
Functional Programming and MathematicalObjectsJerzy KarczmarczukDept. of Computer Science, University of Caen, FranceAbstract. We discuss the application of the Haskell/Gofer type classesand constructor classes to the implementation and teaching of the ma-nipulation techniques in the domain of formal mathematical expressions.We show also how the lazy evaluation paradigms simplify the construc-tion and the presentation of several algorithms dealing with iterativedata types, such as power series or formal Pad�e expansion. We showthe application of higher order functions to algebra and geometry, andspeci�cally | to the construction of parametric surfaces.1 IntroductionFormal manipulation of algebraic and geometric objects seems �a priori to bea wonderful training ground for mathematically oriented students who want tolearn the design and the implementation of complex algorithms and heteroge-neous data structures. It is not very often exploited, though. While it is standardat quite elementary level, to teach formal di�erentiation of algebraic tree struc-tures, or the arithmetic of compound data structures such as complex numbersor rationals, it is not very easy to leave the syntactic approach to the modelling ofthe mathematical objects, and to make use of the structure (in the mathematical,rather than programming) sense of the underlying domain.The students learn easily how to operate on fractions and polynomials, butthe algebra of rational functions has usually to be implemented again, withoutcode reusing. Standard list or term manipulation languages, as Lisp or Prologlack the inheritance concept. But the classical object-oriented systems, such asSmalltalk or Common Lisp Object System are too heavy, and they exploit intenselythe data inheritance, which might not be very useful if we just need to assertthat both polynomials and matrices belong to a Ring category, and that froma Ring and some additional properties we can construct e�ectively the �eld ofquotients, with the same (in principle) algorithms in the case of rational numbersand ratios of polynomials.The necessity to formulate the computer algebra algorithms and data struc-tures in a mathematically structured way was recognized many years ago. Thesystem Axiom was built explicitly upon this principle, and the Maple packageis distributed now with the public library Gauss[1] { an \object-oriented" sub-language which heavily uses inheritance. Their learning curves are unfortunatelyquite steep, and their pedagogical in
uence is rather weak, as too many detailsare hidden in \black boxes".



This paper is devoted to some aspects of teaching of programming to stu-dents of Mathematics and Computer Science. We decided to look at the problemmentioned above from the perspective of modern, typed lazy functional program-ming. The relation between types { as realized in the language Haskell[2] { andthe mathematical domains, will be discussed in the section 3. With lazy streamsit is easy to create potentially in�nite data structures such as series, continu-ous fractions, etc. But there are more arguments as well: thanks to the deferredevaluation and higher order functions it is easier to formulate the algorithms ina static, declarative manner, without polluting them with countless for/whileloops and other imperative constructs, which hide sometimes the clarity of theunderlying strategy. We have chosen Gofer[3], a popular dialect of Haskell, whichpermits the rede�nition of the standard prelude where the properties of the stan-dard operators are speci�ed.We wanted to bridge the gap between formal descriptions of the proper-ties of mathematical operations, and their practical implementation, and also toshow the students how this is done. So, we have designed a simpli�ed, but quiteelaborate mathematical hierarchy of classes in Gofer, and we have applied it tonumerous, small, but not always trivial examples of algorithms, some of whichone might not easily �nd in standard textbooks. This talk presents partially thework done. We have consciously omitted all computer algebra \classics" such asthe algebra of symbolic extensions. The presentation below is not self-contained,we assume some knowledge of Haskell, and of standard algebra. Our aim wasthreefold:{ To popularize advanced functional techniques among experienced studentstoo conditioned by the object-oriented paradigms, or \handicapped" a littleby imperative programming languages.{ To show how a practical, e�ective programming language can be used as atool to construct quite abstract mathematics.{ To analyse the possible traps and inadequacies of the current polymorphicfunctional languages, in order to propose one day a more powerful machinery.Several structure de�nitions and algorithms have been reconstructed togetherwith the students, and it was a real pleasure seeing how fast they could recoverfrom all possible bugs and pitfalls thanks to the clarity of the language used.2 Pedagogical ContextThis paper is not based on one homogeneous course. The techniques presentedhere have been taught to 4th year (Mâ�trise) students of Mathematics and Math-ematical Engineering during a one-semester course on Functional Programming,and o�ered also to students of Computer Science, (4th year) as a complementarymaterial for the course on Image Synthesis. Some of the techniques discussed be-low have been presented on a seminar attended by the students of DEA (Diplômed'�Etudes Approfondies; 5th year) on Computer Science, and have been applied



to graphic modelling on a DEA stage. The 4th year courses were accompaniedby practical exercices (3 hours per week) and were assessed by a written ex-amination, and by one or two programming projects demanding a few weeks ofwork.So, the audience was rather advanced. All students were acquainted with theessentials of list processing, and heard about lazy evaluation semantics (real-ized in Scheme). Unfortunately, for historical reasons, Gofer could not be usedas a principal programming language, the course on Functional Programmingwas essentially based on CAML. The implementation of algorithms in Gofer wasproposed informally. Nothing was really enforced, and the success of the projectcould be estimated by the enthusiasm of the best students, who did not restrictthemselves to obligatory topics.Thus, neither our teaching of the lazy techniques and hierarchical polymor-phism, nor this paper stress upon the strictly pedagogical issues, but | asmentioned above | concentrates on a methodology of construction of mathe-matical objects. We used the implementations of Gofer and CAML running onSparc stations, and in DOS boxes under MS-Windows.3 Modi�ed Classes of Types in GoferOne of the powerful mechanisms in the programming language Haskell is the con-cept of type classes whose aim is to control selectively the operator overloading.Such overloading is an old concept. Everybody knows that the mathematicalsign + is used to represent the addition of integer and real numbers in almost allpopular programming languages. Sometimes the same symbol denotes the con-catenation of character strings. However, in order to add two matrices by writingjust A + B one needs an extensible language, such as the powerful object-orientedmachinery of C++. For any new type of objects, one has to implement the newaddition operation completely ad hoc, and it not easy to ensure some uniformityof the generalized arithmetic domain.The creators of Haskell decided to base the polymorphism on the existenceof common operational properties of a class of di�erent, possibly heterogeneousdata types. For example, the class Ord a declares the relation of order <=, andspeci�es that for all objects belonging to the type a, and only for them, suchrelation exists. Later we declare that some type, for example the �eld of rationalfractions: pairs (Num,Den) is an instance of the class Ord, and we de�ne explicitlyan appropriate order relation. If, as it is usual { the class Ord is a subclass of theclass Eq which encompasses all data types with the equivalence relation de�ned,there is no need for other order relations, all can be derived from <= by inversionand/or composition with the inequality.It was exactly what we needed | to be able to de�ne abstract mathematicaloperations such as additions, independently of the data structures represent-ing the added objects. We found it methodologically harmful that our studentsengraved too deeply in their memories that a complex number is essentially arecord with two real �elds, and other similar \truths".



But the arithmetic operators in standard Haskell are essentially numeric,and their genericity is restricted to integers, 
oats, etc. There are de�nitionsof rational fractions and complex numbers in the standard preludes, but thepossibility of introducing more general data categories in this context is largelyunexploited. The question has been posed already several times: why not providea more general class, say, AdditiveGroup where the operation (+) would bedeclared, another class SemiGroup de�ning the multiplication, etc. There aresome theoretical problems, for example the AdditiveGroup is also a SemiGroup,so it should somehow inherit something from it, but it cannot: the system oftype classes in Haskell states that a given operation exists, and not that it hassome properties. We cannot declare within the SemiGroup one neutral elementfor both arithmetic operations. In order to do this, we would have to declare theoperations (+) and(*) as having polymorphic types belonging to two instancesof the same class and that would need a system of functional meta-classes whichis currently not implemented in any known functional language.Moreover, the standard Haskell system is too rigid. For example, one cannotspecify that a given type belongs to a VectorSpace, as this would imply theengagement of at least two usually distinct types: the additive group of vectorsand the �eld of scalars, and this demanded a multi-parameter class. But thiswas exactly our aim: to take a standard textbook on algebra and to show to ourstudents that not only polynomials are implementable, but the Galois �elds, orRings as well.Fortunately the Haskell-like language Gofer is more 
exible, although accord-ing to its author, the multi-parameter classes are a can of worms for the type-checking system. But for pedagogical purposes this constructive approach tomathematics is very fruitful, and the question of the kind \why is this de�ni-tion ambiguous?" is not only a code debugging exercise, but provides an insightinto the coherence of the de�ned mathematical structure. So, we have chosenGofer as our battle horse, and we have reconstructed the algebraic layer of itsautomatically loaded standard prelude.The above mentioned dilemma with having two di�erent group structuresin a Ring could not be solved satisfactorily, so we de�ned independently theadditive and the multiplicative group. In order not to multiply the number ofrarely used classes, we started already with semi-groups with unity. Here is thebeginning of the hierarchy, we assume that the reader is acquainted with thesyntax of Haskell:class Monoid a wheregroupOne :: a; (*) :: a -> a -> apowerInt, (^) :: a -> Int -> a -- Pos. expt.negExp :: a -> Int -> ax `powerInt` n = itbin (*) x n groupOnenegExp _ _ = error "Ring: negative exponent"x ^ n | n >= 0 = x `powerInt` n| otherwise = negExp x (-n)



class Monoid a => Group a where(/) :: a -> a -> arecip :: a -> arecip x = groupOne / xx/y = x * recip y -- Beware! Cyclic defs!class AddGroup a whereaddgroupZero :: a;(+), (-), subtract :: a -> a -> anegate, double :: a -> a(#) :: Int -> a -> a -- Mult. by integernegate x = addgroupZero - xx - y = x + negate y -- Beware! cyclic!subtract = flip (-)n # x | n<0 = negate ((-n) # x)| otherwise = iterbin (+) x n addgroupZeroThe idea was to choose the minimal set of objects which characterized thesestructures, but also to deduce some secondary operations existing by default,such as the multiplication by integer if the addition was de�ned. The essentialpoint { not always understood { is that all the de�nitions above are e�ectivepieces of program, not just speci�cations. They are default de�nitions whichhold for any type, unless overrided by the instances. Later on, when we de�nedthe data type Zp of modular integers, which for prime p is a �eld, everybodyrecognized easily that the most evident implementation of the division x=y wasthe multiplication of x by the inverse of y. It su�ces thus to de�ne the latter.On the other hand, the reciprocal of a power series is just a particular caseof the division, so we de�ne the division as presented in the next section, andwe keep the default for the function recip. Obviously, the operation n # xfor x belonging to integers was reimplemented through hardware primitives.We introduced also some standard and less standard polymorphic combinatorssuch as flip which switches the order of the arguments of a given function, oriterbin which iterates an associative binary operation, and we have shown thatthey provide the necessary implementation \glue". The students were supposedto discover the analogy between the integer power as the iterated multiplication,and the multiplication by an integer as an iterated addition, and to propose anabstract iterator which used the binary splitting of the integer:iterbin op = g whereg x 1 = op xg x 0 = idg x n | even n = p| otherwise = p . (op x)where p = g (op x x) (n `div` 2)



The construction of Ring was a small non-trivial discovery: having at our disposalboth the unity and the zero, we could construct an abstract conversion functionfromInteger which mapped N to any Ring. It su�ces to de�ne fromInteger nas n # groupOne.We have discovered also a dilemma: how to de�ne xn for any integer n? Theproblem is that for a positive n it is just an iterated multiplication, so it shouldbe de�ned within the Monoid, but for a negative n the base x should belongto a Group in order to compute its inverse. We cannot rede�ne the operation(^) inside the Monoid subclasses, the inheritance mechanism in Haskell is reallydi�erent from the classical object-oriented paradigms. But we can de�ne theappropriate negExp function within the instances of Monoid, For all the �eldssuch as Floats or Rationals this function returns (1=x)(�n), but for integers etc.we leave the default. This example shows a visible limitation of the type classesfor our purposes.The next steps of our creation of the mathematical world were quite straight-forward. We have de�ned some ordered structures necessary to establish the exis-tence of such functions as the predicate negative or the function abs. Later on,when we made the Module and LinearSpace the students were asked to de�nethe absolute value of a vector, and they obviously had a little surprise, whichhelped them to assess the status of the concept of norm, and proved that ourprogression is not linear, that we should go back and take into account that evensuch simple structures as AdditiveGroups are already Modules over integers,etc.We continued with the de�nition of the DivisionRing with such operationsas div, mod, or gcd, and we have constructed all the typical numerical instances ofour abstract classes, such as Floats, Integers, RationalFractions, complexnumbers, etc. with all the appropriate operations. This part of the work wasrather trivial, it was mainly straightforward coding of mathematical formulae,something a little optimised, see for example the book of Knuth[4]. Still, it wasinteresting to see how the system protects itself from an attempt of makingfractions of anything/anything, demanding that a speci�c algebraic context ofanything be respected. There is almost nothing interesting in the de�nition ofthe data structure representing a fraction num :% den:data DivisionRing a => Ratio a = a :% atype Rat = Ratio Int -- classicsapart from the fact that the type of the numerator and the denominator is stati-cally restricted. The students did appreciate the fact that an attempt to operateon \fractions" composed of 
oats or strings did not result in some executionerror, but such \fractions" could not be constructed, were statically rejected,being mathematically ill-de�ned structures. When we try to de�ne the additionof two generic fractions declaring that the type Ratio a belongs to an additivegroup, we have to provide a detailed algebraic context for the type a:instance (AddGroup a, Monoid a, DivisionRing a) =>AddGroup (Ratio a) where



addgroupZero = addgroupZero :% groupOne(n1:%d1)+(n2:%d2) =let g1 = gcd d1 d2 inif g1==ringOnethen (n1*d2+d1*n2) :% (d1*d2)else let t = n1*(d2 `div` g1)+n2*(d1 `div` g1)g2 = gcd t g1in (t `div` g2) :%((d1 `div` g1)*(d2 `div` g2))The detailed code of the addition is irrelevant here, this is the optimized algo-rithm presented in the book of Knuth. What is interesting, is the genericity ofthe construction. The operation above will add any two fractions, not necessarilyrational numbers. The de�nition of the addgroupZero is not cyclic, but recursivealong the chain of types.3.1 A Non-standard Example: the Peano-Church ArithmeticConstruction of \concrete", known, composite numbers, such as the rational frac-tions or complex numbers is interesting and useful, but does not teach anythingnew in the �eld of sophisticated functional programming. We have constructedand played with the ring of univariate polynomials, and the �eld of modular inte-gers. We have then constructed the Galois �eld as the class of polynomials on themodular integers and the quotient �eld of the rational functions. Of course eachsuch construction ended with a comprehensive set of examples. These packageswhich are quite short, are available from the author.Paradoxically, a much more primitive model gives a more fruitful insight intothe structure of functional computations.We have played with the Peano-Churchnumerals, a minimalistic construction of the integer arithmetic. The model isfrequently used to present some applications of the abstract lambda calculus,but then one usually neglects the problems of polymorphic typing.The model is based on the following premises. There are two abstract objects,a \dummy" constant zero which can be really anything, and an abstract endo-morphism, the successor, which can be applied to objects of the same type aszero. The number N is represented by the Church numeral N . This is a functionwhich applies N times the successor to zero. We declare thus the types of thesuccessor and of the Church numerals as:type Succ a = a -> atype Chnum a = Succ a -> a -> aWe will name the �rst Church numerals ch0, ch1 etc. The object ch0 is afunction which does nothing to its argument zero and returns it: ch0 s z = z.The Church ch1 applies the successor once: ch1 s z = s z. After having in-troduced some combinatoric shortcuts, and exploiting the standard combinator(f . g) x = f (g x) it is easy to prove the validity of the following instancede�nitions:



instance AddGroup (Chnum a) whereaddgroupZero = flip const(n1 + n2) s = n1 s . n2 sinstance Monoid (Chnum a) wheregroupOne = id(*) = (.)The arithmetic operations are based on the following observation: if one appliesn1 times the successor to zero, and then more n2 times to the previous result,one gets the above de�nition for (n1 + n2). The multiplication is even simpler,since the partial application n s is a function which applied n times the successors to something, so (n1 * n2) s z = n1 (n2 s) z.Some ambitious students ask the obvious question about the subtraction, andusually they cannot �nd themselves the solution. The problem is that even if thesuccessor operation in the domain of Church numerals (which should not be con-found with the abstract successor which is the argument of the Church numeral;the present author used intensely the coloured chalk, but it was not always fullyappreciated: : : ) is straightforward: succ n s = n s . s, the predecessor is notso easy to derive, and Church himself had some doubts.We de�ne a special successor which acts on pairs of objects according to therule sp s (x,any) = (s x,x). This successor applied N times to (zero; zero)gives obviously something like (N;N � 1) and we may recover the predecessor,from which we construct the subtraction. Of course, the complexity of subtrac-tion is simply horrible, but the evaluation of this complexity is an interestingdidactic exercise:pred n s z = pr where(_,pr) = n sp (z,z)sp (x,_) = (s x,x)All this can be done without algebraic type classes, with speci�c operationsnames such as add or mult substituted for (+) and (*). It is possible to de�nethe exponentiation, whose simplicity is shocking:n1^n2 = n2 n1The explanation how it works takes some time, but the students have a splendidoccasion to realise that the Set theory expression BA for the set of all applica-tions from A to B is not just a symbolic notation! Moreover, after three years ofstudies they have seen plenty of recursion examples, from factorial to the Ack-erman function, but this was the �rst time they found the recursion hidden in afunctional combinator without the classical recursive structure, terminal clause,etc., and yet conceptually rather simple.As our primary concern here was to show the application of the functionalcombinators, and not the structuring of the polymorphism, this example waselaborated in CAML, not in Gofer. With the system classes there are some inter-esting problems. One cannot de�ne abstract, polymorphic numerals representedby concrete objects, for example:



ch0 = addgroupZero :: Chnum abecause all top level de�nitions must be resolved, and the system complainsthat addgroupZero is still ambiguous. Of course we can restrict our domain to,say Chnum String where the zero is the empty string, and the successor simplyconcatenates "*" with its argument. But then we had other problems, which areaddressed in the Conclusions.4 In�nite Data Types4.1 Lazy Manipulation of Power SeriesAll textbooks on lazy programming, and the packages distributed with Haskellpresent many lazy streams such as the list of all positive integers, the Fibonaccisequence, or all the primes constructed with the aid of the Eratosthenes sieve.The construction of cyclic data structures has been also discussed in the litera-ture ([5]). We found thus a useful and a little less worked domain of lazy in�nitepower series.An e�ective and simple coding of an algorithm dealing with such series isnot entirely trivial. The algorithms are usually dominated by the administrationof the truncation trivia. In fact, if one implements the algorithms discussed in[4], one sees mainly summing loops and the evaluation of the bounds of theseloops, which becomes quite boring. In our approach an univariate power seriesu0 + u1x+ u2x2 + u3x3 : : : will be represented by the sequence:u0 :> u1 :> u2 :> u3 ...where :> is an in�x, right associative constructor:data Series a = a :> (Series a)-- No termination clause!!We could use normal lists, but we have introduced a speci�c datatype for thefollowing reasons:{ The above de�nition precludes all attempts to construct explicit �nite ob-jects. This is a useful debugging aid and a challenge for those students whose�rst reaction is: \this perversion will never work!".{ We didn't want to overload normal lists with too speci�c algebraic structure.As we wanted to use the classical comprehension notation, we declared theconstructor :> as an instance of the Functor class, so that we could use suchfunctionals as map. We have also overloaded such functionals as fold andzip.Our main idea was to show that in�nite lazy lists treated as \normal" data, as\�rst class citizens" simplify enormously the algorithms. The class system servedhere uniquely for bookkeeping and syntax simpli�cation.Addition (or subtraction) of series is de�ned within the AddGroup class asu + v = zipWith (+) u v where in our case the series fusion might be de�nedas:



zipWith op (u0:>uq) (v0:>vq) = (u0 `op` v0) :> zipWith op uq vqThe multiplication is de�ned recursively. If the series U = U0 + x � U; V =V0+x�V , then we �nd that U �V = U0�V0+x�(U �V +V0�U ). The Gofer translationis trivial. The head of the solution is given immediately, and in order to get thetail we need only the head of the recursive application. We see immediately thatthe series form an algebra: the de�nition above is placed in the class Monoid,as all internal multiplications, but its context demands that a series be also aninstance of the Module. So we have a nice cross-referencing structure:instance Monoid a => Module a (Series a) wherex #* s = map (x *) sinstance (Monoid a, AddGroup (Series a),Module a (Series a)) =>Monoid (Series a) whereu@(u0:>uq)*(v0:>vq) = u0*v0 :> (v0 #* uq) + vq*uThe division uses the same principle, ifW = U=V , then U = V �W , or U0+x�U =V0 �W0 + x � (W0 � V + V �W , which after rearranging gives us:instance (Group a) => Group (Series a) where(u0:>uq)/v@(v0:>vq) = w0 :> (uq - w0 #* vq)/vwhere w0 = u0/v0where we see that we don't even need a procedure to divide a series by a coe�-cient. This example shows once more some mild limitations of the system used.If the scalars of a given Module belong to a Group, and thus to a Field, theModule is a Linear Space. We can declare it explicitly together with the defaultdivision as:class (Group a, Module a b) => LinSpace a b where(/#) :: b -> a -> bx /# y = recip y #* xbut nobody will deduce for us that a declared series belongs to a Linear Space,provided that the coe�cients admit the division. We must do it by hand, al-though the instance declaration is empty { we use only the inferred defaults.Other operations on power series are equally easy to code (compare with [4]). IfW = U�, then after the di�erentiation of both sides we get W 0 = � � U��1U 0,or W = � R W � U 0=U . It is the lazy integration which gives sense to this propa-gating recursion:integ :: (Group a, Ring a) => a -> (Series a) -> (Series a)integ c0 u = c0 :> zipWith comp2 u intSwhere comp2 x y = x / (fromInteger y)intS = intSeq 1 where intSeq n = n :> intSeq (n+1)



It takes some time to master this technique and to appreciate the fact that thede�nition: W = Const + R f(W ) is not just a speci�cation, or an equation, butan algorithm. It su�ces to know the Const to be able to generate the next termand the whole series. The de�nition above is equivalent to the obvious identityfor any series f : fn = f 0n�1n .Other elementary functions are coded in the same way, for example W =exp(U) = R W � U 0, etc.If the series ful�lls a more complicated, non-linear equation, the lazy ap-proach in
uences also the construction of the Newton algorithm. Again, insteadof coding a loop broken by some convergence criteria, we construct shame-lessly an in�nite list of in�nite iterants. For example, if W = pU , then weget [W (0);W (1); : : : ;W (n) : : :], where W (n+1) = 12 �W (n) + U=W (n)�. The con-struction of this stream is quite simple, the standard prelude function:iterate f x = x : iterate f (f x)does the job, for example to get a square root of y in the domain of rationalseries, we de�ne:sqRS y = iterate (\x->(1%2)#*(x + y/x))(fromInteger 1) :: [RatSeries]The convergence in this case means obviously the increasing number of correctterms. How to present the �nal answer to the \end user" of this algorithm? Atthis moment most students fall into their bad habits, and claim that we must giveexplicitly the number of terms wanted. So, we restate our religious credo: no, youshould generate one stream, where the number of correct terms is exactly equalto the number of terms looked at. The �nal solution is based on the observationthat the number of correct terms doubles with every iteration W (n). So, weneglect the zeroth (initial) iterant, extract one term from the �rst series, twoterms from the second (after having skipped the �rst), next four terms from thethird after having skipped three, then eight, etc. This exercise is a little impure,as it requires �nite lists, their concatenation and reconversion into series, but itis still quite elegant and coded in two lines. The in�nite list which convolutes allthe stream of series strS is given by:convit 1 (tail strS) whereconvit n (x:q) = take n (drop (n-1) x ++ convit (2*n) qThe composition and reversal of series is usually considered to be a seriousprogramming challenge. But laziness is a virtue here, and the �nal codes areagain three-liners. Let U(x) = U0+U1x+U2x2+: : :, and V (x) = V1x+V2x2+: : :,as usual. The free term must be absent from V . We want to �nd W = U(V ).The solution is nothing more than the ordinary, but in�nite Horner scheme:U(V ) = U0 + x(V1 + V2x+ : : :)� (U1 + x(V1 + V2x + : : :)� (U2 + x(: : :))) (1)or, horribly enough



sercomp u (must_be_zero:>vq) = cmv u wherecmv (u0:>uq) = u0:>(vq * cmv uq)The reverse of a given series is the solution of the following problem. Givenz = t+ V2t2 + V3t3 + : : : ; �nd t = z +W2z2 +W3z3 + : : : (2)The suggestion that might be o�ered to students is to reduce this problem to acomposition of series. This is readily done if we note that an auxiliary series pde�ned by t = z(1� zp) ful�lls the identity:p = (1� zp)2 �V2 + V3z(1 � zp) + V4z2(1 � zp)2 + : : :� (3)serinverse (_zero :> _one :> vt) = t wheret = fromInteger 0 :> mm = fromInteger 1 :> negate (m*m) * sercomp vt tThe approach presented above is easily generalized; one might try to �nd the re-ciprocal, or solve polynomial equation in the series domain using the approach ofKung and Traub[6]. It is extremely easy to construct formal Pad�e approximantsapplying the continuous fraction expansion to the �eld of series, and reconstruct-ing the rational form. It is possible also to apply lazy streams to the generationof graphs from their partition function[7], but this is a topic too distant fromthe aim of this conference.4.2 Partition Generating FunctionAnother interesting example of the extrapolating recursion is the generation ofthe number of partitions of a given integer N the number of inequivalent non-negative integer solutions of the equation PNk=1 xk = N (known also as thenumber of Ferrer graphs, or Young diagrams for a given N). For example:5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1 (4)i.e. 7 solutions. The generating function for these numbers is well known, butnot very easy to handle: Z(x) = 1Yn=1 11� xn : (5)Computing a �nite approximation to it by standard iterative methods and get-ting the list[1; 1; 2; 3; 5; 7; 11; 15; 22; 30; 42; 56; 77; : : :] is simply unwieldy. But we can rewritethis as an open recurrence:Z(x) = Z1(x); where Zm(x) = 11� xmZm+1(x): (6)After rewriting Zm as Zm(x) = Zm+1(x)+xnZm(x) and after introducingBm(x)such that Zm(x) = 1 + xmBm(x), we have the �nal receipt:Bm(x) = 1 + x �Bm+1 + xm�1Bm(x)� ; (7)which gives us the following e�cient program:



partgen :: IntSeriespartgen = one :> w one whereone = ringOnew n = one :> w (n+1) + byxn ringZero (n-1) (w n)where byxn is a function which multiplies a series by xn (adds n zeros at thebeginning).5 Some Geometry5.1 Concrete and Abstract VectorsDe�ning vectors as triplets (x; y; z), or some tagged data structures is not veryinteresting, even if with our type class system it is nice to have a syntacticallysimple way of adding vectors or multiplying them by scalars. We have discussedalready some issues related to the construction of the multi-parametric classLinSpace a b, where a is the type of scalars, and b { vectors.We may play some time with vectors, de�ne scalar (*.) and vector (/\)products, and even introduce some simplistic tensors. But our main purpose wasto show how to use the functional formalism to generate some graphic object,and more speci�cally { some three-dimensional surfaces created by generalizedsweeps or extrusions. We began by restricting our vectors to the type Vec whichwas just the type of 
oating triplets, and then we have shown how to extendthe standard operations to functional objects which described parametrized dis-placements of vectors:type Path = Float -> Vec -- The Float means "time"instance AddGroup Path where(f + g) s = f s + g s(f - g) s = f s - g sinstance (Module Float) Path where(a #* g) s = a #* g setc. A generalized sweep is an operation which consists in taking a curve, thusa Path object, and to transform it by a parametrized transformation, such asrotations or translations, or combinations thereof. It was thus natural to de�ne:type Vtransf = Vec -> Vecinstance Monoid Vtransf wheregroupOne = idf * g = f . gGiven a transformation f of a vector, it is extended to a path by a simpleconvolution: trf f g s = f (g s), or trf = (.). If this transformation is ad-ditionally parametrized, if the function acting upon a vector has a form f t,then the induced transformation of paths has a form:transf f t g s = f t (g s)



which can be reduced to a combinator trfpath f = (.) . f, a form truly de-tested by most students. So, they are demanded to construct some simple paths,such as a horizontal unit circle, or any parametrized straight line x = x0 + ut:circ ang = (cos ang, sin ang, 0.0)strline x0 u t = x0 + t#*uWe pass then to transformations, for example a parametrized (by a scalar) trans-lation along a given vector u:transl u = (+) . (#* u)or, if you prefer, transl u t x = t#*u + x. Note that we are doing everythingnot to use any concrete coordinate representation, when it is possible. So whenwe de�ne a rotation, we do not care about its general matrix form, but try toreason relative to objects de�ning our \scene". This is coherent with our maindidactic philosophy, that the functional abstractions should be based always onconcretes. We de�ne thus a rotation around a normalized axis n by an angle � bysplitting a vector into its parallel and perpendicular components, and performingthe 2-dimensional rotation:rotv n phi x = let parl = (n *. x) #* nperp = x-parl; tr3 = x/\nin parl + cos phi #* perp- sin phi #* tr35.2 Construction of Parametric SurfacesWe are now ready for a more complex manipulation of vector objects, for exam-ple, if we wish to apply two parametrized transformations f1 and then f2 at thesame time, such as a translation combined with a rotation, we combine it:ovrlap f2 f1 t = f2 t . f1 tFinally we construct our sweeping surface:sweepsurf trf g s t = trf t g swhose combinatoric form sweepsurf = (flip .) . flip should be reserved toamateurs.The remaining task is to take some curve, to design our favourite transfor-mation, and to produce the surface. But the standard versions of Gofer have nographical output, so we seize the opportunity to convey to our students some-times forgotten information that modern, multitasking, windowed environmentsencourage the cooperation between heterogeneous applications. We choose twolists { intervals of the parameters s and t: intervT and intervS, and we makea grid:grid intervS intervT surf =[[surf s t | s <- intervS] | t <- intervT]



This grid is lazy, so it may be quite large. It is transformed then into a many-lineoutput string, and piped into Gnuplot or any other drawing program, or savedin a �le and processed o�-line. For example if we rotate an oblique straight linearound the z axis, and if we add to this rotation an oscillating variation of scale,we have to program the following:scale phi v = (1.0 + 0.3*sin(8.0*phi))#*vmytransf = trfpath (ovrlap scale (rotv (0.0,0.0,1.0)))line t = strline (1.0,1.0,0.0) normalize (1.0,0.0,1.0) tmysurf s = sweepsurf mytransf line sand the result is presented on Fig. 1.

Fig. 1. An example of a parametric surfaceAnother type of sweep surfaces are tubes, constructed by a translation of thegenerating curve along a trajectory together with a rotation which keeps theoriginal alignment of the generator with respect to the tangent vector of thetrajectory. Of course we can compose this translation and rotation with someother transformations. The size of this paper makes it impossible to include morebeautiful and very complicated 3D drawings produced by very short programs.



This exercise touches the problem of computing the tangent vector to a path,and permits to develop another branch of our functional mathematics { theconstruction of di�erential structures, which cannot be discussed here.6 ConclusionsWe tried to demonstrate that modern polymorphic functional languages may besensibly used to model and implement quite abstract mathematical structuresin a way which is transparent enough to be accepted by mathematically orientedundergraduate students.Programs in functional languages such as Haskell or Miranda, thanks to theirlack of syntactic overhead are coded fast. Higher order functions and lazy eval-uation are capable to produce little programming miracles. The inheritance andgenericity o�ered by Haskell seem to be more adequate for that kind of mathe-matical programming than the approaches based on object-oriented languages,although we would like very much to compare them with, say, the C++ or CLOSprotagonists.We found that the type classes system may be used to de�ne statically thehierarchy of mathematical domains, but that there are some 
aws therein. Wemissed some meta-class system which would permit, for example, the simultane-ous construction of several Galois �elds parametrized by di�erent characteristicsand order; we had problems with the Church numerals: if their polymorphic typeis restricted, one cannot attribute any sensible type to the exponentiation oper-ator, as the objects are self-applicable. We had problems with ambiguous typeswhile trying to de�ne metric (or normed) vector spaces: the type of a perfectlyreasonable function which normalized a vector dividing it by its norm, did not�t into the class system.Such observations are addressed rather to readers interested in the program-ming tool building, and not only in the pedagogical process, but they seem im-portant. The typed, lazy programming languages are excellent tools to teach theconstructive approach to mathematics. But the type classes are not mathemati-cal domains. Our plans for the future include the construction of a di�erent classsystem, perhaps better adapted to the construction of abstract mathematics.References1. D. Guntz, M. Monagan, Introduction to Gauss, Sigsam Bulletin 28, no. 2, (1994),pp 3 { 19.2. P. Hudak, S. Peyton Jones, P. Wadler et al., Report on the programming lan-guage Haskell, (Version 1.3), Technical report Yale University/Glasgow University,(1995).3. Mark P. Jones, Gofer, Functional Programming Environment, (1991).4. Donald E. Knuth, The Art of Computer Programming, Vol 2 / SeminumericalAlgorithms, Addison-Wesley, Reading, (1981).5. Lloyd Allison, Circular Programs and Self-referential Structures, Software | Prac-tice and Experience, Vol. 19(2), (1989), pp. 99 { 109.



6. H. T. Kung, J. F. Traub, JACM 25 (1978), pp. 245{260.7. Jerzy Karczmarczuk, Lazy Functional Programming and Manipulation of Pertur-bation Series, Proc. III International Workshop on Software Engineering for HighEnergy Physics, (1993), pp. 571{581.

This article was processed using the LaTEX macro package with LLNCS style


