Functional Programming and Mathematical
Objects

Jerzy Karczmarczuk

Dept. of Computer Science, University of Caen, France

Abstract. We discuss the application of the Haskell/Gofer type classes
and constructor classes to the implementation and teaching of the ma-
nipulation techniques in the domain of formal mathematical expressions.
We show also how the lazy evaluation paradigms simplify the construc-
tion and the presentation of several algorithms dealing with iterative
data types, such as power series or formal Padé expansion. We show
the application of higher order functions to algebra and geometry, and
specifically — to the construction of parametric surfaces.

1 Introduction

Formal manipulation of algebraic and geometric objects seems ¢ priori to be
a wonderful training ground for mathematically oriented students who want to
learn the design and the implementation of complex algorithms and heteroge-
neous data structures. It is not very often exploited, though. While it is standard
at quite elementary level, to teach formal differentiation of algebraic tree struc-
tures, or the arithmetic of compound data structures such as complex numbers
or rationals, it is not very easy to leave the syntactic approach to the modelling of
the mathematical objects, and to make use of the structure (in the mathematical,
rather than programming) sense of the underlying domain.

The students learn easily how to operate on fractions and polynomials, but
the algebra of rational functions has usually to be implemented again, without
code reusing. Standard list or term manipulation languages, as Lisp or Prolog
lack the inheritance concept. But the classical object-oriented systems, such as
Smalltalk or Common Lisp Object System are too heavy, and they exploit intensely
the data inheritance, which might not be very useful if we just need to assert
that both polynomials and matrices belong to a Ring category, and that from
a Ring and some additional properties we can construct effectively the field of
quotients, with the same (in principle) algorithms in the case of rational numbers
and ratios of polynomials.

The necessity to formulate the computer algebra algorithms and data struc-
tures in a mathematically structured way was recognized many years ago. The
system Axiom was built explicitly upon this principle, and the Maple package
is distributed now with the public library Gauss[1] an “ohject-oriented” sub-
language which heavily uses inheritance. Their learning curves are unfortunately
quite steep, and their pedagogical influence is rather weak, as too many details
are hidden in “black boxes”.



This paper is devoted to some aspects of teaching of programming to stu-
dents of Mathematics and Computer Science. We decided to look at the problem
mentioned above from the perspective of modern, typed lazy functional program-
ming. The relation between types as realized in the language Haskell[2] and
the mathematical domains, will be discussed in the section 3. With lazy streams
it is easy to create potentially infinite data structures such as series, continu-
ous fractions, etc. But there are more arguments as well: thanks to the deferred
evaluation and higher order functions it is easier to formulate the algorithms in
a static, declarative manner, without polluting them with countless for/while
loops and other imperative constructs, which hide sometimes the clarity of the
underlying strategy. We have chosen Gofer[3], a popular dialect of Haskell, which
permits the redefinition of the standard prelude where the properties of the stan-
dard operators are specified.

We wanted to bridge the gap between formal descriptions of the proper-
ties of mathematical operations, and their practical implementation, and also to
show the students how this is done. So, we have designed a simplified, but quite
elaborate mathematical hierarchy of classes in Gofer, and we have applied it to
numerous, small, but not always trivial examples of algorithms, some of which
one might not easily find in standard texthooks. This talk presents partially the
work done. We have consciously omitted all computer algebra “classics” such as
the algebra of symbolic extensions. The presentation below is not self-contained,
we assume some knowledge of Haskell, and of standard algebra. Our aim was

threefold:

— To popularize advanced functional techniques among experienced students
too conditioned by the object-oriented paradigms, or “handicapped” a little
by imperative programming languages.

— To show how a practical, effective programming language can be used as a
tool to construct quite abstract mathematics.

— To analyse the possible traps and inadequacies of the current polymorphic
functional languages, in order to propose one day a more powerful machinery.

Several structure definitions and algorithms have been reconstructed together
with the students, and it was a real pleasure seeing how fast they could recover
from all possible bugs and pitfalls thanks to the clarity of the language used.

2 Pedagogical Context

This paper is not based on one homogeneous course. The techniques presented
here have been taught to 4th year (Maitrise) students of Mathematics and Math-
ematical Engineering during a one-semester course on Functional Programming,
and offered also to students of Computer Science, (4th year) as a complementary
material for the course on Image Synthesis. Some of the techniques discussed be-
low have been presented on a seminar attended by the students of DEA (Diplome

d’Etudes Approfondies; 5th year) on Computer Science, and have been applied



to graphic modelling on a DEA stage. The 4th year courses were accompanied
by practical exercices (3 hours per week) and were assessed by a written ex-
amination, and by one or two programming projects demanding a few weeks of
work.

So, the audience was rather advanced. All students were acquainted with the
essentials of list processing, and heard about lazy evaluation semantics (real-
ized in Scheme). Unfortunately, for historical reasons, Gofer could not be used
as a principal programming language, the course on Functional Programming
was essentially based on CAML. The implementation of algorithms in Gofer was
proposed informally. Nothing was really enforced, and the success of the project
could be estimated by the enthusiasm of the best students, who did not restrict
themselves to obligatory topics.

Thus, neither our teaching of the lazy techniques and hierarchical polymor-
phism, nor this paper stress upon the strictly pedagogical issues, but — as
mentioned above — concentrates on a methodology of construction of mathe-
matical objects. We used the implementations of Gofer and CAML running on
Sparc stations, and in DOS boxes under MS-Windows.

3 Modified Classes of Types in Gofer

One of the powerful mechanisms in the programming language Haskell is the con-
cept of type classes whose aim is to control selectively the operator overloading.
Such overloading is an old concept. Everybody knows that the mathematical
sign + is used to represent the addition of integer and real numbers in almost all
popular programming languages. Sometimes the same symbol denotes the con-
catenation of character strings. However, in order to add two matrices by writing
just A + Bomne needs an extensible language, such as the powerful object-oriented
machinery of C++. For any new type of objects, one has to implement the new
addition operation completely ad hoc, and it not easy to ensure some uniformity
of the generalized arithmetic domain.

The creators of Haskell decided to base the polymorphism on the existence
of common operational properties of a class of different, possibly heterogeneous
data types. For example, the class Ord a declares the relation of order <=, and
specifies that for all objects belonging to the type a, and only for them, such
relation exists. Later we declare that some type, for example the field of rational
fractions: pairs (Num,Den) is an instance of the class 0rd, and we define explicitly
an appropriate order relation. If, as it is usual  the class 0rd is a subclass of the
class Eq which encompasses all data types with the equivalence relation defined,
there is no need for other order relations, all can be derived from <= by inversion
and/or composition with the inequality.

It was exactly what we needed  to be able to define abstract mathematical
operations such as additions, independently of the data structures represent-
ing the added objects. We found it methodologically harmful that our students
engraved too deeply in their memories that a complex number is essentially a
record with two real fields, and other similar “truths”.



But the arithmetic operators in standard Haskell are essentially numeric,
and their genericity is restricted to integers, floats, etc. There are definitions
of rational fractions and complex numbers in the standard preludes, but the
possibility of introducing more general data categories in this context is largely
unexploited. The question has been posed already several times: why not provide
a more general class, say, AdditiveGroup where the operation (+) would be
declared, another class SemiGroup defining the multiplication, etc. There are
some theoretical problems, for example the AdditiveGroup is also a SemiGroup,
so it should somehow inherit something from it, but it cannot: the system of
type classes in Haskell states that a given operation ezists, and not that it has
some properties. We cannot declare within the SemiGroup one neutral element
for both arithmetic operations. In order to do this, we would have to declare the
operations (+) and(*) as having polymorphic types belonging to two instances
of the same class and that would need a system of functional meta-classes which
is currently not implemented in any known functional language.

Moreover, the standard Haskell system is too rigid. For example, one cannot
specify that a given type belongs to a VectorSpace, as this would imply the
engagement of at least two usually distinct types: the additive group of vectors
and the field of scalars, and this demanded a multi-parameter class. But this
was exactly our aim: to take a standard textbook on algebra and to show to our
students that not only polynomials are implementable, but the Galois fields, or
Rings as well.

Fortunately the Haskell-like language Gofer is more flexible, although accord-
ing to its author, the multi-parameter classes are a can of worms for the type-
checking system. But for pedagogical purposes this constructive approach to
mathematics is very fruitful, and the question of the kind “why is this defini-
tion ambiguous?” is not only a code debugging exercise, but provides an insight
into the coherence of the defined mathematical structure. So, we have chosen
Gofer as our hattle horse, and we have reconstructed the algebraic layer of its
automatically loaded standard prelude.

The above mentioned dilemma with having two different group structures
in a Ring could not be solved satisfactorily, so we defined independently the
additive and the multiplicative group. In order not to multiply the number of
rarely used classes, we started already with semi-groups with unity. Here is the
beginning of the hierarchy, we assume that the reader is acquainted with the
syntax of Haskell:

class Monoid a where

groupOne :: a; () ::a->a->a
powerInt, (°) :: a -> Int -> a -- Pos. expt.
negkxp :: a -> Int -> a

x ‘powerInt‘ n = itbin (%) x n groupOne
negExp _ _ = error "Ring: negative exponent"
x “n | n> 0=x ‘powerInt‘ n

| otherwise = negExp x (-n)



class Monoid a => Group a where
(/) 1+ a->a->a
recip :: a -> a

recip x = groupOne / x
x/y = x * recip y -- Beware! Cyclic defs!

class AddGroup a where

addgroupZero :: a;

(+), (=), subtract :: a -> a -> a

negate, double :: a -> a

(#) :: Int -> a -> a -- Mult. by integer

negate x = addgroupZero - x
X -y =x + negate y -- Beware! cyclic!
subtract = flip (-)
n # x | n<0 = negate ((-n) # x)
| otherwise = iterbin (+) x n addgroupZero

The idea was to choose the minimal set of objects which characterized these
structures, but also to deduce some secondary operations existing by default,
such as the multiplication by integer if the addition was defined. The essential
point  not always understood is that all the definistzons above are effective
pieces of program, not just specifications. They are default definitions which
hold for any type, unless overrided by the instances. Later on, when we defined
the data type Zp of modular integers, which for prime p is a field, everybody
recognized easily that the most evident implementation of the division z/y was
the multiplication of = by the inverse of y. It suffices thus to define the latter.
On the other hand, the reciprocal of a power series is just a particular case
of the division, so we define the division as presented in the next section, and
we keep the default for the function recip. Obviously, the operation n # x
for x belonging to integers was reimplemented through hardware primitives.
We introduced also some standard and less standard polymorphic combinators
such as f1ip which switches the order of the arguments of a given function, or
iterbin which iterates an associative binary operation, and we have shown that
they provide the necessary implementation “glue”. The students were supposed
to discover the analogy between the integer power as the iterated multiplication,
and the multiplication by an integer as an iterated addition, and to propose an
abstract iterator which used the binary splitting of the integer:

iterbin op = g where
gx1=o0px
gx 0 =1id
gxn | even n =p
| =p . (op x)
where p = g (op x x) (n ‘div‘ 2)

otherwise



The construction of Ring was a small non-trivial discovery: having at our disposal
both the unity and the zero, we could construct an abstract conversion function
fromInteger which mapped N to any Ring. It suffices to define fromInteger n
as n # groupOne.

We have discovered also a dilemma: how to define 2™ for any integer n? The
problem is that for a positive n it is just an iterated multiplication, so it should
be defined within the Monoid, but for a negative n the base z should belong
to a Group in order to compute its inverse. We cannot redefine the operation
(") inside the Monoid subclasses, the inheritance mechanism in Haskell is really
different from the classical object-oriented paradigms. But we can define the
appropriate negExp function within the instances of Monoid, For all the fields
such as Floats or Rationals this function returns (1/2)(=™) but for integers etc.
we leave the default. This example shows a visible limitation of the type classes
for our purposes.

The next steps of our creation of the mathematical world were quite straight-
forward. We have defined some ordered structures necessary to establish the exis-
tence of such functions as the predicate negative or the function abs. Later on,
when we made the Module and LinearSpace the students were asked to define
the absolute value of a vector, and they obviously had a little surprise, which
helped them to assess the status of the concept of norm, and proved that our
progression is not linear, that we should go back and take into account that even
such simple structures as AdditiveGroups are already Modules over integers,
ete.

We continued with the definition of the DivisionRing with such operations
as div, mod, or gcd, and we have constructed all the typical numerical instances of
our abstract classes, such as Floats, Integers, RationalFractions, complex
numbers, etc. with all the appropriate operations. This part of the work was
rather trivial, it was mainly straightforward coding of mathematical formulae,
something a little optimised, see for example the book of Knuth[4]. Still, it was
interesting to see how the system protects itself from an attempt of making
fractions of anything/anything, demanding that a specific algebraic context of
anything be respected. There is almost nothing interesting in the definition of
the data structure representing a fraction num :9% den:

data DivisionRing a => Ratic a = a :}% a
type Rat = Ratio Int -- classics

apart from the fact that the type of the numerator and the denominator is stat:-
cally restricted. The students did appreciate the fact that an attempt to operate
on “fractions” composed of floats or strings did not result in some execution
error, but such “fractions” could not be constructed, were statically rejected,
being mathematically ill-defined structures. When we try to define the addition
of two generic fractions declaring that the type Ratio a belongs to an additive
group, we have to provide a detailed algebraic context for the type a:

instance (AddGroup a, Monoid a, DivisionRing a) =>
AddGroup (Ratio a) where



addgroupZero = addgroupZero :}% groupOne
(n1:%d1)+(n2:%d2) =
let gl = gcd d1 d2 in
if gl==ringOne
then (ni1*d2+di1*n2) :% (d1x%d2)
else let t = ni1*x(d2 ‘div‘ gl)+n2x(d1 ‘div‘ gi)
g2 = gcd t gl
in (¢ ‘div‘ g2)
((d1 ‘div‘ gl1)*(d2 ‘div‘ g2))

The detailed code of the addition is irrelevant here, this is the optimized algo-
rithm presented in the book of Knuth. What is interesting, is the genericity of
the construction. The operation above will add any two fractions, not necessarily
rational numbers. The definition of the addgroupZero is not cyclic, but recursive
along the chain of types.

3.1 A Non-standard Example: the Peano-Church Arithmetic

Construction of “concrete”, known, composite numbers, such as the rational frac-
tions or complex numbers is interesting and useful, but does not teach anything
new in the field of sophisticated functional programming. We have constructed
and played with the ring of univariate polynomials, and the field of modular inte-
gers. We have then constructed the Galois field as the class of polynomials on the
modular integers and the quotient field of the rational functions. Of course each
such construction ended with a comprehensive set of examples. These packages
which are quite short, are available from the author.

Paradoxically, a much more primitive model gives a more fruitful insight into
the structure of functional computations. We have played with the Peano-Church
numerals, a minimalistic construction of the integer arithmetic. The model is
frequently used to present some applications of the abstract lambda calculus,
but then one usually neglects the problems of polymorphic typing.

The model is based on the following premises. There are two abstract objects,
a “dummy” constant zero which can be really anything, and an abstract endo-
morphism, the successor, which can be applied to objects of the same type as
zero. The number N is represented by the Church numeral N'. This is a function
which applies N times the successor to zero. We declare thus the types of the
successor and of the Church numerals as:

type Succ a = a -> a
type Chnum a = Succ a -> a -> a

We will name the first Church numerals ch0, chl etc. The object chO is a
function which does nothing to its argument zero and returns it: ch0 s z = z.
The Church chl applies the successor once: chl s z = s z. After having in-
troduced some combinatoric shortcuts, and exploiting the standard combinator
(f . g) x = £ (g x) it 1s easy to prove the validity of the following instance
definitions:



instance AddGroup (Chnum a) where
addgroupZero = flip const
(n1 +n2) s =nls . n2 s
instance Monoid (Chnum a) where
groupOne = id

() = (.)

The arithmetic operations are based on the following observation: if one applies
nl times the successor to zero, and then more n2 times to the previous result,
one gets the above definition for (n1 + n2). The multiplication is even simpler,
since the partial application n s is a function which applied n times the successor
s to something, so (nl1 * n2) s z = n1 (02 s) z.

Some ambitious students ask the obvious question about the subtraction, and
usually they cannot find themselves the solution. The problem is that even if the
successor operation in the domain of Church numerals (which should not be con-
found with the abstract successor which is the argument of the Church numeral;
the present author used intensely the coloured chalk, but it was not always fully
appreciated. ..) is straightforward: succ n s = n s . s, the predecessor is not
so easy to derive, and Church himself had some doubts.

We define a special successor which acts on pairs of objects according to the
rule sp s (x,any) = (s x,x). This successor applied N times to (zero.,zero)
gives obviously something like (N, N — 1) and we may recover the predecessor,
from which we construct the subtraction. Of course, the complexity of subtrac-
tion is simply horrible, but the evaluation of this complexity is an interesting
didactic exercise:

pred n s z = pr where
(_,pr) = n sp (z,2z)
sp (x,_) = (s x,%)

All this can be done without algebraic type classes, with specific operations
names such as add or mult substituted for (+) and (*). It is possible to define
the exponentiation, whose simplicity is shocking:

nli"n2 = n2 nil

The explanation how it works takes some time, but the students have a splendid
occasion to realise that the Set theory expression B4 for the set of all applica-
tions from A to B is not just a symbolic notation! Moreover, after three years of
studies they have seen plenty of recursion examples, from factorial to the Ack-
erman function, but this was the first time they found the recursion hidden in a
functional combinator without the classical recursive structure, terminal clause,
etc., and yet conceptually rather simple.

As our primary concern here was to show the application of the functional
combinators, and not the structuring of the polymorphism, this example was
elaborated in CAML, not in Gofer. With the system classes there are some inter-
esting problems. One cannot define abstract, polymorphic numerals represented
by concrete objects, for example:



ch0 = addgroupZero :: Chnum a

because all top level definitions must be resolved, and the system complains
that addgroupZero is still amnbiguous. Of course we can restrict our domain to,
say Chnum String where the zero is the empty string, and the successor simply
concatenates "*" with its argument. But then we had other problems, which are
addressed in the Conclusions.

4 Infinite Data Types

4.1 Lazy Manipulation of Power Series

All textbooks on lazy programming. and the packages distributed with Haskell
present many lazy streams such as the list of all positive integers, the Fibonacci
sequence, or all the primes constructed with the aid of the Eratosthenes sieve.
The construction of cyclic data structures has been also discussed in the litera-
ture ([5]). We found thus a useful and a little less worked domain of lazy infinite
power series.

An effective and simple coding of an algorithm dealing with such series is
not entirely trivial. The algorithms are usually dominated by the administration
of the truncation trivia. In fact, if one implements the algorithms discussed in
[4], one sees mainly summing loops and the evaluation of the bounds of these
loops, which becomes quite boring. In our approach an univariate power series

wo + urx + ugx? + usx® ... will be represented by the sequence:

u0 :> ul :> u2 :> uld
where :> is an infix, right associative constructor:

data Series a = a :> (Series a)
-- No termination clause!!

We could use normal lists, but we have introduced a specific datatype for the
following reasons:

— The above definition precludes all attempts to construct explicit finite ob-
jects. This is a useful debugging aid and a challenge for those students whose
first reaction is: “this perversion will never work!”.

— We didn’t want to overload normal lists with too specific algebraic structure.
As we wanted to use the classical comprehension notation, we declared the
constructor :> as an instance of the Functor class, so that we could use such
functionals as map. We have also overloaded such functionals as fold and
zip.

Our main idea was to show that infinite lazy lists treated as “normal” data, as
“first class citizens” simplify enormously the algorithms. The class system served
here uniquely for bookkeeping and syntax simplification.

Addition (or subtraction) of series is defined within the AddGroup class as
u + v = zipWith (+) u v where in our case the series fusion might be defined
as:



zipWith op (u0:>uq) (v0:>vg) = (u0 ‘op‘ v0) :> zipWith op uq vq

The multiplication is defined recursively. If the series U = Uy +2 - U, V =
Vo —I—;L“-V, then we find that UV = UO-Vg—Q—x-(U-V—I— VO-U). The Gofer translation
is trivial. The head of the solution is given immediately, and in order to get the
tail we need only the head of the recursive application. We see immediately that
the series form an algebra: the definition above is placed in the class Monoid,
as all internal multiplications, but its context demands that a series be also an
instance of the Module. So we have a nice cross-referencing structure:

instance Monoid a => Module a (Series a) where
X #* s = map (x *) s

instance (Monoid a, AddGroup (Series a),
Module a (Series a)) =>
Monoid (Series a) where
u@(u0:>uq)*(v0:>vq) = ulxv0 :> (v0 #* uqg) + vg*u

The division uses the same principle, if W = U/V, then U = V-W, or Up+a-U =
Vo - Wy +a2-(Wy-V 4V .W, which after rearranging gives us:

instance (Group a) => Group (Series a) where
(u0:>uq) /ve(v0:>vq) = w0 :> (uq - w0 #* vq)/v
where w0 = u0/v0

where we see that we don’t even need a procedure to divide a series by a coeffi-
cient. This example shows once more some mild limitations of the system used.
If the scalars of a given Module belong to a Group, and thus to a Field, the
Module is a Linear Space. We can declare it explicitly together with the default
division as:

class (Group a, Module a b) => LinSpace a b where
(/#) :: b ->a ->b
x /#y = recip y #* x

but nobody will deduce for us that a declared series belongs to a Linear Space,
provided that the coefficients admit the division. We must do it by hand, al-
though the instance declaration is empty  we use only the inferred defaults.

Other operations on power series are equally easy to code (compare with [4]). If
W = U?, then after the differentiation of both sides we get W' = o - U°~'U’,
or W=a [W- U'/U.Tt is the lazy integration which gives sense to this propa-
gating recursion:

integ :: (Group a, Ring a) => a -> (Series a) -> (Series a)
integ cO u = cO :> zipWith comp2 u intS
where comp2 x y = x / (fromInteger y)
intS = intSeq 1 where intSeq n = n :> intSeq (n+1)



It takes some time to master this technique and to appreciate the fact that the
definition: W = Const + [ f(W) is not just a specification, or an equation, but
an algorithm. It suffices to know the Const to be able to generate the next term

and the whole series. The definition above is equivalent to the obvious identity
fazi

.
Other elementary functions are coded in the same way, for example W =

exp(U) = [W U, etc.

If the series fulfills a more complicated, non-linear equation, the lazy ap-

for any series f: f, =

proach influences also the construction of the Newton algorithm. Again, instead
of coding a loop broken by some convergence criteria, we construct shame-
lessly an infinite list of infinite iterants. For example, if W = /U, then we
get (WO W  w) ] where W+ — . (VV(") + U/W’(”)). The con-

struction of this stream is quite simple, the standard prelude function:
iterate f x = x : iterate f (f x)

does the job, for example to get a square root of y in the domain of rational
series, we define:

sqRS y = iterate (\x->(1%2)#*(x + y/x))
(fromInteger 1) :: [RatSeries]

The convergence in this case means obviously the increasing number of correct
terms. How to present the final answer to the “end user” of this algorithm? At
this moment most students fall into their bad habits, and claim that we must give
explicitly the number of terms wanted. So, we restate our religious credo: no, you
should generate one stream, where the number of correct terms is ezactly equal
to the number of terms looked at. The final solution is based on the observation
that the number of correct terms doubles with every iteration W), So, we
neglect the zeroth (initial) iterant, extract one term from the first series, two
terms from the second (after having skipped the first), next four terms from the
third after having skipped three, then eight, etc. This exercise is a little impure,
as it requires finite lists, their concatenation and reconversion into series, but it
is still quite elegant and coded in two lines. The infinite list which convolutes all
the stream of series str$S is given by:

convit 1 (tail strS) where
convit n (x:q) = take n (drop (n-1) x ++ convit (2%*n) q

The composition and reversal of series is usually considered to be a serious
programming challenge. But laziness is a virtue here, and the final codes are
again three-liners. Let U(x) = Ug+ Uz +Us2? +.. ., and V(z) = Viz+ Vo2 +. .|
as usual. The free term must be absent from V. We want to find W = U(V).
The solution is nothing more than the ordinary, but infinite Horner scheme:

UV)=Us+z(Vi4+Vaz+..)x (U +2a(Vi + Vaz +..) x (U2 +2(...))) (1)

or, horribly enough



sercomp u (must_be_zero:>vq) = cmv u where
cmv (u0:>uq) = u0:>(vq * cmv uq)

The reverse of a given series is the solution of the following problem. Given
=t Vot? + Vot + ..., find =24+ Woz? + Wy2® 4+ ... (2)

The suggestion that might be offered to students is to reduce this problem to a
composition of series. This is readily done if we note that an auxiliary series p
defined by t = 2(1 — zp) fulfills the identity:

p=(1—2p) (Vo +Vaz(l—zp) + Viz>(1 —2zp)°> + ... (3)

serinverse (_zero :> _one :> vt) = t where
t = fromInteger 0 :> m
m = fromInteger 1 :> negate (m*m) * sercomp vt t

The approach presented above is easily generalized; one might try to find the re-
ciprocal, or solve polynomial equation in the series domain using the approach of
Kung and Traubl6]. It is extremely easy to construct formal Padé approximants
applying the continuous fraction expansion to the field of series, and reconstruct-
ing the rational form. It is possible also to apply lazy streams to the generation
of graphs from their partition function[7], but this is a topic too distant from
the aim of this conference.

4.2 Partition Generating Function

Another interesting example of the extrapolating recursion is the generation of
the number of partitions of a given integer N the number of inequivalent non-
negative integer solutions of the equation Z}Ll zp = N (known also as the
number of Ferrer graphs, or Young diagrams for a given N). For example:

5=441=342=34141=24241=2414+141=14+1414+1+1 (4)

-

i.e. 7 solutions. The generating function for these numbers is well known, but
not very easy to handle:

20 =T+ (5)

n=1
Computing a finite approximation to it by standard iterative methods and get-
ting the list
[1,1,2,8,5,7,11,15,22,30,42,56, 77, .. ] is simply unwieldy. But we can rewrite
this as an open recurrence:

Z(z) = Zy(x), where Z,,(z) = ] L mZm+1(2:). (6)
—x
After rewriting Z,, as Z(2) = Zpt1(2)+a" Zm(2) and after introducing By, ()
such that Z,,(z) =14 2™ B, (z), we have the final receipt:
Bu(z) =14 2 (Bmy1 + 2™ ' Bu(z)), (7)

which gives us the following efficient program:




partgen :: IntSeries
partgen = one :> w one where
one = ringlne
wn = one :>w (n+l) + byxn ringZero (n-1) (w n)

where byxn is a function which multiplies a series by " (adds n zeros at the
beginning).

5 Some Geometry

5.1 Concrete and Abstract Vectors

Defining vectors as triplets (z,y, z), or some tagged data structures is not very
interesting, even if with our type class system it is nice to have a syntactically
simple way of adding vectors or multiplying them by scalars. We have discussed
already some issues related to the construction of the multi-parametric class
LinSpace a b, where a is the type of scalars, and b  vectors.

We may play some time with vectors, define scalar (*.) and vector (/\)
products, and even introduce some simplistic tensors. But our main purpose was
to show how to use the functional formalism to generate some graphic ohject,
and more specifically — some three-dimensional surfaces created by generalized
sweeps or extrusions. We began by restricting our vectors to the type Vec which
was Jjust the type of floating triplets, and then we have shown how to extend
the standard operations to functional objects which described parametrized dis-
placements of vectors:

type Path = Float -> Vec -- The Float means '"time"
instance AddGroup Path where

(f+g)s==fs+gs

(f-g)s==£fs-gs
instance (Module Float) Path where

(a #*x g) s = a#xgs

etc. A generalized sweep is an operation which consists in taking a curve, thus
a Path object, and to transform it by a parametrized transformation, such as
rotations or translations, or combinations thereof. It was thus natural to define:

type Vtransf = Vec -> Vec
instance Monoid Vtransf where
groupOne = id
fxg=°f . g
Given a transformation £ of a vector, it is extended to a path by a simple
convolution: trf f g s = £ (g s), or trf = (.). If this transformation is ad-

ditionally parametrized, if the function acting upon a vector has a form f t,
then the induced transformation of paths has a form:

transf £ t g s =°f t (g s)



which can be reduced to a combinator trfpath £ = (.) . £, a form truly de-
tested by most students. So, they are demanded to construct some simple paths,
such as a horizontal unit circle, or any parametrized straight line x = x¢ + ut:

circ ang = (cos ang, sin ang, 0.0)
strline x0 u t = x0 + t#x*u

We pass then to transformations, for example a parametrized (by a scalar) trans-
lation along a given vector u:

transl u = (+) . (#* u)

or, if you prefer, transl u t x = t#*u + x. Note that we are doing everything
not to use any concrete coordinate representation, when it is possible. So when
we define a rotation, we do not care about its general matrix form. but try to
reason relative to objects defining our “scene”. This is coherent with our main
didactic philosophy, that the functional abstractions should be based always on
concretes. We define thus a rotation around a normalized axis n by an angle ¢ by
splitting a vector into its parallel and perpendicular components, and performing
the 2-dimensional rotation:

(n *. x) #*x n
perp = x-parl; tr3 = x/\n

rotv n phi x = let parl

in parl + cos phi #* perp
- sin phi #x tr3

5.2 Construction of Parametric Surfaces

We are now ready for a more complex manipulation of vector objects, for exam-
ple, if we wish to apply two parametrized transformations £1 and then £2 at the
same time, such as a translation combined with a rotation, we combine it:

ovrlap f2 f1 t = f2 t . f1 t
Finally we construct our sweeping surface:
sweepsurf trf g s t = trf t g s

whose combinatoric form sweepsurf = (flip .) . flip should be reserved to
amateurs.

The remaining task is to take some curve, to design our favourite transfor-
mation, and to produce the surface. But the standard versions of Gofer have no
graphical output, so we seize the opportunity to convey to our students some-
times forgotten information that modern, multitasking, windowed environments
encourage the cooperation hetween heterogeneous applications. We choose two
lists intervals of the parameters s and #: intervT and intervS, and we make
a grid:

grid intervS intervT surf =
[[surf s t | s <- intervS] | t <- intervT]



This grid is lazy, so it may be quite large. It is transformed then into a many-line
output string, and piped into Gnuplot or any other drawing program, or saved
in a file and processed off-line. For example if we rotate an oblique straight line
around the z axis, and if we add to this rotation an oscillating variation of scale,
we have to program the following;:

scale phi v = (1.0 + 0.3*sin(8.0%phi))#*v

mytransf = trfpath (ovrlap scale (rotv (0.0,0.0,1.0)))
line t = strline (1.0,1.0,0.0) normalize (1.0,0.0,1.0) t
mysurf s = sweepsurf mytransf line s

and the result is presented on Fig. 1.

R T 772/
T LA
SR
BCCORIITN
,»\' W A\

N
<

Fig. 1. An example of a parametric surface

Another type of sweep surfaces are tubes, constructed by a translation of the
generating curve along a trajectory together with a rotation which keeps the
original alignment of the generator with respect to the tangent vector of the
trajectory. Of course we can compose this translation and rotation with some
other transformations. The size of this paper makes it impossible to include more
beautiful and very complicated 3D drawings produced by very short programs.



This exercise touches the problem of computing the tangent vector to a path,
and permits to develop another branch of our functional mathematics  the
construction of differential structures, which cannot be discussed here.

6 Conclusions

We tried to demonstrate that modern polymorphic functional languages may be
sensibly used to model and implement quite abstract mathematical structures
in a way which is transparent enough to be accepted by mathematically oriented
undergraduate students.

Programs in functional languages such as Haskell or Miranda, thanks to their
lack of syntactic overhead are coded fast. Higher order functions and lazy eval-
uation are capable to produce little programming miracles. The inheritance and
genericity offered by Haskell seem to be more adequate for that kind of mathe-
matical programming than the approaches based on object-oriented languages,
although we would like very much to compare them with, say, the C++ or CLOS
protagonists.

We found that the type classes system may be used to define statically the
hierarchy of mathematical domains, but that there are some flaws therein. We
missed some meta-class system which would permit, for example, the simultane-
ous construction of several Galois fields parametrized by different characteristics
and order; we had problems with the Church numerals: if their polymorphic type
is restricted, one cannot attribute any sensible type to the exponentiation oper-
ator, as the objects are self-applicable. We had problems with ambiguous types
while trying to define metric (or normed) vector spaces: the type of a perfectly
reasonable function which normalized a vector dividing it by its norm, did not
fit into the class system.

Such observations are addressed rather to readers interested in the program-
ming tool building, and not only in the pedagogical process, but they seem im-
portant. The typed, lazy programming languages are excellent tools to teach the
constructive approach to mathematics. But the type classes are not mathemati-
cal domains. Our plans for the future include the construction of a different class
system, perhaps better adapted to the construction of abstract mathematics.

References

1. D. Guntz, M. Monagan, Introduction to Gauss, Sigsam Bulletin 28, no. 2, (1994),
pp 3 19.

2. P. Hudak, S. Peyton Jones, P. Wadler et al., Report on the programming lan-
guage Haskell, (Version 1.3), Technical report Yale University /Glasgow University,
(1995).

3. Mark P. Jones, Gofer, Functional Programming Environment, (1991).

4. Donald E. Knuth, The Art of Computer Programming, Vol 2 / Seminumerical
Algorithms, Addison-Wesley, Reading, (1981).

5. Lloyd Allison, Circular Programs and Self-referential Structures, Software  Prac-
tice and Experience, Vol. 19(2), (1989), pp. 99  109.



6. H. T. Kung, J. F. Traub, JACM 25 (1978), pp. 245 260.

7. Jerzy Karczmarczuk, Lazy Functional Programmaing and Manipulation of Pertur-
bation Series, Proc. III International Workshop on Software Engineering for High
Energy Physics, (1993), pp. 571 581.

This article was processed using the IATRX macro package with LLNCS style



