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Abstract – A new optimal programmed PWM technique
is described. The voltage total harmonic distortion at
the output of an L-C filter connected to a PWM in-
verter is minimized. The proposed technique can be
directly applied to constant frequency, constant ampli-
tude sinusoidal power supplies such as uninterruptible
power supplies. Without any hardware changes, the new
method allows for more than 20 percent smaller THD
than the general programmed PWM method. Other
indexes that are functions of surplus harmonics, such
as acoustic noise, heat losses, torque and speed ripples,
can be optimized using the new method. A new model
of nonconstraint optimization is developed for the pro-
posed method. It is shown that this model includes both
double-level and triple-level PWM waveforms. An en-
ergy conservation principle is applied to the model to
prove and explain the optimization possibility. An en-
ergy conservation based algorithm for obtaining an op-
timization starting point is demonstrated. A numeri-
cal example of triple-level optimal programmed PWM
waveforms for single-phase applications is presented.

I. Introduction

The programmed pulse-width modulation (PWM)
technique [1] is a very important and efficient method
of eliminating selected harmonics from a PWM wave-
form spectrum. Theoretically, it can achieve the highest
quality of the output waveform among all PWM meth-
ods used in voltage-source inverters [2].
Programmed PWM inverters can be used in

constant-frequency variable-amplitude applications such
as uninterruptible power supplies (UPS’s) and in ac
drives to optimize various drive performance indexes:
efficiency, small torque ripple, accurate speed and posi-
tion, minimization of device stresses, reduction of EMI,
and reduction in acoustic noise. In inverter applications
that require a high quality sinusoidal output, e.g., cer-
tain UPS’s, low-pass L-C filters are used. So far, there
have been reports on minimization of THD at the out-
put of a programmed PWM inverter before a filter [3].
This paper presents a new method of minimization of
the voltage THD at the output of an L-C filter. The
THD of the output voltage is a popular performance
index for PWM inverters. The THD is defined as

THD =
100

V1

√√√√ ∞∑
n=2

V 2
n . (1)

where Vn is the amplitude of the n-th harmonic. Fixed-
frequency power supplies, such as UPS’s, employ an
output L-C filter to further suppress high-order har-
monics. The quality of the UPS output voltage can
be predicted from the harmonic content of the inverter

output voltage, which is the L-C filter input voltage,
by considering the so called distortion factor (DF) [3].
DF takes into account how higher order harmonics can
be reduced by a second order low-pass filter

DF =
100

V1

√√√√ ∞∑
n=2

(
Vn

n

)2

. (2)

II. Mathematical Model
of Programmed PWM

In typical PWM voltage inverters, the dc bus volt-
age is chopped N times per half cycle to produce either
a double-level {−1

2 ,
1
2} output (in half-bridge arrange-

ments) or a triple-level {−1,0,1} output (in full-bridge
arrangements). Owing to the symmetries in the PWM
waveforms, only odd harmonics exist. The Fourier co-
efficients of odd harmonics are given as follows:
• Double-level programmed PWM

Vn =
4E

nπ
[1−2 cosnα1+2 cosnα2+ . . .+(−1)j2 cosnαj

+ . . .+ (−1)N2 cosnαN ] (3)

• Triple-level programmed PWM

Vn =
4E

nπ
[cosnα1 − cosnα2 + . . .+ (−1)j−1 cosnαj

+ . . .+ (−1)N−1 cosnαN ] (4)

where E is the amplitude of the square wave.
Amplitudes of any M harmonics can be set by solv-

ing the M equations obtained from setting (3) or (4)
equal to prespecified values. In the general programmed
PWM method, the fundamental component is set to a
required amplitude and M −1 low-order harmonics are
set to zero [4]-[8]. Usually, the Newton iteration method
is used to solve systems of nonlinear equations (3) or
(4). The correct solution must satisfy the condition

0 < α1 < α2 < . . . < αN <
π

2
. (5)

The general programmed PWM method is designed
to eliminate as many low-order harmonics as possible.
This determines the spectrum of the remaining higher-
order harmonics. Implementation of the general pro-
grammed PWM requires solution of a system of non-
linear and transcendental equations. Since in any pro-
grammed PWM scheme the content of low-order har-
monics should be small, some of the nonlinear equations
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of systems (3) or (4) are used as constraints in opti-
mization of various performance indexes. The resulting
computational problems of constrained optimization do
not converge easily. Our proposed programmed PWM
method makes the minimization of the DF as its tar-
get, without imposing which harmonics should be en-
tirely eliminated. To assure small low-order harmonic
content, the performance index is augmented by com-
ponents containing low-order harmonics multiplied by
penalty factors. A mathematical model of optimization
without constraints is obtained which converges easily.
In this way, the higher-order harmonics spectrum can
be controlled to push more harmonic energy to higher
frequencies. Those high order harmonics can be easily
suppressed by an L-C filter. This new UPS harmonic
control scheme does not require any hardware additions
to a general programmed PWM scheme. (The value of
DF decreases more than 20 percent compared with gen-
eral programmed PWM.)

III. Equivalence of Programmed PWM
Models for Optimization

Two classical programmed PWM techniques (3) and
(4) have different waveforms and mathematical mod-
els. Consider the minimization of DF for each of the
control schemes. Since DF is positive, its minimiza-
tion is equivalent to minimization of the square of DF.
It can be seen from (2) that the optimization target
functions of different PWM schemes are the same. All
are sums of squares of odd surplus harmonics divided
by a square of the harmonic order. However, to keep
the fundamental equal to one and low order harmon-
ics zero, constraints must be introduced into the opti-
mization model. The constraints can be imposed using
(3) or (4) for double-level PWM and triple-level PWM,
respectively. Right sides of abovementioned equations
represent amplitudes of n-th harmonics. Fundamen-
tals should be set to unity, other low-order harmonics
should be equal to zero. Moving the constant term in
(3) to the left side one obtains

−1

2
Vn+

2E

nπ
=
4E

nπ
[cosnα1−cosnα2+. . .+(−1)j−1 cosnαj

+ . . .+ (−1)N−1 cosnαN ] (6)

Comparing equation (6) to equation (4), it can be seen
that the right sides are identical and they are equal to
constants. Hence, it can be concluded that the mini-
mization of DF in two PWM schemes can be described
by one optimization model with different constants in
the constraint equations.

IV. Explanation of Optimization
Possibility – Energy Conservation

A new concept of energy conservation during the op-
timization of double-level programmed PWM has been
presented in [9]. Because of the quarter-cycle symmetry
of programmed PWM, the quarter-cycle PWM energy

can be used to represent the total energy property of
one period. In the time domain, the energy of a quarter-
cycle double-level PWM voltage waveform supplying a
resistive load R can be expressed as

W=
E2

R

α1

2π
T+

(−E)2

R

α2−α1

2π
T+. . .+

E2

R

π
2 −αN

2π
T (7)

where E is the amplitude and T is the period of the
square wave. Deduced from (7), the energy of a quarter-
cycle waveform can be given as

W =
E2

R

T

4
. (8)

The above expression for the energy W does not de-
pend on switching angles. Thus, the value of W will
not change when a different set of switching angles is se-
lected. Frequency spectra of time-domain PWM wave-
forms can be obtained using Fourier series expansion.
Energies calculated from time-domain and frequency-
domain analysis should satisfy the energy conservation
law, that is, the sum of fundamental and surplus har-
monic energies should be equal to W .

The expression for the frequency-domain energy is

W =
∞∑
k=0

I2k+1V2k+1T

=
V1√
2R

V1√
2
T +

V3√
2R

V3√
2
T +

V5√
2R

V5√
2
T + . . . (9)

where V1 represents the amplitude of fundamental volt-
age component, and V2k+1(k = 1, 2, ...) represent the
surplus harmonics. By changing the switching angles
with a constraint that the fundamental component is
kept constant, amplitudes of particular harmonics can
be decreased or increased. When a high order harmonic
increases, some other harmonics, including lower-order
harmonics, will decrease to preserve the energy con-
servation law. Since high-order harmonics are easier
to filter out, by pushing the surplus harmonic energy
towards high frequencies, minimization of DF, hence,
minimization of THD at the output of an L-C filter
can be achieved. Section VI shows the implementation
of this optimization idea using Matlab programming.

V. Development of Optimization Model

A. Constrained Optimization

This section presents an implementation of DF min-
imization for the triple-level programmed PWM. Al-
though there is no energy conservation property in
a triple-level programmed PWM, the equivalence of
optimization models for double-level and triple-level
schemes validates the DF minimization approach for
a triple-level programmed PWM.

To illustrate it, let us consider the triple-level pro-
grammed PWM scheme. Assume eleven switching an-
gles (N = 11) in a quarter cycle of the PWM waveform.
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In the proposed DF minimization approach, the am-
plitude of the fundamental is controlled and nine low-
order harmonics are eliminated which leaves one free
switching angle for shaping surplus harmonic distribu-
tion. The fundamental is set to unity and (4) is used to
set the constraints. The optimization target function is

G =
1

V1

√√√√ ∞∑
n=21

(
Vn

n

)2

. (10)

For practical reasons, it was decided to consider surplus
harmonics up to 63rd.

B. Nonconstrained Optimization

A direct application of Matlab optimization toolbox
procedures to the model with the optimization target
function (10) and constraints (4) results in nonconver-
gence due to a singular Jacobian matrix. Since in the
actual electronic system there are always mismatches
and parameter tolerances, low-order harmonics will be
small but not entirely eliminated. This gives a rise to an
idea of transforming the constraint optimization model
(10) and (4) into a nonconstraint one. The noncon-
straint optimization is expected to have better conver-
gence properties. The unity amplitude of the funda-
mental and small amplitudes of low-order harmonics
can be required by using appropriate penalty factors
in the nonconstraint optimization target function. The
target function of the new scheme of optimization with-
out constraints can be written as

F = (V1 − 1)2 +K2
2V

2
3 + . . .+K2

10V
2
19 +G2 (11)

where K2,K3, . . . ,K10 are penalty factors and G is
given by (10). The optimization target function (11)
belongs to nonlinear least squares optimization prob-
lems. Function leastsq in the Matlab optimization tool-
box was used to solve this DF minimization problem.
The penalty factors were selected as Ki =

4
2i−1 to put

more weight on elimination of lower order harmonics.

C. Starting Point

This subsection shows how the energy conservation
concept introduced in Section IV is used to obtain the
starting point for DF minimization.
Let us consider the case for N = 11. Elimination of

ten low-order harmonics with the general programmed
PWM method with fundamental equal to unity, results
in first significant surplus harmonic crest to be formed
by 23th, 25th, 27th, and 29th harmonics (Fig. 2(a)).
It follows from the definition of DF (2) that higher or-
der harmonics contribute less to its value. The idea of
energy conservation suggests that increase in the am-
plitude of selected harmonics higher in order than the
first crest should decrease amplitudes of harmonics in
the crest. Since, in this example, the harmonics 23th,
25th and 27th are a part of the first significant crest,
let us select the 29th and 31st as high order harmonics
and increase their amplitude. Addition of amplitude

TABLE I

Switching Angles of Three Control Schemes (in

Degrees).

Angle General Starting Optimal
point

1st 12.0951 12.8405 11.9519
2nd 15.2980 16.3948 15.0000
3rd 24.2877 25.0666 23.0959
4th 30.5558 30.7137 27.6166
5th 36.6808 35.7295 32.2403
6th 45.7335 42.8395 38.0730
7th 49.3718 46.5329 42.1124
8th 60.7622 57.4493 51.7438
9th 62.4524 59.6355 54.3737
10th 75.5559 73.7103 66.8814
11th 75.9914 74.3215 67.8267

requirements for two high-order harmonics means that
elimination of two lower order harmonics must be re-
moved from the constraints (4). The highest previously
eliminated harmonics, namely 19th and 21st, are made
nonconstrained. The new nonlinear system of equations
takes on the form

cosα1 − cosα2 + . . .− cosα10 + cosα11 =
π

4

cos 3α1 − cos 3α2 + . . .− cos 3α10 + cos 3α11 = 0

. . .

cos 17α1 − cos 17α2 + . . .− cos 17α10 + cos 17α11 = 0

cos 29α1−cos 29α2+. . .−cos 29α10+cos 29α11 =
29π

4
V29

cos 31α1−cos 31α2+. . .−cos 31α10+cos 31α11 =
31π

4
V31.

(12)
Use the following algorithm to maximize 29th and

31st harmonics:
1) Take V29, V31, and switching angles of general pro-

grammed PWM as initial values.
2) Micro-increase amplitude of V29 and V31.
3) Calculate new switching angles from (12).
4) Take the result of step 3 as new iteration values.
5) Repeat step 2 until further increase of V29 and V31

causes convergence problems.
This method is an effective and simple way to gain

the starting point of DF minimization.
The calculated switching angles for general pro-

grammed PWM ([1], [10]), starting point for the op-
timal programmed PWM obtained using the algorithm
of this subsection, and optimal programmed PWMwith
the minimum DF are presented in Table I for N = 11.

VI. Numerical Examples

The switching angles for general programmed PWM
[5] and optimal programmed PWM with the minimum
DF were calculated. The frequency spectrum of the
general programmed PWM and optimal PWM with the
minimum DF is shown in Figs. 1-4 for N = 9, 11, 13,
and 15, respectively. Corresponding time domain wave-
forms for N = 11 are presented in Fig. 5. Numeri-
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Fig. 1. Frequency spectrum of triple-level programmed PWM
with N = 9. (a) General. (b) Optimal.

cal values of switching angles in the first quarter-cycle
for all the harmonics spectra presented in Figs. 1-4 are
given in Table II.
The voltage total harmonic distortion THDi at the

inverter output and the voltage total harmonic dis-
tortion THDf at the output of the L-C filter are

also shown in Figs. 1-4. Defining ωr = 1/
√
LC and

p = ωr/(2πf), where f is the frequency of the fun-
damental, the total harmonic distortion at the filter
output is [3]

THDf =
100(p2 − 1)

V1

√√√√ ∞∑
n=2

(
V 2
n

n2 − p2

)2

. (13)

An L-C filter with a corner frequency fr = ωr/(2π) =
555 Hz was used for calculations.
It can be seen in Figs. 1-4 that the obtained mini-

mum values of DF are 18.0%, 15.4%, 13.9%, and 7.6%
smaller than DF’s for the general programmed PWM
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Fig. 2. Frequency spectrum of triple-level programmed PWM
with N = 11. (a) General. (b) Optimal.

for N = 9, 11, 13, and 15, respectively. The corre-
sponding decrease in THDf ’s is 27.6%, 20.3%, 17.9%,
and 4.2%. It should be noted that the decrease in
THDf depends on the corner frequency of the L-C fil-
ter which was kept constant for the abovementioned
calculations. For instance, if a filter with a corner fre-
quency fr = 750 Hz is used, the THDf decrease for
N = 15 would be 6.5% (from 5.54% to 5.18%). Thus,
a change in the PWM control scheme allows for load
THD decrease from almost 30% to several percent (de-
pending on the number of switchings per quarter-cycle
and on the filter size) without any hardware changes.

VII. Conclusions

A new optimal programmed PWM technique has
been described. The voltage total harmonic distortion
at the output of an L-C filter connected to a PWM
inverter is minimized. The proposed technique can be
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TABLE II

Switching Angles in the First Quarter-Cycle for Harmonic Spectra of Figs. 1-4 (in Degrees).

angle # Fig. 1(a) Fig. 1(b) Fig. 2(a) Fig. 2(b) Fig. 3(a) Fig. 3(b) Fig. 4(a) Fig. 4(b)
1 13.98 13.48 12.09 12.23 10.66 10.79 9.11 9.67
2 18.43 17.35 15.30 15.45 13.08 13.24 10.83 11.61
3 28.13 25.47 24.29 23.72 21.38 21.11 18.25 19.10
4 36.77 30.80 30.56 28.29 26.13 24.99 21.64 22.53
5 42.65 35.89 36.68 32.42 32.22 29.27 27.44 27.27
6 54.93 44.78 45.73 37.64 39.15 32.99 32.41 30.36
7 57.71 48.78 49.37 41.67 43.23 36.68 36.71 33.32
8 72.74 62.38 60.76 51.28 52.09 43.63 43.13 38.13
9 73.46 64.00 62.45 54.04 54.48 46.94 46.08 41.55

10 75.56 66.57 64.92 56.51 53.77 48.93
11 75.99 67.59 66.02 58.37 55.59 51.34
12 77.57 69.57 64.31 60.25
13 77.85 70.23 65.25 61.54
14 74.78 71.37
15 75.10 71.84
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Fig. 3. Frequency spectrum of triple-level programmed PWM
with N = 13. (a) General. (b) Optimal.

0 20 40 60 80 100 120 140 160 180
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Harmonic order

A
m

pl
itu

de

Frequency Analysis of Programmed PWM

THDi = 47.799%

THDf = 2.856%

DF = 1.147%

General triple level programmed PWM

(a)

0 20 40 60 80 100 120 140 160 180
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Harmonic order

A
m

pl
itu

de

Frequency Analysis of Programmed PWM

THDi = 46.895%

THDf = 2.737%

DF = 1.060%

Optimal triple level programmed PWM

(b)

Fig. 4. Frequency spectrum of triple-level programmed PWM
with N = 15. (a) General. (b) Optimal.
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Fig. 5. Frequency spectrum of triple-level programmed PWM
with N = 11. (a) General. (b) Optimal.

directly applied to constant frequency, variable ampli-
tude sinusoidal power supplies such as uninterruptible
power supplies. Without any hardware changes, the
new method allows for obtaining more than 20 percent
decrease in THD than the general programmed PWM
method. The amount of THD decrease depends on the
number of switchings per cycle, the required amplitude
of the fundamental component, and the size of the filter.
The biggest gain in output voltage quality is for small
number of switchings which suggest that the method
could be used primarily in high-power inverters with
slow semiconductor switches. The spectra of the opti-
mized waveforms are more uniform than those obtained
from general programmed PWM. Hence, they also ex-
hibit a lower acoustic noise [11], [12].
A new model of nonconstraint optimization has been

developed for the new method. It has been shown that
this model includes both double-level and triple-level
PWM waveforms. An energy conservation principle has
been applied to the model to prove and explain the op-

timization possibility. An energy conservation based
algorithm for obtaining an optimization starting point
has been demonstrated. The nonconstraint optimiza-
tion model can be used for minimization of other per-
formance indexes, e.g., reduction of EMI, efficiency, and
small torque ripple as well as accurate speed and posi-
tion in ac drives applications. The presented method
is verified by numerical examples of single-phase triple-
level optimal programmed PWM waveforms for various
numbers of switchings per cycle.

The future work will include hardware implementa-
tion of the proposed concept. Theoretical studies on
the application of the THD minimization method in
closed-loop systems with varying nonlinear load will be
performed. The general idea of shaping the frequency
spectrum by optimization of a selected performance in-
dex can be also used in multilevel inverters and variable
frequency applications.
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