
Jessica Ponti- European Commission
Jessica Ponti
- European Commission
About
120
Publications
31,418
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,050
Citations
Current institution
Publications
Publications (120)
Zinc oxide nanoparticles (ZnO NPs) exhibit diverse morphologies and sizes, influencing their functional properties. However, the relationship between their morphology and behavior under varying conditions remains poorly understood. This study provides novel insights by linking ZnO NPs shape to generation of reactive oxygen species (ROS), and to ant...
Background
In previous studies we have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in vitro in bacterial growth medium, that the viral replication follows bacterial growth, and it is influenced by the administration of specific antibiotics. These observations are compatible with a ‘bacteriophage-like’ behaviou...
The detection of nanoplastics (NPs) in the natural ecosystems is challenging due to the size and the low concentrations of NPs. The aim of the present study is to investigate the presence of NPs in larvae of two chironomid species (Diamesa zernyi and Diamesa tonsa) colonizing two high-altitude glacier-fed streams (Mandrone and Amola streams, Trenti...
The evolving regulatory landscape for microplastics—including the European Union’s Drinking Water Directive—underscores the importance of addressing the analytics of emerging contaminants in water, ensuring public health protection, and fostering scientific advancements in environmental monitoring. This work aims to contribute to these advancements...
Disposable filtering face piece respirators (FFRs) are not approved for reuse as standard of care. However, lessons learnt from the SARS-CoV-2 pandemic, FFRs decontamination and reuse may be needed as crisis capacity strategy to ensure availability in medical facilities. We studied a decontamination methodology based on atmospheric pressure plasma...
The evaluation of nanoplastics bioaccumulation in living organisms is still considered an emerging challenge, especially as global plastic production continues to grow, posing a significant threat to humans, animals, and the environment. The goal of this work is to advance the development of standardized methods for reliable biomonitoring in the fu...
Background: Escalating global plastic production, expected to reach 34,000 million tons by 2050, poses a significant threat to human and environmental well-being, particularly in aquatic ecosystems. Microplastics (MP) and nanoplastics (NP), which originate from the degradation of plastics, are of concern due to their potential bioaccumulation and u...
The physicochemical properties of titanium dioxide (TiO2) in nanoforms is often exploited as colorant in food, pharmaceuticals and other consumer products. However, the current evidence of potential hazards associated with titanium dioxide (TiO2) in nanoforms led to a ban of TiO2 as food additive in Europe. This regulatory decision has also an impa...
Background. Escalating global plastic production, expected to reach 34,000 million tons by 2050, poses a significant threat to human and environmental well-being, particularly in aquatic ecosystems. Microplastics (MP) and nanoplastics (NP), which originate from the degradation of plastics, are of concern due to their potential bioaccumulation and u...
The pyridoxal 5′-dependent enzyme methionine γ-lyase (MGL) catalyzes the degradation of methionine. This activity has been profitable to develop an antitumor agent exploiting the strict dependence of most malignant cells on the availability of methionine. Indeed, methionine depletion blocks tumor proliferation and leads to an increased susceptibili...
In the present study, we addressed the knowledge gaps regarding the agglomeration behavior and fate of food-grade titanium dioxide (E 171) in human gastrointestinal digestion (GID). After thorough multi-technique physicochemical characterization including TEM, single-particle ICP-MS (spICP-MS), CLS, VSSA determination and ELS, the GI fate of E 171...
Quercetin-loaded nano-liposomes were prepared by high-pressure homogenization (HPH) at different pressures (up to 150 MPa) and number of passes (up to 3) to define the best processing conditions allowing the lowest particle size and the highest encapsulation efficiency (EE). The process at 150 MPa for 1 pass was the best, producing quercetin-loaded...
A synthetic route to producing gold-doped environmentally relevant nanoplastics and a method for the rapid and high-throughput qualitative investigation of their cellular interactions have been developed. Polyethylene (PE) and polyvinyl chloride (PVC) nanoparticles, doped with ultrasmall gold nanoparticles, were synthesized via an oil-in-water emul...
The interaction of semiconductor nanoparticles with bio-molecules attracts increasing interest of researchers, considering the reactivity of nanoparticles and the possibility to control their properties remotely giving mechanical, thermal, or electrical stimulus to the surrounding bio-environment. This work reports on a systematic comparative study...
Microplastics (MPs) represent a worldwide emerging relevant concern toward human and environmental health due to their intentional or unintentional release. Human exposure to MPs by inhalation is predicted to be among the most hazardous. MPs include both engineered, or primary MPs, and secondary MPs, materials obtained by fragmentation from any pla...
Nanoforms (NFs) of a substance may be distinguished from one another through differences in their physicochemical properties. When registering nanoforms of a substance for assessment under the EU REACH framework, five basic descriptors are required for their identification: composition, surface chemistry, size, specific surface area and shape. To m...
The possible neurodevelopmental consequences of SARS-CoV-2 infection are presently unknown. In utero exposure to SARS-CoV-2 has been hypothesized to affect the developing brain, possibly disrupting neurodevelopment of children. Spike protein interactors, such as ACE2, have been found expressed in the fetal brain, and could play a role in potential...
Human induced pluripotent stem cell (iPSC)-derived neuronal and glial cell models are suitable to assess the effects of environmental chemicals on the developing brain. Such test systems can recapitulate several key neurodevelopmental features, such as neural stem cell formation and differentiation towards different neuronal subtypes and astrocytes...
Background: In previous studies we have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in vitro in bacterial growth medium, that the viral replication follows bacterial growth, and it is influenced by the administration of specific antibiotics. These observations are compatible with a ‘bacteriophage-like’ behavio...
Microplastic pollution represents a global problem with negative impacts on aquatic environment and organisms’ health. To date, most of the laboratory toxicological studies on microplastics (MPs) have made use of single commercial micro and nano-polymers, which do not reflect the heterogeneity of environmental MPs. To improve the relevance of the h...
Rare earth elements (REEs) are critical raw materials with a wide range of industrial applications. As a result, the recovery of REEs via adsorption from REE-rich matrices, such as water streams from processed electric and electronic waste, has gained increased attention for its simplicity, cost-effectiveness and high efficacy. In this work, the po...
Plastic particulates in the environment pose an increasing concern for regulatory bodies due to their potential risk to higher organisms (including humans) as they enter the food chain. Nanoplastics (defined here as smaller than 1 μm) are particularly challenging to detect and analyze at environmentally relevant concentrations and in biological mat...
Plastic debris accounts for the most substantial part of marine pollution and its degradation byproducts are omnipresent. Beyond representing a serious potential hazard for the marine ecosystem, micro- and nanoplastics may easily enter the human food chain with effects on health that are still poorly understood and undefined. In particular, while p...
Nanoplastic particulates (pNP) are widely considered as being potentially harmful to the environment and living organisms while also being technically difficult to detect and identify in the presence of biological matrices. In this study, we describe a method for the extraction and subsequent Raman analysis of pNP present in the tissues of salt-wat...
The large-scale production of plastic and the resulting release of waste is leading to a huge accumulation of micro-sized particles in the environment that could have an impact on not only aquatic organisms but also on humans. Despite the extensive literature on the subject, there is still an insufficient harmonization of methodologies for the coll...
The large-scale production of plastic and the resulting release of waste is leading to a huge accumulation of micro-sized particles in the environment that could have an impact on not only aquatic organisms but also on humans. Despite the extensive literature on the subject, there is still an insufficient harmonization of methodologies for the coll...
The European Union (EU) continuously takes ensuring the safe use of manufactured nanomaterials (MNMs) in consumer products into consideration. The application of a common approach for testing MNMs, including the use of optimized protocols and methods’ selection, becomes increasingly important to obtain reliable and comparable results supporting the...
Titanium dioxide is a white colourant authorised as food additive E171 in the EU and is applied in a range of food products. Currently the EU specifications for E171 do not refer to the characterisation of particle size distribution; however, this may be requested in the near future. Only a few studies have been published to date reporting data on...
Nanotechnology is considered to be a key enabling technology and in recent years there has been much growth in the use of nanostructured materials in industrial applications and in consumer products. It is, therefore, important that prior to being commercialized in consumer products, engineered nanomaterials are subjected to a thorough physico-chem...
The cover image is based on the Research Article XRF mapping and TEM analysis of coated and uncoated silica nanoparticles in A549 cells and human monocytes, by Iria M. Rio‐Echevarria et al., https://doi.org/10.1002/xrs.2999. Acknowledgments: Dr. George Kourousias (Elettra Sincrotrone Trieste).
The evaluation of nanomaterials intracellular distribution still remains a challenge in nanomedicine applications and toxicological studies. Synchrotron radiation X‐ray microscopy combined with X‐ray fluorescence (XRF) microspectroscopy provides unique information that has pushed the frontiers of biological research, particularly when investigating...
Background
Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called “critical quality attributes”, that is specific physicochemical properties of nanomaterials trigger...
Titanium dioxide nanoparticles (TiO2 NP) are broadly used in a wide range of applications. Several studies have reported that TiO2 NP possess cytotoxic and genotoxic properties that could induce adverse health effects in humans. The FP7 Sanowork project was aimed to minimize occupational hazard and exposure to engineered nanomaterials (ENM), includ...
pH-sensitive nonionic surfactant vesicles (niosomes) by polysorbate-20 (Tween-20) or polysorbate-20 derivatized by glycine (added as pH sensitive agent), were developed to deliver Ibuprofen (IBU) and Lidocaine (LID). For the physical-chemical characterization of vesicles (mean size, size distribution, zeta potential, vesicle morphology, bilayer pro...
The majority of active agents do not readily permeate into brain due to the presence of the blood-brain barrier and blood-cerebrospinal fluid barrier. Currently, the most innovative and promising non-invasive strategy in brain delivery is the design and preparation of nanocarriers, which can move through the brain endothelium. Niosomes can perform...
The FP7 Sanowork project was aimed to minimise occupational hazard and exposure to engineered nanomaterials (ENM) through the surface modification in order to prevent possible health effects. In this frame, a number of nanoparticles (NP) have been selected, among which zirconium (ZrO2) and titanium (TiO2) dioxide. In this study, we tested ZrO2NP an...
Immiscible polymer blends tend to undergo phase separation with the formation of nanoscale architecture which can be used in a variety of applications. Different wet-chemistry techniques already exist to fix the resultant polymeric structure in a predictable manner. In this work, an all-dry and plasma-based strategy is proposed to fabricate thin fi...
The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction...
Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intellig...
Refraction and absorption properties of soft X-rays provide distinct advantages for ‘fast’ imaging of matter consisting of light elements, as biological samples, with sensitivity better than conventional light microscopy. This is very attractive for nanotoxicology, in particular for rapid screening of nanoparticle distribution and their effects on...
Higher efficacy and safety of nano-gold therapeutics require examination of cellular responses to gold nanoparticles (AuNPs). In this work we compared cellular uptake, cytotoxicity and RNA expression patterns induced in Caco-2 cells exposed to AuNP (5 and 30nm). Cellular internalization was dose and time-dependent for both AuNPs. The toxicity was o...
This chapter highlights the specific challenges related to in vitro toxicity testing of nanomaterials. The difficulties presented are related to the very complex behavior of nanomaterials during the in vitro tests, namely, dissolution, aggregation, sedimentation, and formation of a protein corona. All these aspects modify the physicochemical charac...
Nano-TiO2 powders are widely used in sunscreen lotions as UV filters in combination with other substances. The activation of TiO2 by UV rays leads to the release of reactive oxygen species (ROS, e.g., hydroxyl radicals and singlet oxygen) which are potentially harmful. For this reason the TiO2 particles are generally coated with inert materials (e....
Aim:
Targeted biocompatible nanoplatforms presenting multiple therapeutic functions have great potential for the treatment of cancer.
Materials & methods:
Multifunctional nanocomposites formed by polymeric nanoparticles (PNPs) containing two cytotoxic agents - the drug alisertib and silver nanoparticles - were synthesized. These PNPs have been c...
Nanotechnology has gained importance in the past years as it provides opportunities for industrial growth and innovation. However, the increasing use of manufactured nanomaterials (NMs) in a number of commercial applications and consumer products raises also safety concerns and questions regarding potential unintended risks to humans and the enviro...
Nanotechnology has gained importance in the past years as it provides opportunities for industrial growth and innovation. However, the increasing use of manufactured nanomaterials (NMs) in a number of commercial applications and consumer products raises also safety concerns and questions regarding potential unintended risks to humans and the enviro...
Drugs used for chemotherapy normally carry out adverse, undesired effects. Nanotechnology brings about new horizons to tackle cancer disease with a different strategy. One of the most promising approaches is the use of nanocarriers to transport active drugs. These nanocarriers need to have special properties to avoid immune responses and toxicity a...
Silver nanoparticles (Ag NPs) are one of the most common nanomaterials present in nanotechnology-based products. Here, the physical chemical properties of Ag NPs suspensions of 44 nm, 84 nm and 100 nm sizes synthesized in our laboratory were characterized. The NM-300 material (average size of 17nm), supplied by the Joint Research Centre Nanomateria...
In the quest for biocompatible nanocarriers for biomedical applications, a great deal of effort is put on engineering the nanocomposites surface in order to render them specific to the particular purpose. We developed biocompatible PLGA-b-PEG-based nanoparticles carrying a double functionality (i.e., carboxylic and acetylenic) able to serve as flex...
Background:
Cobalt-ferrite nanoparticles (Co-Fe NPs) are attractive for nanotechnology-based therapies. Thus, exploring their effect on viability of seven different cell lines representing different organs of the human body is highly important.
Methods:
The toxicological effects of Co-Fe NPs were studied by in-vitro exposure of A549 and NCIH441...
Synchrotron radiation (SR) X‐ray microscopy combined with X‐ray fluorescence (XRF) microspectroscopy provides unique information that have pushed the frontiers of biological research, particularly when investigating intracellular mechanisms. This work reports an SR‐XRF microspectroscopy investigation on the distribution and the potential toxicity o...
Nanometric TiO2 has been reported to be cytotoxic and genotoxic in different in vitro models when activated by UV light. However, a clear picture of the species mediating the observed toxic effects is still missing. Here, a nanometric TiO2 powder has been modified at the surface to completely inhibit its photo-catalytic activity and to inhibit the...
Gold nanoparticles (AuNPs) are currently used in several fields including biomedical applications, although no conclusive information on their cytotoxicity is available. For this reason this work has investigated the effects of AuNPs in vitro on Balb/3T3 mouse fibroblasts. Results obtained exposing cells for 72h to AuNPs 5 and 15nm citrate stabiliz...
Abstract In spite of human gastrointestinal exposure to nanoparticles (NPs), data on NPs toxicity in intestinal cells are quite scanty. In the present study we evaluated the toxicity induced by zinc oxide (ZnO) and titanium dioxide (TiO2) NPs on Caco-2 cells. Only ZnO NPs produced significant cytotoxicity, evaluated by two different assays. The pre...
Abstract An in vitro human alveolar barrier established by the coculture of epithelial human cell line NCI-H441 with endothelial human cell line ISO-HAS1 was used to evaluate the effects of amorphous silicon dioxide nanoparticles (SiNPs), in the presence or absence of THP-1 cells (monocytes). SiNPs exposure induced production of proinflammatory cyt...
A simple method for the synthesis of lipophilic Ag NPs have been developed. The coated Ag NPs have been entrapped into a FDA-approved and targetable PEG-based polymeric nanoparticles, and this nanocarrier has been conjugated with the peptide chlorotoxin. Uptake experiments have shown a cell-specific recognition of the Ag-1-PNPs-Cltx on U87MG cell l...
Abstract In this work we investigated the toxicological effects of nude and chemically functionalised (-NH(2), -OH and -COOH groups) multiwall carbon nanotubes (mwCNTs) using immortalised mouse fibroblasts cell line (Balb/3T3) as in vitro model, alternative to the use of animals, to assess basal cytotoxicity, carcinogenic potential, genotoxicity an...
The cell transformation assays (CTAs) have attracted attention within the field of alternative methods due to their potential to reduce the number of animal experiments in the field of carcinogenicity. The CTA using BALB/c 3T3 cells has proved to be able to respond to chemical carcinogens by inducing morphologically transformed foci. Although a con...
Magnetite nanoparticles (Fe3O4 NPs) are manufactured nanomaterials increasingly used in healthcare for different medical applications ranging from diagnosis to therapy. This study deals with the irradiation of Fe3O4 NPs with a proton beam in order to produce 56Co as radiolabel and also with the possible use of nuclear techniques for the quantificat...
Although amorphous silica nanoparticles (aSiO(2)NPs) are believed to be non-toxic and are currently used in several industrial and biomedical applications including cosmetics, food additives and drug delivery systems, there is still no conclusive information on their cytotoxic, genotoxic and carcinogenic potential. For this reason, this work has in...
The effect of the concentration of cobalt ferrite (CoFe(2)O(4)) nanoparticles (NPs) on their intracellular location and distribution has been explored by synchrotron radiation X-ray and fluorescence microscopy (SR-XRF) monitoring the evolution of NPs elemental composition as well. In cells exposed to low concentrations of CoFe(2)O(4) NPs, the NPs p...
We present in this article an outline of some cyclotron-based irradiation techniques that can be used to directly radiolabel industrially manufactured nanoparticles, as well as two techniques for synthesis of labelled nanoparticles using cyclotron-generated radioactive precursor materials. These radiolabelled nanoparticles are suitable for a range...
The toxicological effects of cobalt nanoparticles (Co-NPs) aggregates were examined and compared with those of cobalt ions (Co-ions) using six different cell lines representing lung, liver, kidney, intestine, and the immune system. Dose-response curves were studied in the concentration range of 0.05-1.0 mM, employing 3-(4,5-dimethylthiazol-2-Yl)-2,...
Different in vitro assays are successfully used to determine the relative cytotoxicity of a broad range of compounds. Nevertheless, different research groups have pointed out the difficulty in using the same tests to assess the toxicity of nanoparticles (NPs). In this study, we evaluated the possible use of a microphysiometer, Bionas 2500 analyzing...
Nowadays, a wide variety of nanoparticles (NPs) are applied in different fields such as medical science and industry. Due to their large commercial volume, the OECD Working Party on Manufactured Nanomaterials (NMs) has proposed to study a set of 14 nanomaterials, one of which being cerium oxide (CeO<sub>2</sub>). In particular, CeO<sub>2</sub> base...
Genotoxic effects of selected NPs on human peripheral blood leukocytes. Cells in suspension were treated for 48 h with NPs or their respective solvents. Genotoxicity was evaluated as the number of binucleated micronucleated (BNMN) leukocytes every 1000 cells from two separate donors. Positive controls (treated with Mitomycin C 0.5 μM) contained >10...
With the increasing use of nanomaterials, the need for methods and assays to examine their immunosafety is becoming urgent, in particular for nanomaterials that are deliberately administered to human subjects (as in the case of nanomedicines). To obtain reliable results, standardised in vitro immunotoxicological tests should be used to determine th...
The behaviour of polymeric entrapped thiol-coated GNRs in culture medium under biological conditions was analysed. The in vitro cytotoxicity was studied by a Colony Forming Efficiency assay on immortalized mouse fibroblasts (Balb/3T3) obtaining a dose–effect relationship in which a half inhibitory concentration (IC50) was 20.3μM. The suitability of...
RESUME: La nanotechnologie est un domaine de recherche en pleine expansion et pourrait révolutionner le secteur biomédical. En effet, les nanoparticules pourraient apporter des solutions innovantes pour l'imagerie médicale sensible (diagnostic précoce, rapide et précis) et/ ou pour la thérapie (thérapie ciblée). Néanmoins, avant d'envisager des app...
In this work, we present a complete physicochemical characterization of multi-wall carbon nanotubes (mwCNTs) in order to assess their potential toxicological effects in in vitro cell models using Colony Forming Efficiency (CFE) assay. We verified that Dimethyl Sulfoxide (DMSO) was a more suitable solvent to disperse mwCNTs compared to culture mediu...
Suitable assays and test strategies are needed to analyze potential genotoxic and immunotoxic health effects caused by nanoparticle exposure. The development and validation of such methods is challenging because nanoparticles may show unexpected behavior, like aggregation or interference with optical measurements, when routine in vitro assays are p...
(Figure Presented) Chemical synthesis, stability, and characterization of a new albumin-based magnetic nanocarrier containing cobalt ferrite nanoparticles is reported. The BSA-cobalt-based nanocarrier is tested as a theranostic nanomedicine: both diagnostic abilities in vivo and therapeutic hyperthermic effects on standard human tumor cell line (He...
Due to their physico-chemical characteristics, gold nanoparticles (AuNPs) seem to be suitable for biomedical and therapeutic applications even if conflicting data on their toxicological profiles are present in literature. In order to better understand if AuNPs could be safe we must consider different biological endpoints such as cytotoxicity, genot...
Despite the wide use of nanoscale materials in several industrial applications as well as in biology and medicine, very little research has been carried out on the potential toxicity of nanoparticles. We had previously obtained 10 differentially expressed mRNAs in BALB3T3 fibroblasts exposed to different forms of cobalt, i.e., microparticles, nanop...
Nanotechnology is an emerging field that involves the development, manufacture and measurement of materials and systems in the submicron to nanometer range. Its development is expected to have a large socio-economical impact in practically all fields of industrial activity. However, there is still a lack of information about the potential risks of...
In this contribution a short introduction to nanostructured materials for advanced technological applications is presented.
A major aim is to demonstrate, on the one hand, the diversity of approaches, methods, techniques and solutions, which are
used currently worldwide — but also by the authors of the contributions collected in this book — in the...
The literature is full of information on the biological effects, both in vitro and in vivo, of Carbon Nanotubes (CNTs) and almost all the data published are in agreement on the toxicity related to physicochemical properties. The gap in the knowledge of the effects of CNTs on biological systems is instead evident when approaching the damage induced...
Human epithelial lung cells (A549) were exposed to toluene and benzene in the air as individual compounds and mixtures at concentrations of about 0.25ppmv in a specifically adapted fumigation device. Possible early toxicological effects at cellular level have been determined by lactate dehydrogenase (LDH), glutathione redox status (GSH) and comet a...
"Macromolecules to PDMS transfer" technique relying on the direct entrapment of macromolecules spots during PDMS polymerisation is proposed as an alternative for the easy and simple PDMS surface modification. In the present work, the development of three different applications based on this procedure is presented as proof of the method potentialiti...
Atomic force microscopy (AFM) indentation has become an important technique for quantifying the mechanical properties of live cells at nanoscale. However, determination of cell elasticity modulus from the force-displacement curves measured in the AFM indentations is not a trivial task. The present work shows that these force-displacement curves are...
Owing to the increasing development of nanotechnology, there is a need to assess how engineered nanomaterials can interact with living cells. The main purpose of the present study was to assess whether metal cobalt nanoparticles (CoNP 100-500 nm) are genotoxic compared to cobalt ions (Co(2+)). Uptake experiments were carried out by incubating perip...
A multiparametric chip-based system was employed to measure cell adhesion, metabolism, and response to metal compounds previously classified as cytotoxic in immortalized mouse fibroblasts (BALB/3T3 cell line). The system measures in parallel, online, and in label-free conditions the extracellular acidification rates (with pH-sensitive field effect...