• Home
  • Jessica Marie Waite
Jessica Marie Waite

Jessica Marie Waite
  • Doctor of Philosophy
  • Research Geneticist at Tree Fruit Research Lab USDA-ARS

About

27
Publications
11,717
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,019
Citations
Current institution
Tree Fruit Research Lab USDA-ARS
Current position
  • Research Geneticist
Additional affiliations
April 2020 - present
Tree Fruit Research Lab USDA-ARS
Position
  • Research Geneticist
Description
  • I will be using genetics and genomics to address key issues in pears, focusing a large part of my research on pear rootstocks.
November 2018 - April 2020
Washington State University
Position
  • PostDoc Position
Description
  • Researched the molecular and physiological mechanisms underlying heat and light stress, and developing tools and practices to avoid sunburn in apple fruit, in the Kalcsits lab.
January 2008 - August 2009
University of Washington
Position
  • Technician
Description
  • Positional cloning and characterization of a mutation in GLUCAN SYNTHASE 8 in Arabidopsis, and its role in stomatal development, in the Torii lab.
Education
September 2009 - August 2014
University of Washington
Field of study
  • Biology

Publications

Publications (27)
Article
Full-text available
Pears (Pyrus) represent an important part of consumer diets, and have the fourth highest production of non-citrus fruits, measured by fresh weight, in the U.S. They are maintained clonally and grown as composite plants, consisting of a scion (fruit bearing) cultivar grafted onto a rootstock cultivar. Up to 98% of existing production relies on only...
Article
Full-text available
Background Plants adjust their growth orientations primarily in response to light and gravity signals. Considering that the gravity vector is fixed and the angle of light incidence is constantly changing, plants must somehow integrate these signals to establish organ orientation, commonly referred to as gravitropic set-point angle (GSA). The IGT ge...
Article
Full-text available
IGT/LAZY proteins play a central role in determining gravitropic set point angle and orientation of lateral organs across plant species. Recent work in model systems has demonstrated that interactions between IGT/LAZY proteins and BREVIS RADIX (BRX)-domain containing proteins, such as PH, RCC1, AND FYVE/RCC1-LIKE DOMAIN (PRAF/RLD), and BREVIS RADIX...
Article
Full-text available
Apples grown in high heat, high light, and low humidity environments are at risk for sun injury disorders like sunburn and associated crop losses. Understanding the physiological and molecular mechanisms underlying sunburn will support improvement of mitigation strategies and breeding for more resilient varieties. Numerous studies have highlighted...
Article
Full-text available
Plants sense a myriad of signals through cell-surface receptors to coordinate their development and environmental response. The Arabidopsis ERECTA receptor kinase regulates diverse developmental processes via perceiving multiple EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE peptide ligands. How the activated ERECTA protein is turned over is unknown. H...
Article
Full-text available
The rapid development of sequencing technologies has led to a deeper understanding of plant genomes. However, direct experimental evidence connecting genes to important agronomic traits is still lacking in most non-model plants. For instance, the genetic mechanisms underlying plant architecture are poorly understood in pome fruit trees, creating a...
Preprint
Plants sense a myriad of signals through cell-surface receptors to coordinate their development and environmental response. The Arabidopsis ERECTA receptor kinase regulates diverse developmental processes via perceiving multiple EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE peptide ligands. How the activated ERECTA protein is turned over is unknown. H...
Preprint
Full-text available
The rapid development of sequencing technologies has led to a deeper understanding of horticultural plant genomes. However, experimental evidence connecting genes to important agronomic traits is still lacking in most non-model organisms. For instance, the genetic mechanisms underlying plant architecture are poorly understood in pome fruit trees, c...
Article
Genetic improvement of architectural traits offers tremendous opportunities to dramatically improve crop densities, productivity, and ultimately sustainability. Among these, the orientation, or gravitropic set point angle (GSA), of plant organs is critical to optimize crop profiles, light capture, and nutrient acquisition. Mutant GSA phenotypes hav...
Preprint
Full-text available
Plants adjust their growth orientations in response to environmental signals such as light and gravity in order to optimize photosynthesis and access to nutrients. However, given the fixed nature of gravity, understanding how light and gravity signals are integrated is challenging. Branch orientation, or gravitropic set point angle, is a key aspect...
Article
Full-text available
DEEPER ROOTING 1 (DRO1) contributes to the downward gravitropic growth trajectory of roots upstream of lateral auxin transport in monocots and dicots. Loss of DRO1 function leads to horizontally oriented lateral roots and altered gravitropic set point angle, while loss of all three DRO family members results in upward, vertical root growth. Here, w...
Article
Full-text available
TAC1 and LAZY1 are members of a gene family that regulates lateral shoot orientation in plants. TAC1 promotes outward orientations in response to light, while LAZY1 promotes upward shoot orientations in response to gravity via altered auxin transport. We performed genetic, molecular, and biochemical assays to investigate possible interactions betwe...
Article
Climate change negatively influences many human activities and one of the most affected is agriculture. In the apple industry, water availability, elevated temperatures and altered phenology will transform fruit production in traditional growing regions. Extended periods of intense solar radiation and high temperatures during the growing season cau...
Article
Full-text available
Prunus persica (peach) trees carrying the “Pillar” or “Broomy” trait (br) have vertically oriented branches caused by loss-of-function mutations in a gene called TILLER ANGLE CONTROL 1 (TAC1). TAC1 encodes a protein in the IGT gene family that includes LAZY1 and DEEPER ROOTING 1 (DRO1), which regulate lateral branch and root orientations, respectiv...
Article
Full-text available
Light serves as an important environmental cue in regulating plant architecture. Previous work had demonstrated that both photoreceptor-mediated signaling and photosynthesis play a role in determining the orientation of plant organs. TILLER ANGLE CONTROL 1 (TAC1) was recently shown to function in setting the orientation of lateral branches in diver...
Preprint
Full-text available
Light serves as an important environmental cue in regulating plant architecture. Previous work had demonstrated that both photoreceptor-mediated signaling and photosynthesis play a role in determining the orientation of plant organs. TILLER ANGLE CONTROL 1 ( TAC1 ) was recently shown to function in setting the orientation of lateral branches in div...
Article
Full-text available
Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system, however little is known about the genetic control of this trait. Recent reports in rice identified a role for DEE...
Article
An emerging theme in biology is the importance of cellular signaling dynamics. In addition to monitoring changes in absolute abundance of signaling molecules, many signal transduction pathways are sensitive to changes in temporal properties of signaling components (Purvis and Lahav, 2013). The phytohormone auxin regulates myriad processes in plant...
Article
Ubiquitin-mediated protein degradation is a common feature in diverse plant cell signaling pathways; however, the factors that control the dynamics of regulated protein turnover are largely unknown. One of the best-characterized families of E3 ubiquitin ligases, SCFTIR1/AFBs, facilitates ubiquitination of Aux/IAA repressor proteins in the presence...
Article
Auxin elicits diverse cell behaviors through a simple nuclear signaling pathway initiated by degradation of Aux/IAA co-repressors. Our previous work revealed that members of the large Arabidopsis Aux/IAA family exhibit a range of degradation rates in synthetic contexts. However, it remained an unresolved issue whether differences in Aux/IAA turnove...
Article
Full-text available
Explaining how the small molecule auxin triggers diverse yet specific responses is a long-standing challenge in plant biology. An essential step in auxin response is the degradation of Auxin/Indole-3-Acetic Acid (Aux/IAA, referred to hereafter as IAA) repressor proteins through interaction with auxin receptors. To systematically characterize divers...
Article
Full-text available
As photoautotrophs, plants are exquisitely sensitive to their light environment. Light affects many developmental and physiological responses throughout plants' life histories. The focus of this chapter is on light effects during the crucial period of time between seed germination and the development of the first true leaves. During this time, the...
Article
Full-text available
Patterning of stomata, valves on the plant epidermis, requires the orchestrated actions of signaling components and cell-fate determinants. To understand the regulation of stomatal patterning, we performed a genetic screen using a background that partially lacks stomatal signaling receptors. Here, we report the isolation and characterization of cho...

Network

Cited By