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CONTROL OF TWO ELECTRICAL PLANTS

José de Jesús Rubio, Jesus Lopez, Jaime Pacheco, and Rodrigo Encinas

ABSTRACT

In this paper, a controller is recommended for the regulation of two electrical plants. Since electrical plants generate
electricity all the time, the regulation to get that all the plant states reach constant behaviors is important. Two main
characteristics of the introduced method are: (i) it is based in the separation of the plant model equations, only some
model equations are chosen for the regulation while the other model equations are ignored, it avoids the difficulty in
the consideration of the full plant model; (ii) the Lyapunov strategy is employed to analyze the stability of the selected
model equations in the electrical plant, it lets to ensure the regulation purpose. The advised method is applied in a gas
turbine and a wind turbine for the electricity generation.
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I. INTRODUCTION

Electricity generation is the technique of generat-
ing electric power from other sources of primary energy.
For electric utilities, it is the first technique in the delivery
of electricity to consumers. The other plants, electricity
transmission, distribution, and electrical power storage
and recovery using pumped-storage methods are nor-
mally carried out by the electric power industry. Elec-
tricity is most often generated at a power station by
electromechanical generators, primarily driven by heat
engines fuelled by combustion or nuclear fission but
also by other means such as the kinetic energy of flow-
ing water, gas, and wind. This research is focused in
the electricity generation control by the gas fuel and
wind energy.

There are some investigations about the control
of gas turbines. In [1] and [2], mathematical models
of the gas turbines are described. Optimal controls are
addressed in [3] and [4]. In [5–7], feedback linearization
techniques are employed. Strategies for power control
are focused in [8] and [9]. In [10] and [11], propor-
tional integral derivative controls are introduced. Several
kinds of controls are proposed in [12–14]. In [15–17],
adaptive controls are designed. The above discussed
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research shows that the control for the application in gas
turbines is a novel topic.

There are some investigations about the control of
wind turbines. Mathematical models of the wind turbines
are presented in [18] and [19]. In [20–23], sliding mode
controls are studied. Adaptive controls are investigated
in [24,25]. In [26–28], robust controls are considered.
H-infinity controls are suggested in [29,30]. Fault diagno-
sis methods are detailed in [31–33]. The aforementioned
research shows that the control for the application in
wind turbines is a current issue.

The states of the electrical plants of this study must
be regulated, i.e., all the states must reach constant ref-
erences. This is due to the electrical plants generating
electricity all the time. For this purpose, the next two
issues must be taken into account:

1. The aforementioned investigations consider the
regulation of the full plants, which is a problem due
to the electrical plants of this study being under-
actuated, i.e. the number of states is bigger than
the inputs number. It makes it difficult to reach the
control purpose due to it is extreme difficulty in
finding the gains of the controller which ensure the
regulation. Consequently, another method for the
regulation of this kind of plants must be designed.

2. Only some of the before mentioned works analyze
the stability of their proposed controllers applied to
the electrical plants, however, none has studied the
uniform stability. The uniform stability is stronger
than the stability due to the first is satisfied for
any initial time, while the second is satisfied only
for a zero initial time. Since, the stability of all the
model equations lets to reach the regulation of the
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electrical plant, the uniform stability of the electri-
cal plant must be analyzed to ensure the regulation
purpose.

This study advises a technique to solve the above
mentioned issues which is detailed by the next two steps:

1. This investigation advises a method for the control
of electrical plants which is based in the separa-
tion of the plant model equations, only some model
equations are chosen for the regulation while the
other model equations are ignored, it avoids the
consideration of the full plant model which is more
difficult. This method takes into account that the
stability of all the model equations reach the regula-
tion of the electrical plant. In the case that only the
selected model equations of the electrical plant are
chosen for the regulation, the non-selected model
equations must have one of the next two charac-
teristics to ensure the stability of all the model
equations: (a) the non-selected model equations
must be influenced by the selected model equations,
in this way, the control of the non-selected model
equations will be obtained by the control of the
selected model equations; or (b) the non-selected
model equations must be stable, in this way, the
control of the selected model equations will be
sufficient.

2. To ensure the regulation of the selected model
equations in the electrical plant, the uniform stabil-
ity of the closed loop model equations between the
advised controller and the selected model equations
is analyzed based on the Lyapunov technique. From
the before point, the stability of the full electri-
cal plant is gotten by ensuring the stability of
the selected model equations. It is due to the not
selected model equations are stable or are influ-
enced by the selected model equations.

Finally, the suggested technique is applied to two
electrical plants: gas and wind turbines. The gas turbine
is applied for electricity generation from gas fuel. The
wind turbine is applied for the electricity generation from
wind energy.

These issues are discussed in the next sections.
Section II introduces the recommended controller for the
regulation of electrical plants. The suggested controller is
applied for the regulation of a gas turbine in Section III.
In Section IV, the mentioned controller is applied for the
regulation of a wind turbine. Results of the control for
the regulation of the gas and wind turbines are shown in
the Section V. Section VI describes the conclusion and
future research.

II. THE CONTROLLER OF THE
ELECTRICAL PLANTS

In this section, the model is presented, the controller
is recommended, and their stability is analyzed.

2.1 The electrical plant

In this subsection, the electrical plant is described.
It has two main characteristics: (i) it is an underactuated
plant, i.e., it has more states than inputs; and (ii) it is a
nonlinear plant, i.e., it contains nonlinear functions such
as exponential or potential.

Consider the next electrical plant:

Ẏ = h(Y ,W )

h(Y ,W ) =
[

h1(Y ,W ) · · · hL(Y ,W )
]T

⇒Ẏ i = hi(Yi,Wi)

(1)

where Y =
[

y1 · · · yL

]T ∈ ℜL are states and Yi =[
Y1 · · · YN

]T ∈ ℜN are some grouped and selected

states such that Yi ⊂ Y , L ≫ N, W =
[

w1 · · · wM

]T ∈

ℜM are inputs and Wi =
[

W1 · · · WN

]T ∈ ℜN are some
grouped inputs such that Wi ⊆ W , M ≥ N, h(Y ,W ) ∈
ℜL are continuous differentiable nonlinear functions and
hi(Yi,Wi) ∈ ℜN are some selected and grouped non-
linear functions such that hi(Yi,Wi) ⊂ h(Y ,W ). The
underactuated characteristic of the plant satisfies L ≫

M ≥ N. The nonlinear characteristic of the plant is that
it contains functions such as e(⋅) or (⋅)a, where e is an
exponential and a is a potency.

2.2 The suggested controller

In this subsection, controllers for the regulation of
the selected model equations in the electrical plants are
suggested. The objective of the controllers is that using
the inputs, states of the selected model equations should
reach constant behaviors, it is denoted as the regulation
of the states by the controller.

Consider the next control functions:

Wi = −GiYi (2)

where Gi ∈ ℜN×N are gains of the controllers.
Fig. 1 shows the suggested controllers where Wi are

some selected inputs, Yi are some selected states, and hi(⋅)
are some selected nonlinear functions.

Remark 1. The stability of all the model equations lets
to reach the regulation of the electrical plant. In the case
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Fig. 1. The suggested controller.

that only the selected model equations of the electrical
plant are chosen for the regulation as is described in (1),
the not selected model equations must have one of the
next two characteristics to ensure the stability of all the
model equations: (a) the not selected model equations
must be influenced by the selected model equations, in
this way, the control of the not selected model equations
will be gotten by the control of the selected model
equations, or (b) the not selected model equations must
be stable, in this way, the control of the selected model
equations will be enough.

Remark 2. The drawback of the advised technique, is
that if none of the two mentioned characteristics in the
before remark is satisfied, the method of choosing only
some model equations of the full electrical plant cannot
be employed. In this case, the full electrical plant must be
employed for the regulation and stability purposes.

2.3 The stability analysis

In this subsection, the stability of the advised con-
trollers for the regulation of the electrical plants is ana-
lyzed. It is based in two parts, 1) the obtaining of the
closed loop model equations, and 2) the stability analysis
of the advised controllers.

First, the closed loop model equations of the rec-
ommended controllers applied for the regulation of
the selected model equations will be gotten. It will be
employed for the stability analysis.

Applying the Taylor series to (1) gives this result:

Ẏ i =
𝜕hi(Yi,Wi)

𝜕Yi

(
Yi − Yid

)
+

𝜕hi(Yi,Wi)
𝜕Wi

×
(
Wi − Wid

)
+ Ri

(3)

where Yid are desired states and Wid are desired inputs,
Yid and Wid are considered as zero due to it is the reg-
ulation case, Ri are residues. Adding and subtracting{

𝜕hi(Yi ,Wi)
𝜕Yi

|||Yi=0,Wi=0

}
Yi and

{
𝜕hi(Yi ,Wi)

𝜕Wi

|||Yi=0,Wi=0

}
Wi to

(3) gives:

Ẏ i =
𝜕hi(Yi,Wi)

𝜕Yi
Yi +

𝜕hi(Yi,Wi)
𝜕Wi

Wi + Ri

+

{
𝜕hi(Yi,Wi)

𝜕Yi

||||Yi=0,Wi=0

}
Yi

−

{
𝜕hi(Yi,Wi)

𝜕Yi

||||Yi=0,Wi=0

}
Yi

+

{
𝜕hi(Yi,Wi)

𝜕Wi

||||Yi=0,Wi=0

}
Wi

−

{
𝜕hi(Yi,Wi)

𝜕Wi

||||Yi=0,Wi=0

}
Wi

⇒Ẏ i =

{
𝜕hi(Yi,Wi)

𝜕Yi

||||Yi=0,Wi=0

}
Yi

+

{
𝜕hi(Yi,Wi)

𝜕Wi

||||Yi=0,Wi=0

}
Wi

+

[
𝜕hi(Yi,Wi)

𝜕Yi
−

{
𝜕hi(Yi,Wi)

𝜕Yi

||||Yi=0,Wi=0

}]
Yi

+

[
𝜕hi(Yi,Wi)

𝜕Wi
−

{
𝜕hi(Yi,Wi)

𝜕Wi

||||Yi=0,Wi=0

}]
Wi

+ Ri

(4)

The equation (4) can be represented as:

Ẏ i = AiYi + BiWi + ÃYi + B̃Wi + Ri

⇒Ẏ i = AYi + BWi + 𝛿i

(5)

where:

Ai =

{
𝜕hi(Yi,Wi)

𝜕Yi

||||Yi=0,Wi=0

}

Bi =

{
𝜕hi(Yi,Wi)

𝜕Wi

||||Yi=0,Wi=0

}

Ãi =
𝜕hi(Yi,Wi)

𝜕Yi
−

{
𝜕hi(Yi,Wi)

𝜕Yi

||||Yi=0,Wi=0

}

B̃i =
𝜕hi(Yi,Wi)

𝜕Wi
−

{
𝜕hi(Yi,Wi)

𝜕Wi

||||Yi=0,Wi=0

}
(6)

and 𝛿i = ÃiYi + B̃iWi + Ri are unmodelled errors which
are bounded such as ‖‖𝛿i

‖‖ ≤ 𝛿i.
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Substituting control functions (2) in the
equation (5) produces:

Ẏ i = AiYi + Bi

[
−GiYi

]
+ 𝛿i

⇒Ẏ i = AciYi + 𝛿i

(7)

where Aci = Ai − BiGi. The equation (7) are the closed
loop model equations.

Second, the next Theorem is introduced to
describe the stability analysis of the closed loop model
equations.

Theorem 1. Consider controllers (2) for the regulation of
the electrical plant (1). Let: Ai and Bi be described in (6)
and Aci be described in (7), 𝜆j be the eigenvalues of Aci,
and Re𝜆j be the real parts of the eigenvalues 𝜆j. Then 1.-
The closed loop model equations (7) are uniformly stable
if Re𝜆j < 0 for all eigenvalues of Aci. 2.- The closed loop
model equations (7) are unstable if Re𝜆j > 0 for one or
more of the eigenvalues of Aci.

Proof. Define the Lyapunov functions as:

Vi = Y T
i PiYi (8)

Substituting closed loop model equations (7) in the
derivatives of (8) produces:

V̇ i =Ẏ
T
i PiYi + Y T

i PiẎ i

⇒V̇ i =
[
AciYi + 𝛿i

]T
PiYi + Y T

i Pi

[
AciYi + 𝛿i

]
⇒V̇ i = Y T

i

[
AT

ciPi + PiAci

]
Yi + 2Y T

i Pi𝛿i

(9)

The last term satisfies the next inequality:

2Y T
i Pi𝛿i ≤ 𝜙iY

T
i PiYi +

1
𝜙i

𝛿T
i Pi𝛿i (10)

where 𝜙i are small positive scalars. Substituting (10)
into (9) gives:

V̇ i ≤ Y T
i

[
AT

ciPi + PiAci + 𝜙iPi

]
Yi +

1
𝜙i

𝛿T
i Pi𝛿i

⇒V̇ i ≤ −Y T
i QiYi +

1
𝜙i

𝛿
T

i Pi𝛿i

(11)

where equations AT
ciPi + PiAci + 𝜙iPi = −Qi are satisfied

with Pi > 0 and Qi > 0 when Re𝜆j < 0 for all eigen-
values of Aci. Considering (8), the equation (11) can be
rewritten as:

V̇ i ≤ −Y T
i QiP

−1
i PiYi + 𝛼i

⇒V̇ i ≤ −𝜆min(QiP
−1
i )Y T

i PiYi + 𝛼i

⇒V̇ i ≤ −𝛾iVi + 𝛼i

(12)

where 𝛼i = 1
𝜙i
𝛿

T

i Pi𝛿i and 𝛾i = 𝜆min(QiP
−1
i ). From

(12) [11,15], and [17], it is proven that the closed loop
model equations are uniformly stable. Then, the proof is
determined.

Remark 3. Note that the above theorem does not say
anything about the case when Re𝜆j ≤ 0 for all j, with
Re𝜆j = 0 for some j. In this case, the linearization fails to
determine the stability.

III. THE CONTROL OF A GAS TURBINE

In this section, the controller of a gas turbine is stud-
ied. It is based in two parts, the mathematical model, and
the controller design.

3.1 The mathematical model of the gas turbine

The gas turbine model consists of a compressor, a
combustor, a compressor turbine, and a power turbine, as
shown in the Figure 2 with its corresponding stage num-
bering. For the developed gas turbine model, component
exit temperatures T3, T4, T5, T6, at different stages and
the amount of mass stored in plenums M3, M4, M5, M6
are critical plant stages. The fuel flow rate mf is the input
of the plant.

3.1.1 The compressor

The compressor is represented by a volume-less
component. The mathematical equation of the mass
stored in the plenum m3 in kg/s is:

ṁ3 = MFDPm3cor

⎛⎜⎜⎝
P2∕P2ref(

T2∕T2ref

)0.5

⎞⎟⎟⎠ − m3 (13)

Fig. 2. Industrial gas turbine. [Color figure can be viewed at
wileyonlinelibrary.com]

© 2017 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd

http://onlinelibrary.wiley.com/


1508 Asian Journal of Control, Vol. 20, No. 4, pp. 1504–1518, July 2018

where T2 is the input temperature in K, P2 is the
input pressure in Pa, the compressor temperature T3 in
K is:

Ṫ3=
1

m3Cv

⎧⎪⎨⎪⎩−m3RT3+
⎡⎢⎢⎣MFDPm3cor

⎛⎜⎜⎝
P2∕P2ref(

T2∕T2ref

)0.5

⎞⎟⎟⎠
∗

(
CpT2

{
1+ 1

𝜂c

[(
P3

P2

) 𝛾−1
𝛾

− 1

]}
− CvT3

)]}
(14)

and the compressor pressure P3 in Pa is:

P3 = R
V

m3T3 (15)

3.1.2 The combustor

The combustor is represented as a pure energy
accumulator. The equation that describes burner dynam-
ics in the combustor is:

Ṫ4 =
(Cp − Cvg)maT4 + (LHV𝜂b − CvgT4)mf − mgRT4

m4Cvg
− 𝜎T4 (16)

where T4 is the combustor temperature in K, mf is the
fuel flow rate and input. The mathematical equation of
the mass stored in the plenum m4 in kg/s is:

ṁ4 =
(
m3 + mf

)
− m4 (17)

and the combustor pressure P4 in Pa is:

P4 = DPP3 (18)

3.1.3 The compressor turbine

In the compressor turbine, the mass stored in the
plenum m5 in kg/s is:

ṁ5 = MFDPm5cor

⎛⎜⎜⎝
P4∕P4ref(

T4∕T4ref

)0.5

⎞⎟⎟⎠ − m5 (19)

the temperature at the output of the compressor turbine
T5 in K is:

Ṫ5 = 1
m5Cv

⎧⎪⎨⎪⎩−m5RT5+
⎡⎢⎢⎣MFDPm5cor

⎛⎜⎜⎝
P4∕P4ref(

T4∕T4ref

)0.5

⎞⎟⎟⎠
∗
⎛⎜⎜⎜⎝CpT4

⎧⎪⎨⎪⎩1 + 𝜂t

⎡⎢⎢⎣1 −
(

P5

P4

) 𝛾g−1

𝛾g
⎤⎥⎥⎦
⎫⎪⎬⎪⎭ − CvT5

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

(20)

and the compressor turbine pressure P5 in Pa is:

P5 = R
V

m5T5 (21)

3.1.4 The power turbine

The power turbine component is represented in a
similar way to the compressor turbine. The mathematical
equation of the power turbine mass stored in the plenum
m6 in kg/s is:

ṁ6 = MFDPm6cor

⎛⎜⎜⎝
P5∕P5ref(

T5∕T5ref

)0.5

⎞⎟⎟⎠ − m6 (22)

the temperature at the output of the power turbine T6 in
K is:
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Ṫ6 = 1
m6Cv

⎧⎪⎨⎪⎩−m6RT6 +
⎡⎢⎢⎣MFDPm6cor

⎛⎜⎜⎝
P5∕P5ref(

T5∕T5ref

)0.5

⎞⎟⎟⎠
∗
⎛⎜⎜⎜⎝CpT5

⎧⎪⎨⎪⎩1 + 𝜂pt

⎡⎢⎢⎣1 −
(

P6

P5

) 𝛾g−1

𝛾g
⎤⎥⎥⎦
⎫⎪⎬⎪⎭ − CvT6

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭
(23)

and the power turbine pressure P6 in Pa is:

P6 = R
V

m6T6 (24)

3.1.5 The states space model

Inputs are defined as w1 = mf , w2 = T2, w3 = P2,
states are y1 = m3, y2 = m4, y3 = m5, y4 = m6, y5 = T3,
y6 = T4, y7 = T5, y8 = T6, y9 = P3, y10 = P4, y11 = P5,
y12 = P6. Mathematical equations for the masses stored
in the plenum are:

ẏ1 = MFDPm3cor

⎛⎜⎜⎝
w3∕P2ref(

w2∕T2ref

)0.5

⎞⎟⎟⎠ − y1

ẏ2 =
(
y1 + w1

)
− y2

ẏ3 = MFDPm5cor

⎛⎜⎜⎝
y10∕P4ref(

y6∕T4ref

)0.5

⎞⎟⎟⎠ − y3

ẏ4 = MFDPm6cor

⎛⎜⎜⎝
y11∕P5ref(

y7∕T5ref

)0.5

⎞⎟⎟⎠ − y4

(25)

Mathematical equations for the temperatures are:

ẏ5 = 1
y1Cv

⎧⎪⎨⎪⎩−y1Ry5 +
⎡⎢⎢⎣MFDPm3cor

⎛⎜⎜⎝
w3∕P2ref(

w2∕T2ref

)0.5

⎞⎟⎟⎠ ∗
(

Cpw2

{
1 + 1

𝜂c

[(
y9

w3

) 𝛾−1
𝛾

− 1

]}
− Cvy5

)⎤⎥⎥⎦
⎫⎪⎬⎪⎭

ẏ6 =
(Cp − Cvg)may6 + (LHV𝜂b − Cvgy6)w1 − mgRy6

y2Cvg
− 𝜎y6

ẏ7 = 1
y3Cv

⎧⎪⎨⎪⎩−y3Ry7 +
⎡⎢⎢⎢⎣MFDPm5cor

⎛⎜⎜⎝
y10∕P4ref(

y6∕T4ref

)0.5

⎞⎟⎟⎠ ∗
⎛⎜⎜⎜⎝Cpy6

⎧⎪⎨⎪⎩1 + 𝜂t

⎡⎢⎢⎣1 −
(

y11

y10

) 𝛾g−1

𝛾g
⎤⎥⎥⎦
⎫⎪⎬⎪⎭ − Cvy7

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

ẏ8 = 1
y4Cv

⎧⎪⎨⎪⎩−y4Ry8 +
⎡⎢⎢⎢⎣MFDPm6cor

⎛⎜⎜⎝
y11∕P5ref(

y7∕T5ref

)0.5

⎞⎟⎟⎠ ∗
⎛⎜⎜⎜⎝Cpy7

⎧⎪⎨⎪⎩1 + 𝜂pt

⎡⎢⎢⎣1 −
(

y12

y11

) 𝛾g−1

𝛾g
⎤⎥⎥⎦
⎫⎪⎬⎪⎭ − Cvy8

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

(26)

Mathematical equations for the pressures are:

y9 = R
V

y1y5

y10 = DP
R
V

y1y5

y11 = R
V

y3y7

y12 = R
V

y4y8

(27)
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Substituting the equation (40) into equations (38)
and (39) gives the next states space model:

ẏ1 = MFDPm3cor

⎛⎜⎜⎝
w3∕P2ref(

w2∕T2ref

)0.5

⎞⎟⎟⎠ − y1

ẏ2 =
(
y1 + w1

)
− y2

ẏ3 = MFDPm5cor

⎛⎜⎜⎜⎝
(

DP R
V

y1y5

)
∕P4ref(

y6∕T4ref

)0.5

⎞⎟⎟⎟⎠ − y3

ẏ4 = MFDPm6cor

⎛⎜⎜⎜⎝
(

R
V

y3y7

)
∕P5ref(

y7∕T5ref

)0.5

⎞⎟⎟⎟⎠ − y4

ẏ5 = 1
y1Cv

⎧⎪⎨⎪⎩−y1Ry5 +
⎡⎢⎢⎢⎣MFDPm3cor

⎛⎜⎜⎝
w3∕P2ref(

w2∕T2ref

)0.5

⎞⎟⎟⎠ ∗
⎛⎜⎜⎜⎝Cpw2

⎧⎪⎨⎪⎩1 + 1
𝜂c

⎡⎢⎢⎢⎣
( R

V
y1y5

w3

) 𝛾−1
𝛾

− 1

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ − Cvy5

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

ẏ6 =
(Cp − Cvg)may6 + (LHV𝜂b − Cvgy6)w1 − mgRy6

y2Cvg
− 𝜎y6

ẏ7 = 1
y3Cv

⎧⎪⎨⎪⎩−y3Ry7 +
⎡⎢⎢⎢⎣MFDPm5cor

⎛⎜⎜⎜⎝
(

DP R
V

y1y5

)
∕P4ref(

y6∕T4ref

)0.5

⎞⎟⎟⎟⎠ ∗
⎛⎜⎜⎜⎝Cpy6

⎧⎪⎨⎪⎩1 + 𝜂t

⎡⎢⎢⎣1 −
(

y3y7

DPy1y5

) 𝛾g−1

𝛾g
⎤⎥⎥⎦
⎫⎪⎬⎪⎭ − Cvy7

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

ẏ8 = 1
y4Cv

⎧⎪⎨⎪⎩−y4Ry8 +
⎡⎢⎢⎢⎣MFDPm6cor

⎛⎜⎜⎜⎝
(

R
V

y3y7

)
∕P5ref(

y7∕T5ref

)0.5

⎞⎟⎟⎟⎠ ∗
⎛⎜⎜⎜⎝Cpy7

⎧⎪⎨⎪⎩1 + 𝜂pt

⎡⎢⎢⎣1 −
(

y4y8

y3y7

) 𝛾g−1

𝛾g
⎤⎥⎥⎦
⎫⎪⎬⎪⎭ − Cvy8

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

(28)

3.2 The controller of the gas turbine

In this subsection, the controller and stability are
studied.

3.2.1 The control design

The objective of the controller is that using inputs,
states of the gas turbine should reach constant behaviors,
it is denoted as the regulation of the states. Some model
equations are chosen from the electrical plant to be con-
trolled, the first selected model equations of (41) are the
combustor dynamics:

ẏ1 = MFDPm3cor

⎛⎜⎜⎝
w3∕P2ref(

w2∕T2ref

)0.5

⎞⎟⎟⎠ − y1

ẏ5 = 1
y1Cv

⎧⎪⎨⎪⎩−y1Ry5 +
⎡⎢⎢⎣MFDPm3cor

⎛⎜⎜⎝
w3∕P2ref(

w2∕T2ref

)0.5

⎞⎟⎟⎠
∗
⎛⎜⎜⎜⎝Cpw2

⎧⎪⎨⎪⎩1 + 1
𝜂c

⎡⎢⎢⎢⎣
( R

V
y1y5

w3

) 𝛾−1
𝛾

− 1

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ − Cvy5

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

(29)
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and the second selected model equations of (41) are the
compressor dynamics:

ẏ2 =
(
y1 + w1

)
− y2

ẏ6 =
(Cp − Cvg)may6 + (LHV𝜂b − Cvgy6)w1 − mgRy6

y2Cvg
− 𝜎y6

(30)

From the equation (56), it can be observed that the
control of the electrical plant for the first selected model
equations is not complex because it has two inputs for the
regulation of two states; therefore, the controller is:

w2 = −g2Y2

w3 = −g3Y2
(31)

where Y2 =
[

y1 y5

]T
are states, w2 and w3 are control

inputs, g2 and g3 are gains. From the equation (57), it can
be observed that the controller for the second selected
model equations is complex because it has one input for
the regulation of two states; therefore, the controller is:

w1 = −g1Y1 (32)

where Y1 =
[

y2 y6

]T
are states, w1 is the control input,

g1 is the gain. Thus, the complete controller is:

w1 = −g1Y1

w2 = −g2Y2

w3 = −g3Y2

(33)

3.2.2 Stability analysis

Making the linearization for the first selected model
equations of the gas turbine model (56) gives the
next result:

Ẏ 2 = A2Y2 + B2W2 (34)

where:

A2 =

[
−1 0
0 − R

Cv

]
B2 =

[
0 0
0 0

] (35)

The control function (58) is:

W2 = −G2Y2 (36)

where G2 =
[

g2 g3

]
, W2 =

[
w2 w3

]T
. Substituting the

control function in the linearized plant produces the next
closed loop model equation:

Ẏ 2 = A2Y2 + B2

[
−G2Y2

]
Ẏ 2 =

[
A2 − B2G2

]
Y2

Ẏ 2 = Ac2Y2

(37)

where Ac2 = A2 − B2G2.
Making the linearization for the second selected

model equations of the gas turbine model (56) yields:

Ẏ 1 = A1Y1 + B1W1 (38)

where:

A1 =
[
−1 0
0 −𝜎

]
B1 =

[
1 0

]T
(39)

The control function (58) is:

W1 = −G1Y1 (40)

where G1 = g1, W1 = w1. Substituting the control func-
tion in the linearized plant produces the next closed loop
model equation:

Ẏ 1 = A1Y1 + B1

[
−G1Y1

]
Ẏ 1 =

[
A1 − B1G1

]
Y1

Ẏ 1 = Ac1Y1

(41)

where Ac1 = A1 − B1G1.

IV. THE CONTROL OF A WIND TURBINE

In this section, the controller of a wind turbine is
studied. It is based in two parts, the mathematical model,
and the controller design.

4.1 The mathematical model of the wind turbine

This subsection is divided in four parts, the first
is the description of the mechanical model, the second
is the description of the aerodynamic model, the third is
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the description of the electrical model, and finally, the
fourth is the combination of the aforementioned models
to obtain the final mathematical model.

4.1.1 The mechanical model

Fig. 3 shows the wind turbine. A windward wind
turbine of three blades with a rotatory tower is studied.
The Euler Lagrangian method is employed to get this
part of the model. Masses are concentrated at the center
of mass. It can be seen that:

3
[
J1 + 1.5m2l2

c2

] ⋅⋅
𝜃1 + 3bb1𝜃̇1 + 3kb1𝜃1 = 𝜏1

3
[
J2 + m2l2

c2

] ⋅⋅
𝜃2 + 3bb2𝜃̇2 + 3kb2𝜃2 + 2𝜋kb2 = 𝜏2

(42)

where 𝜏1 = 𝜏1a + 𝜏1b + 𝜏1c and 𝜏2 = 𝜏2a + 𝜏2b + 𝜏2c. 𝜏2 of
(42) is:

𝜏2 = C1F2

F2 = F2a + F2b + F2c
(43)

Fig. 3. Wind turbine.

where C1 = cos(𝜃1), F2a, F2b and F2c are the force of air
received by three blades. The equation (43) describes the
assumption that the air goes in one direction, if 𝜃1 = 0,
then the maximum air intake moves blades of the wind
turbine, but if the tower turns to the left or to the right
and 𝜃1 changes, then the wind turbine turns, and the air
intake decreases. 𝜏1 of (42) is:

𝜏1 = kmi1 (44)

where km is a motor magnetic flux constant of the
tower, and i1 is the motor current of the tower in A.
Equations (42), (43), and (44) are the main equations
of the mechanical model that represents the turbine
and tower.

4.1.2 The aerodynamic model

The aerodynamic model is the mathematical model
of the torque applied to the blades. The mechanical
power captured by the turbine Pa is:

Pa = F2a 𝜃̇2 = 1
2
𝜌ACp(𝜆, 𝛽)V3

𝜔
(45)

where 𝜌 is the air density, A = 𝜋R2 is the area swept by
rotor blades with radius R, V𝜔 is the wind speed, Cp(𝜆, 𝛽)
is the performance coefficient of the wind turbine, whose
value is a function of the tip speed ratio 𝜆, is:

𝜆 =
𝜃̇2R
V𝜔

(46)

For the purpose of simulation, the model of
Cp(𝜆, 𝛽) is:

Cp(𝜆, 𝛽) = c1

(
c2

𝜆j
− c3𝛽 − c4

)
e−c5∕𝜆j + c6𝜆 (47)

where:

1
𝜆j

= 1
𝜆 + 0.08𝛽

− 0.035
𝛽3 + 1

(48)

and coefficients are c1 = 0.5176, c2 = 116, c3 = 0.4,
c4 = 5, c5 = 21, c6 = 0.0068, and 𝛽 is the blade pitch
angle. Using equations (43), (45), (46), (47), and (48) pro-
duces the next mathematical model of the torque applied
to wind turbine blades:
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𝜏2 = C1

(
F2a + F2b + F2c

)
F2a = 1

2𝜃̇2

𝜌ACp(𝜆, 𝛽)V3
𝜔

F2b = 1
2𝜃̇2

𝜌ACp(𝜆, 𝛽)V3
𝜔

F2c =
1

2𝜃̇2

𝜌ACp(𝜆, 𝛽)V3
𝜔

(49)

where C1 is explained in (43), 𝜆 is explained in
(46), Cp(𝜆, 𝛽) is explained in (47), and 𝜆j is explained
in (48).

4.1.3 The electrical model

Mathematical models of the motor and generator
are:

V1 = R1i1 + L1

⋅
i1 + k1𝜃̇1

k2𝜃̇2 = R2i2 + L2

⋅
i2 + V2

(50)

where k1 and k2 are the motor and generator back emf
constants, R1 and R2 are the motor and generator resis-
tances, L1 and L2 are the motor and generator induc-
tances, V1 and V2 are the motor and generator voltages
in V, i1 and i2 are the motor and generator currents
in A. For the generator of this research V2 = Rei2.
Thus, (50) is:

V1 = R1i1 + L1

⋅
i1 + k1𝜃̇1

k2𝜃̇2 =
(
R2 + Re

)
i2 + L2

⋅
i2

V2 = Rei2

(51)

4.1.4 The states space model

Define state variables as y1 = i2, y2 = 𝜃2, y3 = 𝜃̇2,
y4 = i1, y5 = 𝜃1, y6 = 𝜃̇1, inputs as w1 = F2, w2 = V1. Con-
sequently, the mathematical model of the equations (42),
(44), (46), (49), and (51) is:

ẏ1 = −
(
R2 + Re

)
L2

y1 +
k2

L2
y3

ẏ2 = y3

ẏ3 = −
kb2[

J2 + m2l2
c2

]y2 −
bb2[

J2 + m2l2
c2

]y3

−
2𝜋kb2

3
[
J2 + m2l2

c2

] + cos(y5)
3
[
J2 + m2l2

c2

]w1

ẏ4 = −
R1

L1
y4 −

k1

L1
y6 +

1
L1

w2

ẏ5 = y6

ẏ6 = −
kb1[

J1 + 1.5m2l2
c2

]y5

−
bb1[

J1 + 1.5m2l2
c2

]y6

+
km

3
[
J1 + 1.5m2l2

c2

]y4

w1 = F2a + F2b + F2c

F2a = F2b = F2c =
1

2y3
𝜌ACp(𝜆, 𝛽)V3

𝜔

Cp(𝜆, 𝛽) = c1

(
c2

𝜆j
− c3𝛽 − c4

)
e−c5∕𝜆j + c6𝜆

𝜆 =
y3R

V𝜔

,
1
𝜆j

= 1
𝜆 + 0.08𝛽

− 0.035
𝛽3 + 1

(52)

4.2 The controller of the wind turbine

In this subsection, the controller and stability are
studied.

4.2.1 The controller design

The objective of the controller is that using the
input, states of the wind turbine should reach con-
stant behaviors, it is known as the regulation of the
states.

In this case, the full electrical plant is employed
for the regulation; consequently, the electrical plant of
(52) is:
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ẏ1 = −
(
R2 + Re

)
L2

y1 +
k2

L2
y3

ẏ2 = y3

ẏ3 = −
kb2[

J2 + m2l2
c2

]y2 −
bb2[

J2 + m2l2
c2

]y3

−
2𝜋kb2

3
[
J2 + m2l2

c2

] + cos(y5)
3
[
J2 + m2l2

c2

]w1

ẏ4 = −
R1

L1
y4 −

k1

L1
y6 +

1
L1

w2

ẏ5 = y6

ẏ6 = −
kb1[

J1 + 1.5m2l2
c2

]y5 −
bb1[

J1 + 1.5m2l2
c2

]y6

+
km

3
[
J1 + 1.5m2l2

c2

]y4

(53)

From the equation (53), it can be seen that the con-
trol of the plant is complex because it has 1 input for the
regulation of 6 states; therefore, the controller is:

w = w2 = −gY

w1 = 0
(54)

where Y =
[

y1 y2 y3 y4 y5 y6

]T
are states, w is the

control input, g is the gain.

4.2.2 The stability analysis

Making the linearization of the wind turbine model
(53) produces the next result:

Ẏ = AY + BW (55)

where:

A =

⎡⎢⎢⎢⎢⎢⎢⎣

a11 0 a13 0 0 0
0 0 1 0 0 0
0 a32 a33 0 0 0
0 0 0 a44 0 a46
0 0 0 0 0 1
0 0 0 a64 a65 a66

⎤⎥⎥⎥⎥⎥⎥⎦
B =

[
0 0 0 1

L1
0 0

]T

(56)

where a11 = −(R2+Re)
L2

, a13 = k2

L2
, a32 = − kb2[

J2+m2l2
c2

] , a33 =

− bb2[
J2+m2l2

c2

] , a44 = −R1

L1
, a46 = − k1

L1
, a64 = km

3
[
J1+1.5m2l2

c2

] , a65 =

− kb1[
J1+1.5m2l2

c2

] , a66 = − bb1[
J1+1.5m2l2

c2

] .

The control function (58) is:

W = −GY (57)

where G = g, W = w. Substituting the control function
produces next closed loop model equation:

Ẏ = AY + B
[
−GY

]
Ẏ =

[
A − BG

]
Y

Ẏ = AcY

(58)

where Ac = A − BG.

V. RESULTS

In this section, the suggested controller called SC
will be compared with the sliding mode controller of
[20–23] called SMC for states regulation of two electrical
plants which are the gas and wind turbines. The objec-
tive is that states of the plant y should reach constant
behaviors, it is understood as a good regulation of the
states. The sliding mode controller of [20–23] is selected
for the comparisons because it is applied to a wind tur-
bine. In the next two subsections, the root mean square
error (RMSE) will be used in the comparisons, it is:

ECM =
⎛⎜⎜⎝ 1

T

T

∫
0

y2d𝜏
⎞⎟⎟⎠

1
2

(59)

where y2 = y2
1 + y2

5 for the first selected model equations
and y2 = y2

2 + y2
6 for the second selected model equations

in the gas turbine, and y2 = y2
1 + y2

1 + y2
3 + y2

4 + y2
5 + y2

6 for
the wind turbine, and T is the final time.

5.1 Gas turbine

Table I shows parameter values for the gas turbine.
The SMC of [20–23] is employed where initial con-

ditions are ys0 = [76, 76, 76, 76, 691.7694, 1616.4, 1270.8,
932.4205]T , and gains are gs1 = [−4.2, −5.6], gs2 = [−2 ×
10−3, −1 × 10−3], gs3 = [−1 × 10−3, −1 × 10−3].

The SC of the equation (33) is utilized where ini-
tial conditions are y0 = [76, 76, 76, 76, 691.7694, 1616.4,
1270.8, 932.4205]T , and gains are g1 = [4.2 × 102, −5.6 ×
101], g2 = [2, 1], g3 = [10, 10]. Substituting values of
Table I and values of the gains in the matrix Ac2 of (37),
the next result is obtained:

Ac2 =
[
−1.0 0.0
0.0 −0.39972

]
(60)
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Table I. Parameter values for the gas turbine

Parameter Value Parameter Value

MFDP [kg/s] 1 × 10−2 P2ref [Pa] 103.125
m3cor [kg/s] 7.731 T2ref [K] 288.15
Cp [(J/kg)K] 1005 𝜂c [-] 1.46966
Cv [(J/kg)K] 718 V [m3] 0.8
R [(J/kg)K] 287 𝜂b [-] 0.99
LHV [(J/kg)K] 44124 𝜂t [-] 1 × 10−4

ma [kg/s] 76 DP [Pa] 0.99
mg [kg/s] 32.94229 𝜂pt [-] 1 × 10−4

P4ref [Pa] 680.125 T4ref [K] 1400
Cvg [(J/kg)K] 863 𝛾 [-] 1.4
P5ref [Pa] 416.0 T5ref [K] 1000
m5cor [kg/s] 2.7184 𝜎 [-] 1 × 10−6

m6cor [kg/s] 0.3912 𝛾g [-] 1.33

Fig. 4. Combustor and compressor states. [Color figure can
be viewed at wileyonlinelibrary.com]

Eigenvalues are 𝜆1 = −0.39973, 𝜆2 = −0.99997.
Therefore, the first selected model equations of the elec-
trical plant are uniformly stable. Substituting values of
Table I and values of the gains in the Matrix AC1 of (41)
produces the next result:

Ac1 =
[
−421.0 56.0

0.0 −1.0 × 10−6

]
(61)

Eigenvalues are 𝜆1 = −1.0 × 10−6, 𝜆2 = −421.00.
Therefore, the second selected model equations of the
electrical plant are uniformly stable.

Figs 4 and 5 show combustor and compressor states,
and turbines states of the gas turbine with controllers for
a time from 0 s to 19.2 s. Table II shows the RMSE of (59)

Fig. 5. Turbines states. [Color figure can be viewed at
wileyonlinelibrary.com]

Table II. Results for the gas turbine

Methods RMSE-FSME RMSE-SSME

SMC 125.2273 411.4160
SC 82.1330 100.2606

where RMSE-FSME is the RMSE for the first selected
model equations and RMSE-SSME is the RMSE for the
second selected model equations.

Note that the turbines behaviors are influenced by
the combustor and compressor behaviors; therefore, reg-
ulation of the second is the objective because it produces
the regulation of the first. From Figs 4 and 5, it can
be seen that SC reaches a better regulation than SMC
because the plant signals for the first reaches better the
constant behaviors than for the second. From Table II, it
can be seen that SC reaches better accuracy than SMC
because the RMSE for the first is smaller than for the sec-
ond. Thus, SC is preferable for the states regulation in a
gas turbine.

5.2 Wind turbine

Table III shows parameter values for the wind tur-
bine.

The SMC of [20–23] is employed where initial con-
ditions are ys0 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]T , and the gain
is gs = [0, 0, −1 × 10−3, 0, 0, 0].

The SC of the equation (33) is utilized where initial
conditions are y0 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]T , and the
gain is g1 = [0, 0, −1 × 10−3, 0, 0, 0]. Substituting values
of Table III and the value of the gain in the Matrix AC of
(58) the next result is obtained:
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Table III. Parameter values for the wind turbine

Parameter Value Parameter Value

kb1 [kgm2/s2] 1 × 10−6 Re [Ω] 30
bb1 [kgm2rad/s] 0.1 km [Wb] 0.09
kb2 [kgm2/s2] 1 × 10−6 lc2 [m] 0.5
bb2 [kgm2rad/s] 0.1 m2 [kg] 0.5
k2 [Vs/rad] 0.45 R [m] 0.5
J1 = J2 [kgm2] 0.01273 R1 [Ω] 18
L2 [H] 0.6031 g [m/s2] 9.81
k1 [Vs/rad] 0.0045 V𝜔 [m/s] 5
𝜌 [kg/m3] 1.225 𝛽 [rad] 0.5
L1 [H] 0.6031 R2 [Ω] 6.96

Fig. 6. Turbine states. [Color figure can be viewed at
wileyonlinelibrary.com]

Fig. 7. Tower states. [Color figure can be viewed at
wileyonlinelibrary.com]

Table IV. Results for
the wind turbine

Methods RMSE

SMC 0.2686
SC 0.2594

Ac =

⎡⎢⎢⎢⎢⎢⎢⎣

ac11 0 ac13 0 0 0
0 0 1 0 0 0
0 ac32 ac33 0 0 0
0 0 ac43 ac44 0 ac46
0 0 0 0 0 1
0 0 0 ac64 ac65 ac66

⎤⎥⎥⎥⎥⎥⎥⎦
(62)

where ac11 = −61.283, ac13 = 0.74614, ac32 =
−7.2606 × 10−6, ac33 = −0.72606, ac43 = 1.6581 ×
10−3, ac44 = −29.846, ac46 = −7.4614 × 10−3,
ac64 = 0.14983, ac65 = −4.9943 × 10−6, ac66 =
−0.49943. Eigenvalues are 𝜆1 = −9.9995 × 10−6 +
7.4944 × 10−8i, 𝜆2 = −9.9995 × 10−6 − 7.4944 × 10−8i,
𝜆3 = −0.49947, 𝜆4 = −61.282, 𝜆5 = −29.847, 𝜆6 =
−0.72603. Therefore, the full electrical plant is uniformly
stable.

Figs 6 and 7 show the turbine states and tower states
of the wind turbine with controllers for a time from 0 s to
19.2 s. Table IV shows the RMSE of (59).

Note that the regulation objective is complex
because there is only one input for the regulation of six
states; nevertheless, the main objective is reached due to
all the states in the wind turbine are regulated with the
advised controller. From Figs 6 and 7, it can be seen that
the SC reaches a better regulation than SMC because
the plant signals for the first reaches better the con-
stant behaviors than for the second. From Table IV, it
can be seen that SC reaches better accuracy than SMC
because the RMSE for the first is smaller than for the sec-
ond. Thus, SC is preferable for the states regulation in a
wind turbine.

VI. CONCLUSIONS

In this research, a controller is advised for the regu-
lation of states in two electrical plants. The main issue is
that the control of the electrical plants of this study is dif-
ficult due to they are underactuated, i.e. there are more
states than inputs; consequently, an alternative solution
of this issue is suggested in this paper. The advised con-
troller is compared with the sliding mode controller for
the states regulation in a gas turbine and a wind tur-
bine producing that the first achieved better accuracy
in comparison with the second due to in the first all
the states reach the constant behaviors faster that in the
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second. The recommended controller could be applied
to other kind of electrical, mechanical, hydraulic, pneu-
matic, robotic, or mechatronic plants. In the future, other
kind of controllers will be designed for the regulation,
for the trajectory tracking, for the disturbance rejection
in the two electrical plants, or the intelligent algorithms
will be used for the behavior learning in the electrical
plants [34,35].
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