research has found considerable spatial variability in ROS responses to climate change. Detailed global assessments have not been conducted. Here,...
Permafrost is a relevant component of the Pyrenean high mountains, triggering a wide range of geomorphological cryogenic processes. Although in the past decades there has been an increase in frozen ground studies in the Pyrenees, there are no specific studies about rock wall permafrost, its presence, distribution, thermal regime, or historical evol...
Data assimilation of snow observations significantly improves the accuracy of snow cover simulations. However, remotely-sensed snowpack observations made in areas of complex topography are typically subject to large error and biases, creating a challenge for data assimilation. To improve the reliability of ensemble snowpack simulations, this study...
Unmanned Aerial Vehicles (UAVs) offer great flexibility in acquiring images in inaccessible study areas, which are then processed with stereo-matching techniques through Structure-from-Motion (SfM) algorithms. This procedure allows generating high spatial resolution 3D point clouds. The high accuracy of these 3D models allows the production of deta...
Recent developments in unmanned aerial vehicles (UAV) and structure from motion (SfM) algorithms have shown reliable results for retrieving snow depth distribution. However, their ability to obtain accurate results usually relies on deploying and measuring the exact position of ground control points (GCP) for georeferencing the information. Commerc...
The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most crucial model parameters for various applications such as weather forecasts, climate predictions and hydro...
The presence of light-absorbing particles (LAPs) in snow leads to a decrease in short-wave albedo affecting the surface energy budget. However, the understanding of the impacts of LAPs is hampered by the lack of dedicated datasets, as well as the scarcity of models able to represent the interactions between LAPs and snow metamorphism. The present s...
We characterize elevational gradients, probability distributions and scaling patterns of lidar‐derived snow depth at the hillslope scale along the extratropical Andes. Specifically, we analyze snow depth maps acquired near the date of maximum accumulation in 2018 at three experimental sites: (i) the Tascadero catchment (‐31.26°N, 3270‐3790 m), (ii)...
Climate warming will reduce the duration of mountain snowpacks and spring runoff, impacting the timing, volume, reliability, and sources of water supplies to mountain headwaters of rivers that support a large proportion of humanity. It is often assumed that snow hydrology will change in proportion to climate warming, but this oversimplifies the com...
The small scale distribution of the snowpack in mountain areas is highly heterogeneous,
and is mainly controlled by the interactions between the atmosphere and local topography. However, the influence of different terrain features in controlling variations in the
snow distribution depends on the characteristics of the study area. As this leads to
u...
Sentinel-2 provides the opportunity to map the snow cover at unprecedented spatial and temporal resolutions on a global scale. Here we calibrate and evaluate a simple empirical function to estimate the fractional snow cover (FSC) in open terrains using the normalized difference snow index (NDSI) from 20 m resolution Sentinel-2 images. The NDSI is c...
The aim of this work is to understand aerosol transfers to the snowpack in the Spanish Pyrenees (Southern Europe) by determining their episodic mass-loading and composition, and to retrieve their regional impacts regarding optical properties and modification of snow melting. Regular aerosol monitoring has been performed during three consecutive yea...
The spatial distribution of snow in the mountains is significantly influenced through interactions of topography with wind, precipitation, shortwave and longwave radiation, and avalanches that may relocate the accumulated snow. One of the most crucial model parameters for various applications such as weather forecasts, climate predictions and in hy...
A fundamental key to understanding climate change and its implications is the availability of databases with wide spatial coverage, over a long period of time, with constant updates and high spatial resolution. This study describes a newly gridded data set and its map viewer “European Climatology and Trend Atlas of Climate Indices” (ECTACI), which...
The Sierra Nevada of Santa Marta (12ºN) hosts a unique glaciated environment (6.5 km²) only 40 km distant from the Caribbean Sea. However, the remoteness of the glaciers and restricted access to the region has so far prevented onsite field work research from being undertaken. We worked with several very high resolution airborne and satellite images...
Sentinel-2 provides the opportunity to map the snow cover at unprecedented spatial and temporal resolution at global scale. Here we calibrate and evaluate a simple empirical function to estimate the fractional snow cover (FSC) in open terrain using the normalized difference snow index (NDSI) from 20 m resolution Sentinel-2 images. The NDSI is compu...
Understanding and characterizing the spatial distribution of snow are critical to represent the energy balance and runoff production in mountain environments. In this study, we investigate the interannual and seasonal variability in snow depth scaling behavior at the Izas experimental catchment of the Spanish Pyrenees (2,000 to 2,300 m above sea le...
Air temperature changes as a function of elevation were analyzed in a valley of the Spanish Pyrenees. We analyzed insolation, topography and meteorological conditions in order to understand how complex topoclimatic environments develop. Clustering techniques were used to define vertical patterns of air temperature covering more than 1000 m of verti...
Most models simulating snow albedo assume a flat and smooth surface, neglecting surface roughness. However, the presence of macroscopic roughness leads to a systematic decrease in albedo due to two effects: (1) photons are trapped in concavities (multiple reflection effect) and (2) when the sun is low, the roughness sides facing the sun experience...
Monitoring and management of several environmental and socioeconomic sectors require climate data that can be summarized using a set of standard and meaningful climate metrics. This study describes a newly developed gridded dataset for the whole of Europe, which employed a set of 125 climate indices spanning different periods based on data availabi...
In this study we investigated the sensitivity of the snowpack to increased temperature and short-wave radiation, and precipitation change along an elevation gradient (1500–2500 m a.s.l.) over the main mountain ranges of the Iberian Peninsula (Cantabrian Range, Central Range, Iberian Range, Pyrenees, and the Sierra Nevada). The output of a meso-atmo...
Abstract. The presence of light-absorbing particles (LAPs) in snow leads to a decrease in shortwave albedo, affecting the surface energy budget. Precisely quantifying the impacts of LAPs on snowpack evolution is crucial to characterise the spatio-temporal variability of snowmelt and assess snow albedo feedbacks in detail. However, the understanding...
The North Atlantic Oscillation (NAO) is considered to be the main atmospheric factor explaining the winter climate and snow evolution over much of the Northern Hemisphere. However, the absence of long-term snow data in mountain regions has prevented full assessment of the impact of the NAO at the regional scales, where data are limited. In this stu...
Glaciers in Peru play a major role in water availability and they also have direct implications on natural hazards such as glacial lake outburst floods (GLOFs) and/or ice avalanches, which have caused a high number of fatalities and damage to infrastructure in the last decades. Despite a noticeable effort to quantify and understand the shrinking an...
Uncertainties of snowpack models and of their meteorological forcings limit their use by avalanche hazard forecasters, or for glaciological and hydrological studies. The spatialized simulations currently available for avalanche hazard forecasting are only assimilating sparse meteorological observations. As suggested by recent studies, their forecas...
Uncertainties of snowpack models and of their meteorological forcings limit their use by avalanche hazard forecasters, or for glaciological and hydrological studies. The spatialized simulations currently available for avalanche hazard forecasting are only assimilating sparse meteorological observations. As suggested by recent studies, their forecas...
Most models simulating snow albedo assume a flat and smooth surface, neglecting surface roughness. However, the presence of macroscopic roughness leads to a systematic decrease in albedo due to two effects: 1) photons are trapped in concavities (multiple reflection effect) and, 2) when the sun is low, the roughness sides facing the sun experience a...
Light-absorbing particles (LAPs) such as black carbon or mineral dust are some of the main drivers of snow radiative transfer. Small amounts of LAPs significantly increase snowpack absorption in the visible wavelengths where ice absorption is particularly weak, impacting the surface energy budget of snow-covered areas. However, linking measurements...
The presence of a seasonal snowpack determines the hydrology, geomorphology and ecology of wide parts of the Iberian Peninsula, with strong implications for the economy, transport and risk management. Thus, reliable information on snow is necessary from a scientific and operational point of view. This is the case of the Iberian Peninsula where, lac...
Acquiring information on snow depth distribution at high spatial and temporal resolution in mountain areas is time consuming and generally these acquisitions are subjected to meteorological constrains. This work presents a simple approach to assess snow depth distribution from automatically observed snow variables and a pre-existing database of sno...
Light Absorbing Particles (LAP) such as black carbon or mineral dust are some of the main drivers of snow radiative transfer. Small amounts of LAP significantly increase snowpack absorption in the visible wavelengths where ice absorption is particularly weak, impacting the surface energy budget of snow-covered areas. However, linking measurements o...
A set of 17 air temperature and relative humidity sensors were used to analyze the temporal variability of surface air temperature (Tair), wet bulb temperature (Twb), and daily snowmaking hours (SM, number of hours per day with Twb < − 2 °C), lapse rates, and the occurrence of thermal inversions at the Formigal ski resort (Spanish Pyrenees) from De...
This work combines very detailed measurements from terrestrial laser scanner (TLS), ground-based interferometry radar (GB-SAR) and ground-penetrating radar (GPR) to diagnose current conditions and to analyse the recent evolution of the Monte Perdido Glacier in the Spanish Pyrenees from 2011 to 2017. Thus, this is currently one of the best monitored...
Detailed snowpack modelling is crucial for avalanche hazard forecasting, glaciological modelling and hydrological studies, but its use is currently limited by its level of uncertainty. Ensemble forecasting approaches are commonly used to quantify the associated uncertainties. Combined with satellite data assimilation , they can help reduce the mode...
In recent years different remote sensing techniques have been proved to be very useful for snow measurement and monitoring in alpine environments. Terrestrial Laser Scanner has been tested in different environments and conditions and presented a remarkable performance and accuracy to measure spacial and temporal distribution of snow depth at differ...
This work presents an extensive evaluation of the Crocus snowpack model over a rugged and highly glacierized mountain catchment (Arve valley, Western Alps, France) from 1989 to 2015. The simulations were compared and evaluated using in-situ point snow depth measurements, in-situ seasonal and annual glacier surface mass balance, snow covered area ev...
Although the mean environmental lapse rate (MELR) value (a linear decrease of − 6.5 °C/km) is the most widely used, near‐surface (i.e., non‐free atmosphere) air temperature lapse rates (NSLRs; measured at ~1.5 m height) are variable in space and time because of their dependence on topography and meteorological conditions. In this study we conducted...
We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfall occurs in most of its area. However, there are only limited direct observations o...
We present the glacier-wide summer surface mass balances determined by a detailed hydrological balance ( sSMBhydro ) and the quantification of the uncertainties of the calculations on the Argentière and Mer de Glace-Leschaux drainage basins, located in the upper Arve watershed (French Alps), over the period 1996–2004. The spatial distribution of pr...
Nowadays snowpack models show a good capability in simulating the evolution of snow in mountain areas. However singular deviations of meteorological forcing and shortcomings in the modelling of snow physical processes, when accumulated on time along a snow season, could produce large deviations from real snowpack state.
The evaluation of these devi...
This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The experimental site is located on the southern side of the Pyrenees between 2000 and 2300 m above sea level, covering an area of 55 ha. The site is a good example of a subalpin...
We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfalls occur in most of its area. However, there are only limited direct observations o...
We evaluated distributed and semi-distributed modeling approaches to 13 simulating the spatial and temporal evolution of snow and ice over an extended 14 mountain catchment, using the Crocus snowpack model. The distributed approach 15 simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain 16 shadowing effects. The semi-distr...
We evaluated distributed and semi-distributed modeling approaches to 13 simulating the spatial and temporal evolution of snow and ice over an extended 14 mountain catchment, using the Crocus snowpack model. The distributed approach 15 simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain 16 shadowing effects. The semi-distr...
In the central Pyrenees, the 800 m north face of the Vignemale Peak (42°46'16" N / 0°08'33'' W 3298 m) has recently suffered significant rock falls, reported by local mountain guides. The rock fall dynamic and the relation with the presence of permafrost in a changing state is unknown and has not been previously studied in the Pyrenees but it can p...
his work describes the snow and meteorological dataset available for the Izas Experimental Catchment, in the Central Spanish Pyrenees, from 2011 to 2016 snow seasons. The experimental site is located in the southern side of the Pyrenees between 2000 and 2300 m above sea level with an extension of 55 ha. The site is a good example of sub-alpine ambi...
This study demonstrated the usefulness of very long-range terrestrial laser scanning (TLS) for analysis of the spatial distribution of a snowpack, to distances up to 3000 m, one of the longest measurement range reported to date. Snow depth data were collected using a terrestrial laser scanner during 11 periods of snow accumulation and melting, over...
In this study, we analyzed the influence of El Niño–Southern Oscillation (ENSO) on the spatio-temporal variability of droughts in Ecuador for a 48-year period (1965–2012). Droughts were quantified from 22 high-quality and homogenized time series of precipitation and air temperature by means of the Standardized Precipitation Evapotranspiration Index...
Forests in snow-dominated areas have substantial effects on the snowpack and its evolution over time. Such interactions have significant consequences for the hydrological response of mountain rivers. Thus, the impact of forest management actions on the snow distribution, and hence the storage of water in the form of snow during winter and spring, i...
The Ordesa and Monte Perdido National Park and the Pyrenean Institute of Ecology (CSIC) recently joined the Spanish LTER network. As part of our strategy to understand recent changes in this protected area, we are carrying out a number of projects to evaluate changes at different spatiotemporal scales, using a variety of methods and approaches. We...
In a globally warming climate, a weakening in observed near-surface wind speed has been recently termed as ‘global stilling’, showing a worldwide average trend of −0.140ms−1 dec−1. The precise cause(s) of the land-surface stilling remains uncertain and led to this first assessment of how the two most common measurement time intervals of daily mean...
Snow accumulation and its evolution over space and time have major importance for the hydrological cycle, especially at high elevations. The characteristics of mountain valley, such as a wide altitudinal range, large glaciated areas, snow presence all along the year; when combined with specific meteorological conditions like heat waves or extreme r...
The upper Arve watershed (205 km 2) is characterized by a high elevational gradient (altitude ranges from 1000 to 4810m asl), a significant glaciated area (about 33% of the total area) and a strong contrast between the bordering Mont Blanc and Aiguilles Rouges massifs in terms of land use , surface conditions and meteorological forcing. While the r...
This paper analyzes the evolution of the Monte Perdido Glacier,
the third largest glacier in the Pyrenees, from 1981 to the present. We
assessed the evolution of the glacier's surface area by analysis of aerial
photographs from 1981, 1999, and 2006, and changes in ice volume by geodetic
methods with digital elevation models (DEMs) generated from to...
We report a methodology for reconstructing the daily snow depth distribution at high spatial resolution in a small Pyrenean catchment using time-lapse photographs and snow depletion rates derived from an on-site measuring meteorological station. The results were compared with the observed snow depth distribution, determined on a number of separate...
Los espacios protegidos, por el hecho de albergar una gran geo-biodiversidad y asegurar una baja intervención humana, constituyen lugares muy adecuados para el seguimiento de organismos y procesos a escala ecológica, así como para la obtención de series temporales largas a escala geológica. En el marco de la red LTER-España, el Parque Nacional de O...
Accurately determining the snowpack distribution in mountain areas is complex because of the difficulty of establishing over large areas the spatial distribution of all variables that define the state of the snowpack at any particular time. In this study we used distributed snowpack simulations that were corrected throughout the snow season using s...
This paper analyzes the evolution of the Monte Perdido Glacier, the third largest glacier of the Pyrenees, from 1981 to the present. We assessed the evolution of the glacier's surface area by use of aerial photographs from 1981, 1999, and 2006, and changes in ice volume by geodetic methods with digital elevation models (DEMs) generated from topogra...
Erosion and deposition processes in badland areas are usually estimated using traditional observations
of topographic changes, measured by erosion pins or profile metres (invasive techniques). In recent times,
remote-sensing techniques (non-invasive) have been routinely applied in geomorphology studies, especially in erosion studies. These techniqu...
This work analysed the changes in air temperature in 25 meteorological stations in the Altiplano and the surrounding Andean slopes of Bolivia and Peru, and their relationship with El Niño-Southern Oscillation (SO) and the Pacific Decadal Oscillation (PDO). The analysis focused on annual, warm season (DJF) and cold season (JJA) maximum and minimum t...
Erosion and deposition processes in badland areas are usually estimated using traditional observations of topographic changes, measured by erosion pins or profile meters (invasive techniques). In recent times, geomatic techniques (non-invasive) have been routinely applied in geomorphology studies, especially in erosion studies. These techniques pro...
In this study we analyzed the effects of the forest canopy and trunks of a pine stand in the central Spanish Pyrenees on the snow depth (SD) distribution. Using LiDAR technology with a terrestrial laser scanner (TLS), high-resolution data on the SD distribution were acquired during the 2011–12 and 2012–13 snow seasons, which were two years having v...
High resolution snow depth maps (1 × 1 m) obtained from terrestrial laser scanner measurements in a small catchment (0.55 km2) in the Pyrenees were used to assess small scale variability of the snowpack at the catchment and sub-grid scales. The coefficients of variation are compared for various plot resolutions (5 × 5, 25 × 25, 49 × 49 and 99 × 99...
This study presents monthly and annual climate maps for relevant hydroclimatic variables in Bolivia. We used the most complete network of precipitation and temperature stations available in Bolivia, which passed a careful quality control and temporal homogenization procedure. Monthly average maps at the spatial resolution of 1?km were modeled by me...
Se han simulado los caudales de cinco cabeceras de ríos en los Pirineos centrales españoles, considerando diferentes escenarios de cambio climático y de uso del suelo. Los caudales fueron simulados utilizando el modelo hidroecológico RHESSys (Regional Hydro-Ecologic Simulation System). Los resultados muestran que los cambios proyectados por un conj...
During the last two decades climate studies have reported a tendency toward a decline in measured near-surface wind speed in some regions of Europe, North America, Asia and Australia. This weakening in observed wind speed has been recently termed "global stilling", showing a worldwide average trend of -0.140 m s -1 dec -1 during last 50-years. The...
This study analyzes changes in monthly reference evapotranspiration (ETo) by use of the Penman‐Monteith equation and data from 46 meteorological stations in Spain from 1961 to 2011. Over the 51 year study period, there were trends for increasing average ETo during all months and annually at most of the individual meteorological stations. Sensitivit...
In this study we analyzed the spatial distribution, temporal variability and trends in reference evapotranspiration (ET0) in Spain from 1961 to 2011. Twelve methods were analyzed to quantify ET0 from quality controlled and homogeneous series of various meteorological variables measured at 46 meteorological stations. Some of the models used are temp...
In this study we analyzed the relations between terrain characteristics and
snow depth distribution in a small alpine catchment located in the central
Spanish Pyrenees. Twelve field campaigns were conducted during 2012 and 2013,
which were years characterized by very different climatic conditions. Snow
depth was measured using a long range terrestr...
In this study we retrieved the spatial distribution of mid-afternoon clouds under various synoptic regimes across the Iberian Peninsula and the Balearic Islands for the warm/convective-season, from May to October. Accurate daily cloud masks were derived by applying a daytime over land multispectral convective cloud detection algorithm spanning 15 y...
Near-surface wind speed trends recorded at 67 land-based stations across Spain and Portugal for 1961–2011, also focusing on the 1979–2008 subperiod, were analyzed. Wind speed series were subjected to quality control, reconstruction, and homogenization using a novel procedure that incorporated the fifth-generation Pennsylvania State University–Natio...
We use high quality climate data from ground meteorological stations in the Iberian Peninsula (IP) and robust drought indices to confirm that drought severity has increased in the past five decades, as a consequence of greater atmospheric evaporative demand resulting from temperature rise. Increased drought severity is independent of the model used...
In this study we analyzed the relations between terrain characteristics and snow depth distribution in a small alpine catchment located in the central Spanish Pyrenees. Twelve field campaigns were conducted during 2012 and 2013, which were years characterized by very different climatic conditions. Snow depth was measured using a long range terrestr...
This paper presents the methodology used to develop snow depth distribution maps for a small catchment in the Central Spanish Pyrenees covering 55 ha in a 1:10,000 scale. The Main Map was obtained using LiDAR (light detection and ranging) technology from a long-range Terrestrial Laser Scanner (TLS) in six field surveys undertaken during the 2012 win...
In this study we analyze the observed trends for the period 1950–2006 in a number of climate indices related to the occurrence of winter warm events in the Ebro basin, northeast Iberian Peninsula. Climatic simulations using 12 regional climate models (RCMs) from the ENSEMBLES database enable calculation of the multi-model means for the projected ev...