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Introduction 

 
Electric vehicles (EV) are seen by policy makers and the general public as a 

means to reduce the environmental impact of mobility. In particular, the potential of 

this technology echoes the climate change debate and it appears as an appealing 

option in order to reduce CO2 emissions. This expectation however needs to be tested 

against a realistic calculation of the CO2 impact of electric vehicles. The electric 

powertrain, by definition, induces Zero tailpipe emissions. However, the impact of 

non-tailpipe emissions deserves careful attention: The energy that is used by EV’s is 

supplied by power plants, which – in most electricity systems – consist of a mixture 

between emission-free sources of energy, e.g. wind or solar power, and fossil-based 

plants that release greenhouse gases while in operation. Calculations of these non-

tailpipe emissions pose a methodological challenge, because the physics of a meshed, 

multi-nodal electrical network, following the so-called Kirchhoff’s law, do not allow 

for actively directing an electron’s path from a source to a specified destination.  

Suggestions for quantifying emissions usually rely on assigning the average 

emission of the generation system to EVs, or the emissions of the technology 

deployed during peak load hours. These approaches are frequently referred to in 

the political debate, but they may be misleading, as will be illustrated in more 

detail, for a proper assessment of the factual climate impact of EV’s. On the other 

hand, energy economists have also developed more elaborated techniques, fully 

fledged microsimulation models that offer riche capabilities but are highly resource 

intensive and require a large amount of data.  

The purpose of this paper is to propose an alternative methodology to estimate 

emissions, based on pivotal marginal approach, to compare it with the most 

relevant existing approaches and draw conclusions relevant for the ongoing policy 

debate in Germany and Europe. The pivotal approach provides, in our view, 
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parsimonious yet reasonably precise estimates in a context where policy decisions 

are often driven by oversimplified claims and calculations. Our simulation are 

calculated within EMOB, a comprehensive simulation model that estimates the 

penetration of three EV technologies (Plug-in Hybrid, Range Extender, Battery 

Electric Vehicle) together with six other technologies (Diesel, Gasoline, Hybrid, 

Biofuel, Hydrogen, LPG-CNG) on the German automotive market. 

This paper is organized as follows. Section 2 presents the findings of preexisting 

research on this topic; it also indicates the limitations that, in our view, diminish the 

validity of CO2 emission calculations when they are based on average generation mix 

and/or on (peak) marginal emissions. Section 3 introduces our modeling approach, 

dealing both with the general description of our simulation tool EMOB and with our 

proposed approach for CO2 calculation. Section 4 presents the data used in computation 

and the obtained results. Section 5 explores how much coordination of battery 

reloading can alter CO2 emissions. Section 6 draws the conclusion. 

 

 

1. Existing methods for emission computation and literature findings 

 
1.1. Methodologies to compute CO2 emissions 

 
We first present the different methods available for CO2 emissions calculation 

and investigate how they are used in current research. The dominating computation 

method for CO2 emissions relies on average emissions and marginal (to be 

understood as peak marginal) emissions. 

 

Average emissions can be expressed as  
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With k, energy generation technology, y year considered, ek,y emission factor of 

a given technology in a given year, and Qk,y quantity of energy produced with a 

given technology in a given year. 

In some cases, these ratios are computed net of “must-run” facilities, such as in: 
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where K1 is a subset of technologies that excludes must-run generation.  

Peak Marginal emissions are simply the emissions of the technology that is 

activated to meet demand in peak hours. 

These two methods can deliver fundamentally different results. Bettle, Pout et 

al. (2006), as quoted by Doucette and McCulloch (2011), point out that using 
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average CO2 emissions rather than Marginal Emissions Factors can underestimate 

emissions by up to 50%. However, most of the users of average emission do not 

comment on the reasons for preferring this method over others. The approach bears 

a major practical advantage, though: Data on average emissions are often readily 

available. For instance, the German Federal Bureau for the Environment
1
 provides 

historical records of specific CO2 emissions per Megawatt hour of the German 

generation mix (see UBA, 2011). A legitimate conjecture is that the average mix 

provides a rough, and probably misguiding, estimate of emissions. 

By contrast, supporters of the peak marginal approach provide reasons for their 

method arguing, for instance, that “PHEV represent a new electricity demand and 

consume electricity produced by the marginal plant. In the short run it is incorrect to 

calculate the environmental impacts of PHEV’s using average electricity emissions” 

(Kammen, 2009, see as well Carlsson and Johansson-Stenman, 2003). While this 

statement is, prima facie, acceptable as long as it makes explicit that it deals with short-

term fluctuations of demand, it becomes discussible when the additional electricity 

demand stemming from electromobility is a recurrent and fairly predictable one. 

Individual car owners may follow different charging routines – similar to households 

using electricity in slight timely variations – but on the aggregate level the load profile 

will be highly predictable, especially because of the slow uptake, which allows grid 

operators and utilities to observe charging behaviours and anticipate the required 

additional demand. Moreover, one can doubt on how the peak marginal approach takes 

realistically into account the peculiar time pattern (relating to the distribution of 

demand across hours, across working/non-working days, and across seasons) of 

additional electricity consumption of EVs. Implicitly, it makes use of the “peak” 

additional plant, an assumption that becomes difficult to support considering that a 

large part of the additional electricity request from EVs adds on non-peak demand. 

Apart from “average mix” and “marginal (peak)” some other methods are 

considered in the literature. 

Historical marginal emissions are based on real world data reflecting how, in 

power sector operations, emissions change with electricity output (Hawkes, 2010). 

Based on time series, indicating with a fairly high time resolution (typically 15 to 

60 min) the dispatch status of single plants and their respective emissions, one can 

obtain a vector of observed marginal emissions per kWh: 
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where ek,t refers to the emissions (g/kWh) of plant operating with technology k 

at time t (t=1,…,T), and Qk,t refers to the production with technology k at time t 

periods (for simplification we omit the notation denoting each single plant). These 

marginal emissions can be computed for T-1 periods. The main advantage of this 
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method is that it is fully consistent with existing operating practices. This 

advantage however turns to a limitation when one wants to apply the method to 

emissions in other countries and, most importantly in future years, when operating 

conditions of the energy system may have significantly changed. 

Long term marginal emissions – sometimes referred to as “built marginal” – 

overcome parts of these limitations in considering that the energy system can respond 

to a change in the demand pattern by adjusting the installed power plants. This method 

often encounters some skepticism due to the “marginal” (meaning “low magnitude”) 

nature of the demand. Bradley and Frank (2009), for instance, claim that even in 

scenarios assuming a very large diffusion of PHEV, they “could be serviced using the 

present generation and transmission capacity of the US electrical grid”. Such a 

statement does however not invalidate the idea that this additional demand may alter 

the optimum (profit maximizing) mix of energy plants. Thus, it is conceptually correct 

to analyze the impact of a recurrent demand using the built marginal approach. The 

difficulty is then to identify the marginal “built” technology. 

One solution is to look at historical data what French literature designate as 

“marge récemment construite”. For instance: “the built marginal is […] generation 

weighted average emission factor of the service power units that have been built 

most recently” (AECOM, 2010). It can be based on  
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where i refers to backward years that are taken into account in the calculation, 

while Ik refers to the additional capacity of technology k integrated into the supply 

system in a given year, and τk replicates the fact that only a fraction of installed 

capacity actually produces energy in a given year (this relates to maintenance 

operations and to facilities not operating at full capacity). The limitation of the 

approach is that such an “historical” built marginal may not reflect possible 

changes in the energy policy of a country. 

This limitation can be overcome, though, by taking into account realistic 

assumptions about the size (and operating rate) of future plants programmed for 

each technology in the relevant time horizon, thereby suggesting a forward built 

marginal approach. The implementation of this approach may provoke some 

discussions in contexts where the overall domestic energy consumption is 

anticipated to shrink in the future years (see e.g. Prognos-EWI-GWS (2010)), a 

phenomenon that relates to demographic decline, increased efficiency, and a shift 

from energy-consuming industries to services. In this context, one could claim that 

built marginal reflects substitution rather than expansion mechanisms. It is 

however fair to say that planned construction provides consistent information on 

which technology are likely to be expanded in case of additional demand.  

Another method for computing emissions is based on Microsimulation Models. 

They offer a detailed description of how the energy system responds at the plant (or 

group of plants) level, to changes in the demand. For example, Pehnt, Helms et al. 

(2011) combine separate sub-models simulating short-term fluctuations in the 
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German electricity market and long-term capacity planning in the European market, 

and integrate grid constraints in the distribution network. Provided the dynamic of 

micro simulation models is suitably documented and has received sufficient scientific 

scrutiny, and provided that they can realistically replicate both investment and 

operating decisions of the energy sector, these models, such as NEMS (US 

Department of Energy), PERSEUS (used among others by Pehnt, Helms et al., 

2011), or EnergyPLAN (used by Lund and Kempton, 2008), can yield valuable 

insights into the evolution of CO2 emissions in response to additional electricity 

consumption. As previously stated, the main limitation of this method is however 

that it is very data intensive and resource consuming which gives room to the 

definition of more parsimonious methods. The question of the predictive validity of 

such modes is also still an object of discussion (Synapse, 2004, p. 6). 

Eventually, a comprehensive view of the different available techniques is 

provided in Tab. 1, which also provides some values of emissions for Germany 

using these different methods. 

 
Tab. 1 - Emissions computed through different methods and results for Germany 

Methodology Example 

(Countries in Brackets) 

Emissions in gCO2/kWh 

(Selection for Germany) 

Average emissions: 

 Baum, Dobberstein et al. (2011), p. 17 (D) 533 g/kWh (2010)  

330 g/kWh (2020)  

 Horst, Frey et al. (2009) (D) 625 g/kWh (2009)(a) 

 UBA (2011) (D) 565 g/kWh (2010)  

Short term (operating) marginal: 

• peak marginal 

emissions  

Machat and Werner (2007)(b) (D) 

Carlsson and Johansson-Stenman (2003) (S) 

De Boncourt (2011) (F) 
Kammen (2009) (US) 

560 g/kWh (2007) 

• “historical” 
marginal emissions 

Hawkes (2010) (UK)  

Long term (built) marginal: 

• Forward built Pehnt, Höpfner et al. (2007) (D)  770 kWh to 840 kWh(c)  

• Historical long term 

marginal emissions 

Market Transformation Programme (2009) 

(UK) 

 

Pivotal emissions      Inexistent to our best knowledge 

Micro simulation 

 Göransson, Karlsson et al. (2009) (DK)  

 Pehnt, Helms et al. (2011), (D)  590 kWh-710 kWh (2030)(d) 

(a) Estimate includes lifecycle greenhouse gas emissions. 

(b) These authors do not formulate the statement that peak marginal method is the adequate one, but 

they provide information based on which this data can be estimated. 
(c) Corresponding to the range of emissions of planned coal plants.  

(d) Without the integration of additional renewable energies. 

Copyright © FrancoAngeli 
N.B: Copia ad uso personale. È vietata la riproduzione (totale o parziale) dell’opera con qualsiasi 

mezzo effettuata e la sua messa a disposizione di terzi, sia in forma gratuita sia a pagamento. 



 136 

1.2. The effects of EV’s on emissions: literature findings 

 
Based on these different methods, and considering the growing relevance of 

Electromobility on the policy agenda, a significant number of researches 

investigate the effect of electric vehicles on CO2 emissions and provide an 

answer to the policy question of whether (and to what extent) EVs decrease 

emissions. The research can broadly be classified in two categories: first, 

research that merely quantifies the effects on emissions of EV diffusion; second, 

research that adds cost considerations to this, and thus estimates the unit cost of 

CO2 abatement through EV deployment. 

The majority of publications on the topic belong to the first stream of 

research. Tab. 2 introduces some among these recent contributions. The general 

message that emerges from these studies is that CO2 emissions can be reduced 

through EV diffusion. We find, however, that there are some limitations in these 

results that specifically relate to the following points: 

1. For the estimation of non-tailpipe emissions most of the results make use 

of the average CO2 content of the electricity generation (see column “CO2 

intensity”) or peak marginal, while some studies undertake a detailed and 

disaggregated simulation of the electric sector. 

2. The majority of the studies concentrate on Plug-in Hybrid Electric 

Vehicles (PHEV), whereas much fewer results are available for pure 

Battery Electric Vehicles (BEV) and, more importantly, for the mix of 

vehicle technologies (BEV, PHEV and possibly Range Extenders) that 

constitutes the possible future of electro mobility. 

3. Most of the existing results do not take into consideration the time pattern 

of the reloading operations (column “Time pattern” in Tab. 2). This 

appears to us as a limitation as well, considering the expectation that EV 

reloading may have a specific time pattern and some policies may 

specifically be targeted to alter this time pattern. 

4. Most of the studies use an exogenous assumption for EV diffusion (see 

column “diffusion”), i.e. the market uptake does not depend on consumer 

choice modeling. While this could, to a certain extent, be neglected when 

looking at unit (CO2 saving per vehicle) results, it certainly casts doubts 

on any quantification of the aggregate savings of all newly registered 

EVs.  
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Tab. 2 - Emissions savings due to EV’s across various studies 

Study Diffusion  CO2 intensity Policy responsive Time pattern Key finding 

Brady and O’Mahony 

(2011) 

EV: 

Exogenous diffusion 

assumption (90% 

penetration by 2035).  

Average 

CO2 mix 

No No Even with large penetration CO2 gains 

are modest compared with the size of 

national CO2 emissions. 

Doucette and 

McCulloch (2011) 

BEV: 

Exogenous diffusion 

assumption 

Average 

CO2 mix 

No No In countries with high CO2 energy 

production sector, shift to BEV may 

increase emissions. 

Göransson, Karlsson 

et al. (2009) 

PHEV: 

So as to represent 3, 

12 or 20 % of electric 

consumption 

Based on 

simulation 

Reloading 

coordination 

policies 

Yes (different 

coordination 

policies) 

Coordination can drastically change 

emissions from PHEV. 

Thiel, Perujo et al. 

(2010) 

PHEV, EV, BEV Average mix No No CO2 abatement can be effective but at 

an high cost (> 800€/t. for BEV)  

EPRI and NRDC 

(2007) 

PHEV Marginal 

Natural Gas 

   

Smith (2010) PHEV:  

Exogenous 

assumption 

 No No Up to 50 % reduction in CO2/km 

compared with other technologies. 

Kyle and Kim (2011) EV (and Hydrogen). 

Exogenous 

Based on 

CGE 

simulation 

Responsive to 

carbon pricing 

policy 

No Reductions of emissions due to 

emission pricing are larger in 

scenarios with large share of EV.  
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Additional to these contributions on CO2 emission computations, some authors 

have gone one step beyond in their analysis and have investigated the cost efficiency of 

EV diffusion as a means to reduce CO2 emissions. 

Kammen et al. (2009) estimate the cost of CO2 reduction as the CO2 abatement 

divided by the monetary incentive that would (in our wording) make alternative 

vehicles cost-equivalent to conventional vehicles. Their main finding is that “(without 

affordable batteries) GHG emission reductions from PHEV’s cost well over 

100$/t.CO2eq”, leading to the conclusion that “PHEV are not currently a cost effective 

means of mitigating GHG’s” (Kammen, 2009). De Boncourt (2011) bases the cost of 

CO2 abatement in France on a 2 billion Euro policy package for 2 million vehicles. The 

cost of this policy is then divided by the corresponding reduction in emissions in order 

to obtain the unit cost of CO2 reduction. Based on the assumption that cars circulate on 

average 150,000 km the author calculates a cost of 50€/t CO2. 

While these figures cast doubt on the cost effectiveness of EV as a tool to reduce 

CO2 emissions, they cannot in themselves be found conclusive. One reason among 

others is that these ratios have a limited representation of micro-economic, behavioural 

assumptions: the response of the purchasers is not functionally linked to the incentive. 

For instance, no empirical findings are presented to support the hypothesis that cost 

equivalence between EV and ICE makes a fraction of people switch from one to the 

other. Consequently, it appears that there is ample room for contributing to the current 

debate on EV policy by producing results that use reasonable assumptions on both the 

CO2 content of non-tailpipe emissions and the responsiveness of car purchasers to 

policy instruments. 
 
 

2. The EMOB modeling approach to vehicle diffusion and CO2 emissions 
 

In this section, we propose to contribute to the on-going debate by taking into 

account a number of additional features of EV diffusion. First, we estimate CO2 

reduction based on a wide set of available car engine technologies. We take into 

account BEV and PHEV together with Range Extender, covering the spectrum of 

electric and hybrid powertrains that are or will shortly be available in the market. 

Second, we base our approach on an explicit micro-founded representation of how 

different stakeholders behave. Eventually, different to previous works in this field, 

we base our approach on a “pivotal” or “hourly marginal” emission calculation 

that, in our view, overcomes many of the limitations of the more frequent 

“average” or (peak) marginal approaches. 

We now turn to a more detailed presentation of the model we use for EV 

diffusion forecast, and to our calculation of emissions. 
 
 

2.1. EMOB in short 
 
EMOB is a simulation model designed to forecast and evaluate policies toward 

the diffusion of electric vehicles in Germany. EMOB has been developed in the 

Goldsim simulation package. Results presented in this paper refer to EMOB 

release 0.1.3.6 developed in Goldsim 10.5. 
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EMOB includes five main modules: policy, energy sector, car industry, car 

market, cost benefit analysis together with economic impact analysis. We provide 

hereafter some more information on energy sector, car industry and car market that 

are central to the present analysis. Readers interested by a more detailed 

description of the model can refer to the project-related policy report (Gosh et al., 

2011). 

The energy module allows for a quantitative evaluation of the effects of short-

and medium-scale policy measures as well as the representation of long-term 

interaction between electric cars and the energy sector. It is based on exogenous 

forecasts of the German generation portfolio and uses Monte Carlo simulation 

based on observations of German photovoltaic and wind feed-in to represent 

fluctuating renewable energy supplies.  

The car industry module generates the features of the different car alternatives 

present on the market. It incorporates the effects of technological progress (for 

instance the increase in energy density of batteries) and regulatory drivers, in 

particular Regulation EU/443 on CO2 emissions: facing this regulation, car 

producers have to change the optimal fuel efficiency of the vehicle. This latest 

element is found to be highly influential of the general diffusion pattern and cost 

benefit analysis results. 

EMOB’s core component is a market simulation module that is based on a 

Discrete Choice Model that forecasts the diffusion of different automotive 

technologies on the German market. It represents vehicle choice with a high level 

of resolution. Namely: it incorporates 9 competing technologies (Gasoline, Diesel, 

Hybrid, Biofuels, LPG-CNG, BEV, Range Extender, Plug-in Hybrid, Fuel Cell). 

This choice process is run in parallel for 6 submarkets (privately owned household 

cars, rental cars, car purchased by resellers, cars provided by companies to their 

employees as a fringe benefit, corporate fleet, and public procurement), which are 

characterized by differing purchase mechanisms. In this section, we concentrate on 

the household vehicles that constitute the single largest submarket.  

Vehicle segments of the market are taken into account, corresponding to 

different vehicle sizes, with a level of decomposition that is fairly larger than in 

other existing models, and is based on the categorization of the Federal Bureau of 

Motorization
2
 in use in Germany. It includes 11 categories: Minis, small cars, 

Compacts, Middle range, Higher middle range, Luxury, Sports Utilities Vehicles, 

Sport cars, Minivan, People-carriers and Light Freight Vehicles. The choice of the 

vehicle segment is endogenous; this means that faced with changing car attributes 

people can choose to change segment rather than technology. The model is 

“dynamic”, i.e., the market shares of respective technologies and segments are a 

function of the time-dependent value of car attributes. The discrete choice model 

elaborates on a meta-analysis of Stated Preferences surveys and constructs a 

Synthetic Utility Function based on willingness-to-pay (WTP) and elasticities 

                                                 
2 Kraftfahrtbundesamt. 
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defined through a meta-analysis of the literature. A separate paper is exclusively 

dedicated to this topic (Massiani, 2012). 

The model also contains a “diffusion” module, which uses the Discrete Choice 

Model as input data (to be understood as “potential market shares”) and computes 

adjusted market shares based on a Bass-like diffusion model (Bass, 1969). The 

model can be run for a reference scenario that represents the most likely scenario. 

It can also be run for a variety of policy scenarios that activate a series of policy 

measures (purchase incentive, fuel taxation etc.). The model provides the data for 

computation of CO2 emissions in the reference and policy scenarios, which can 

then be performed as presented in the next section. 

 

 

2.2. The pivotal approach to CO2 calculation 
 

In the computation of CO2 reduction due to electromobility two aspects are 

usually considered. First, what is the CO2 content of the energy used by electric 

cars? Second, how comprehensive the analysis should be of “secondary” 

emissions, that relate for instance to upstream fuel production or to car and battery 

production. While both of these aspects are relevant, in this paper we concentrate 

on the issue of emissions related to electricity consumption as we identify this as 

an area of potential relevant methodological progress. 

Before turning to the estimation of non-tailpipe emission, it should be 

emphasized that the notion of additional emissions is in itself problematic. Within the 

current framework of EU climate policy and regulation, the energy sector is part of 

the European Emission Trading System (EU ETS). This means that its emissions are 

intrinsically capped (Nationale Plattform Elektromobilität, 2011, p. 4). By contrast, 

car use emissions are not regulated, and neither intended to be in a foreseeable future. 

Hence, electromobility shifts energy demand from a non-capped sector to a capped 

sector. This intrinsically annihilates the emissions of the vehicle, as underlined by 

Hacker, Harthan et al. (2009) and Horst, Frey et al. (2009). While this perspective is 

consistent and grasps, to our view, the ultimate underlying mechanisms of emissions 

regulations, we argue that there are still some valid reasons in quantifying EV-related 

emissions. A key reason is that this substitution comes at some social cost, as it 

typically excludes some other (CO2 emitting) social needs to be served by the energy 

sector. This implies that omitting the CO2 emissions related to EV diffusion would 

distort the assessment of the total costs or benefits of electromobility from a welfare 

point of view. Rather one has to take into account CO2 emissions even when they are 

not strictly speaking additional
3
. 

In order to compute these emissions, the approach we propose can be labeled 

Pivotal Marginal (or alternatively “hourly marginal”). It intrinsically 

                                                 
3 The question of how to take into account this social cost is a tricky one. Possible 

solutions range from modeling the impact of this additional demand on energy prices or 

using some information on the preferences embodied in the policy maker’s utility function. 
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acknowledges the fact that additional electricity request due to EV deployment has a 

peculiar time pattern that needs to be accounted for in the calculation. Focusing on 

hourly distribution of this additional demand, one can consider that the technology 

used to respond to a change in the demand is not identical across hours depicts the 

impact of an additional demand on a pre-existing load profile and replicates how 

various technologies are operated, based on their merit order, to respond to variations 

in demand. In the short run, it is legitimate to consider that an additional demand in a 

given time slot will be met by activating the “pivotal” technology that corresponds to 

this time slot, meaning the technology that on the merit order curve feeds the 

marginal demand. In the long run, the question of which additional plant could be 

built due to this additional demand is more complex. One can however observe that 

the merit order curve, and the corresponding definition of the pivotal technology for 

each level of output, inherently represents the optimal technology for each layer of 

the demand. Thus the pivotal technology shall not only be seen as informative of 

operating conditions but as well of investment choices. For this reason, it is 

compatible both with short term and long term adjustment mechanisms to assign any 

additional demand to the technology that is pivotal for that range of demand in the 

future energy supply curve. 

 
Fig. 1 - Simplified representation of pivotal technologies and additional demand 
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The methodology expands easily to take into account different types of daily 

loads, e.g. weekdays compared to Saturdays and Sundays, and different seasons 

(the load curve can be defined for as many seasons as necessary). Additionally, this 

demand can easily integrate “excess supply” of renewables that may be available in 

certain time periods. This can be accomplished by deducting this “renewables’ 

excess supply” from the additional EV demand. Moreover, the computation can 

easily be made stochastic by introducing some distribution of renewables. This can 

be done for instance by replicating the calculation for a given daily load with 

different extractions of a distribution. 

 

 

2.3. Computation in EMOB 
 

We describe now more in detail the calculation process. The general flow of 

data for calculation is depicted in the Tab. 3. 

 
Fig. 2 - Computation flow 
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Tab. 3 - Input data used for future emission calculations 

Data type Source Remark 

Hourly load UCTE (2009) Hourly load; we replicate the daily load 

pattern in future years, adjusting the volume 

to the electricity consumption. 

Installed capacity 

incl. additions and 

withdrawals; 

annual electricity 

production 

Prognos-EWI-GWS 

(2010) 

Reference scenario, 2008 to 2050, consistent 

with nuclear policy prospect of the German 

federal government. Nuclear abandoned 

between 2020 and 2030. 

Capacity factors BEE-AEE (2009) Capacity factors for each technology are the 

percentages of the actual generation 

compared to their theoretical maximum 

output; they take routine maintenance 

outages or equipment failures, droughts, 

unavailability of wind or sun radiation, and 

other incidences into account. In Germany, 

they range from peak 1.5% (photovoltaics) to 

92% (lignite). 

Future marginal 

costs  

Nitsch (2007) 

Kruck (2008, p. 75) 

Costs for renewable and fossil energies until 

2050. 

Costs for pump storage. 

Specific CO2 

emissions  

Machat and Werner 

(2007) 

2002 data: 

− natural gas (560g/kWh) 

− coal (938g/kWh) 

− lignite (1228g/kWh) 

− fuel oil estimates (741g/kWh) can be 

deducted from appendix 1, p. 11. 

All specific emissions are assumed to be 

constant over the time horizon. 

Variations in wind 

and solar 

availability 

German transmission 

operators (50hertz 

2011; amprion 2011; 

EnBW Transportnetze 

2011; TenneT 2011) 

Aggregated, publicly available feed-in data 

of the four German grid operators. 

EV hourly demand Infas and DRL (2010) Mobilität in Deutschland survey from 2008 

provides information on the distribution of 

km travelled (and corresponding battery 

depletion) and on the distribution of time 

when vehicles return home. 
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The calculation is made based on 12 prototypical weeks per year, one per 

month, with hourly resolution, that provides, in our view, with 168 hours/weeks x 

12 weeks/year, sufficient variety of load conditions on the network. For each hour, 

we use the energy requirement provided by the load curve, and identify the pivotal 

technology based on the comparison of energy request and effectively available 

capacity of the different technologies. 

In this computation, technologies are ordered based on two considerations: 

switching capability and (future) marginal cost. With respect to switching 

capability, we consider nuclear, lignite and run-off river hydropower plants as 

must-run. Because their start-up costs are prohibitively high, they are typically 

located on the merit curve in this sequence (Bundeskartellamt, 2011). On the 

contrary, due to prospective technological advances, coal plants will be more 

flexible than in the present. Given the current German feed-in regulation, the two 

most prominent renewable energies, solar and wind power, are also considered 

must-run plants. Other renewable energies, like hydropower, geothermal, biomass 

and waste, are deployed according to their positions in the marginal cost curve. 

Each technology accounts for its capacity factor, which takes into account a 

number of days of unavailability and provides estimates of the annual average 

dispatch
4
 (Prognos-EWI-GWS, 2010). This factor takes into account both 

unavailability of installations for maintenance purposes and switching off of plants 

for operating reasons. Additionally the model integrates fluctuations of renewable 

energy sources their capacity as will be illustrated more in detail below.  

The forecasts of the underlying Prognos-EWI-GWS scenario assume a net 

export of electricity produced in Germany until 2020. This relation reverses until 

2030, when approximately 8 percent of electricity is imported (Prognos-EWI-GWS 

2010, p. A1-10). This share declines again until 2040. The authors disaggregate 

power imports into renewable energies and other primary energies, with renewable 

energies accounting for about a third of the imports. However, in the projections 

the composition of fossil generation technologies remains unclear. Given the 

German utilities’ role as net electricity exporters until 2020 and the relatively low 

share of imports thereafter, power exchanges with surrounding countries are not 

taken into account by EMOB. Any import of substantial amounts of so-called 

“grey” energy could distort the emissions profile significantly upward (e.g. by 

lignite plants in Eastern Europe) or downward (e.g. by nuclear power from 

France), though, and could dilute or alter the results for the German case. Such a 

simplification is a limitation, it is however common in energy system simulations
5
.  

Fig. 3 illustrates a merit order curve for 2020, as it is used in the model. 
 

                                                 
4 The so-called “Jahresvolllaststunden” in German terminology. 
5 For example, Pehnt, Helms et al. (2011, p. 225) mention the potential emission effect 

of imports, but do not explain how the effect is quantified. 
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Fig. 3 - Example of a dispatch curve (6pm on a weekday in the year 2020) 
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The graph distinguishes between must-run technologies that are dispatched 

irrespective of their long-run marginal costs (to the left), and the line-up of all 

other technologies according to their long-run marginal costs
6
. Any technology 

beyond the dotted, vertical dispatch line, indicating the level of instantaneous 

demand, is not dispatched. 

For a realistic representation of the resources with stochastic variation: solar 

and wind, which exhibit substantial meteorological fluctuations, we take possible 

variations of the output into consideration.  

In the case of wind power, this is accomplished by the statistical analysis of 

hourly wind feed-in data of the four German grid operating companies in the year 

2010. To integrate these variations in our calculations we calibrate four probability 

density functions based on hourly observations for each season. To calculate the 

seasonal distributions, the Palisade software “@Risk” has been used. For each 

quarter, a statistical analysis determines via a Chi-Square best-fit algorithm the 

                                                 
6 Long-run marginal can be defined as “the levelised cost of meeting an increase in 

demand over an extended period of time. It is calculated by determining the difference in the 

NPV of two optimal generation development (installation) programs over an extended 

period (say 30 years)”. (IES, 2004. The Long Run Marginal Cost of Electricity Generation 

in New South Wales – A Report to the Independent Pricing and Regulatory Tribunal.) 
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distribution that corresponds most closely to the observed pattern
7
. In addition, the 

model differentiates between on-shore and off-shore wind power intake. 

The second fluctuating energy source in the generation mix is solar power. As 

in the case of wind power, data from the four German grid operators is aggregated 

according to seasonal patterns. The methodology of translating the feed-in 

quantities is different from the wind pattern, though. Solar radiation occurs in a 

daily cycle with slight variations, starting in the morning and ending in the 

afternoon or evening. For the simulation, the daily solar intake is modelled as the 

average hourly value for each season with a deviation that is drawn from the 

Normal Distribution with parameters based on the observed values. Hence, for 

each day the sunlight is assumed to fluctuate around the hourly mean values with 

an intensity that corresponds to the Normal Distribution’s divergences. 

At each hour of our 12 prototypical weeks, we compute the electricity demand 

and the supply of each technology according to the merit order. The pivotal 

technology is the one that equates supply and demand. The calculation is 

subsequently expanded to a whole year, and replicated for every horizon year of the 

model. 

To determine the time pattern of EV reloading, EMOB simulates the behaviour of 

electric car owners for a sample week of each month from 2011 to 2050. For this 

purpose, data from the survey “Mobility in Germany” (2008) is extracted
8
. 

The 2008 dataset of Mobility in Germany provides information about how many 

cars are actually used during each day of a week. In addition, it provides exact 

information on distance, start and end of each trip, its purpose (commuting to work, 

shopping, leisure activities), and whether it is a “loop” or “leg” in the terminology of 

transport economists, i.e. a round trip for instance to work and back at home or a trip 

with multiple stops, including e.g. shopping activities, and the time spent in the car. 

The information can be used to construct an exact representation of how the total 

German vehicle stock is used. 

In the EMOB reference scenario, electric vehicle owners charge in the evening 

when they return home. If travel distances of pure battery electric vehicles exceed 

their limited battery range, they are assumed to charge at quick charging stations on 

the road. Range extenders and plug-in hybrids are assumed to use their full electric 

range before switching to the additional gas intake. Emissions for PHEV and RE 

(and corresponding kilometres) are accounted for only for the distance driven on 

electric traction. Based on these assumptions it is possible to estimate the aggregate 

hourly electricity requirement of electric vehicles. 

 

                                                 
7 For autumn and Winter, the Gamma distribution yields the best fit, while for Spring 

and Summer the Lognorm distribution achieves the highest Chi-Square. We make random 

extraction from each seasonal density function for every hour of the week, taking into 

account the observed correlation of wind across successive hours. 
8 Under the simplifying assumption that car owners do not change their travel behaviour 

based on the type of car technology they choose. 
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3. Results and comparison with other computing methods 

 
We first provide a detailed description of the computation made and 

subsequently compare the results with those obtained using other methods of 

interest. 

 

 

3.1. Results 
 

We first present results about the emissions and compare with other methods of 

calculation. Successively, we present results about the source of energy used to 

reload EV’s. Based on the Pivotal Marginal method, we obtain a time varying non-

tailpipe emission of electric cars. Starting from 87 g./km in 2012 it decreases to 60 

g./km in 2030. 

The model shows that the predominant generation technology used for EV 

charging will be coal until the early 2020’s. By then, natural gas takes over and 

remains the main technology, reaching levels of over 90% of EV consumption 

before 2030. Renewable energies will play a negligible role in the provision of 

electricity for electromobility. According to the model, onshore and offshore wind 

will account for less than 10% of the supply. After 2030, pump storage will capture 

a small share of the EV demand.  

 

 
3.2. Comparison with other computing methods 

 
We can compare these estimates with others, obtained by alternative (less 

convincing, to our view) methods. Tab. 4 show the results of the comparison. All 

estimates are made within EMOB 0.1.3.6, so the difference in results can be 

assigned to the difference across methods while input data are kept identical. 

The Average Emissions of the electricity sector (represented in the figure by 

the full dark line) are calculated exogenously by using the reference scenario 

forecast by (Prognos-EWI-GWS 2010) on annual electricity production of each 

generation technology, and multiplying it with the respective CO2 emissions. 

Peak Marginal is assumed to correspond to gas-fired technology (Sensfuß, 

Ragwitz et al., 2007; Pöyry 2010). Given the already high efficiency of the 

technology, they are expected to remain at 560 g/kWh. 

The estimates for the Forward Built Marginal emissions are derived from two 

sources: for the fossil fuels, actual large-scale plant projects until 2020 are 

published by the association of German electricity producers (BDEW, 2011) and 

cross-checked with data on the construction of new power plants released by the 

German energy agency (EUtech, 2008). Data on predominantly decentralized 

renewable energy projects is based on estimates of the German Environment 

Ministry (BMU, 2011). However, any projections beyond 2020 data become 

speculative and would have to rely on more aggregate, official figures of foreseen 
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capacity expansion. According to the BMU, the extension of renewable energy 

capacity will continue and it will successively replace a large fraction of the 

existing fossil-based and nuclear plants. 
 

Tab. 4 - Comparisons of CO2 emissions by EVs based on four different methods (g CO2 /km, 

annual average, in parenthesis g/kWh) 

 2020 2030 

Pivotal Marginal 84,0 g/km 

(817 g/kWh) 

60,2 g/km 

(620 g/kWh) 

Peak Marginal9 57,6 g/km 

(560 g/kWh) 

54,3 g/km 

(560 g/kWh) 

Average 58,1 g/km 

(565 g/kWh) 

45,4 g/km 

(468 g/kWh) 

Marginal Forward Built 26,2 g/km 

(255 g/kWh) 

n.a. 

 

Fig. 4 - Comparison among different computation methods 

 
 

Interestingly, Fig. 4 shows that the Pivotal Marginal calculation always 

provides larger emissions than alternative methods – except around 2030 where it 

converges toward peak marginal. 

Clearly, Average Emissions (scoring around 60 g CO2/km until 2020, with a 

subsequent decline to around 40 g CO2/km in 2035) consistently underestimates 

the non-tailpipe emissions of EVs, compared with the suggested pivotal approach. 

The reason for this is that the average emissions are actually less CO2 intensive 

than pivotal marginal, which are often fuel based.  

                                                 
9 While Peak Marginal emissions of natural gas plants are assumed to remain constant, 

the efficiency of electric car powertrains increases endogenously over time in EMOB.  
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The Peak Marginal approach underestimates EV emissions until 2025. This 

relates to the fact that, in the close future, non peak technologies often have higher 

emissions than peak. The emissions computed on the basis of Forward Built 

Marginal approach show high emissions at the beginning of the simulation period, 

induced by the completion of several large-scale lignite and coal-fired plants 

before 2020, and a substantial uptake of renewable energy installations thereafter. 

Hence emission estimates merely based on projections of newly built capacity may 

underestimate non-tailpipe emissions even more drastically than the average and 

peak marginal emission approaches. Eventually, we can provide comparisons of 

pivotal approach with micro simulation. We observe for instance a minor deviation 

of around 5% between the emissions estimates in 2030 computed by our model and 

the one provided by Pehnt, Helms et al. (2011). It cannot be measured, though, 

what part of this difference results from difference in assumptions and what part 

results from a higher elaboration of the microsimulation model. It is however fair 

to note that if microsimulation model was to be taken as a benchmark, the pivotal 

approach brings the result fairly close to this benchmark. From this comparison, it 

emerges that the pivotal approach is capable of taking into account significant 

features of the energy distribution that are absent from other simple methods. It 

thus appears, in our view, as a valuable tool to aid public decision making. It also 

counteracts the risk of having spurious numbers taking too much room in the 

public debate. While it is certainly simplified compared with more elaborated 

microsimulation methods, it still provides robust results and is far less demanding 

in terms of data and computational resources. 

 

 
4. Emissions in coordinated EV charging scenarios 

 
Our results so far do not take into account the possibility of so-called coordination. 

This option is however usually perceived (NPE, 2011) as an opportunity to reap the 

whole benefits of electromobility. We consider several options how to increase the 

share of renewable energies to fuel EV’s through coordination. 

The reference scenario of EMOB assumes that car owners charge their vehicles 

when they return home. However, one of the benefits of the storage capability of 

electric batteries is that they could reload batteries when excess supply from 

renewables is available. Additional benefits of coordination relate to local grid 

constraints (Perujo and Ciuffo, 2010)
10

. Electric vehicles could hence play a role in 

balancing the system towards greater efficiency and environmentally sound 

                                                 
10 Coordination in the charging patterns of electric vehicle owners may become necessary 

when the low and medium voltage grid is no longer capable of supporting a joint charging 

behaviour within a geographic area (see e.g. for the case of the Province of Milan, Italy). 

Technical restrictions may induce individual parts of the equipment, like transformers in the 

low and medium voltage grid, to fail. Coordinated charging switches parts of the load to later 

points in time, such that critical technical thresholds of the local network are not exceeded. 
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resource use. As a consequence, the average non-tailpipe emissions of EV’s would 

decrease. 

In this section, we consider several options to increase the share of renewable 

energies to fuel EV’s in a coordinated way. 

We consider four different charging schemes: 

1) Uncoordinated charging at home: car owners reload when they return 

home. This is the EMOB reference scenario; 

2) Coordinated charging after coming home and next morning 6am: 

reloading operations may be shifted between the time car owners return home and 

next morning 6am; 

3) Uncoordinated charging at home and at work: car owners reload when 

they arrive at work or as soon as they return home; 

4) Coordinated charging at work and at home: reloading operations may be 

shifted between the time car owners arrive at work before they return home, as 

well as after coming home and next morning 6am. 

Alternative 2 allows for load shifts at night, when overall demand is low and 

excess wind energy may be available. Our calculation assumes perfect short-term 

foresight of meteorological conditions
11

, so a certain amount of charging may be 

shifted, as long as all EV’s are fully loaded before 6 am
12

. 

Alternatives 3 and 4 suppose that car owners are also able to charge their 

vehicles during day-time, when they are at home, or at their workplace until they 

leave, in an uncoordinated and coordinated way, respectively. An increased load 

during day-time may absorb excess generation by photovoltaic cells and hence 

decrease the overall emission balance of electric cars.  

Coordinated charging could also comprise Vehicle-to-Grid (V2G) power flows, 

where batteries can supply electricity to compensate for lack of renewable energy 

intake (see e.g. Andersen, Mathews et al., 2009; for discussions of the Danish case; 

Galus, Zima et al., 2010, and Kley, Lerch et al., 2011, for business models related 

to controlled recharging). However, the additional charging and discharging cycles 

induced by V2G may face stiff car holder opposition, because the batteries’ life 

times may be substantially diminished, while revenues remain limited (Delucchi 

and Lipman, 2010; Peterson, Apt et al., 2010; Bashash, Moura et al., 2011). For 

this reason, we refrain from including V2G in our calculation and guess it could be 

misleading for policy analysis
13

. 

                                                 
11 It is likely that computational tools for weather forecasts, in particular wind speed, 

continue to further improve, see also the discussion in ISET (2007). Prognosesicherheit 

Ausgleichseffekte, University of Kassel. Working Paper 2007-067.  
12 More precisely, car owners are guaranteed to have their batteries reloaded at 6 am as 

much as if they were not coordinated. It can occur that some car owners do not have their 

batteries fully reloaded at 6 am, but this occurs only if they return home late at night.  
13 Additionally, depending on grid configuration and generation mix, coordinated 

charging may be beneficial to ease bottlenecks on the low voltage network, but may actually 

increase overall emissions due to a shift from peak load gas power plant to base load coal 

power stations, a situation that has been analyzed in details for the case of PHEV in Ohio, 
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Fig. 5 shows the impact of each charging alternative on average non-tailpipe 

emissions of EV’s, compared to the reference scenario.  

 
Fig. 5 - Changes in pivotal emissions, compared to the reference scenario 

 
 

The analysis reveals that coordinated charging at night (Alternative 2) only 

marginally reduces non-tailpipe emissions. Alternatives 3 and 4, which allow for 

charging at work and during daytime at home, bear some savings around 2020, but 

lead to slightly higher emissions in 2030, because coal power plants still represent 

20 percent of the pivotal capacities and will be mainly used during daytime. 

Coordinated charging may have a positive impact on the local network, though, 

which is not represented in the graph (see also Göransson, Karlson et al., 2010, on 

this topic). 

 

 

5. Discussion and conclusion 

 
From a methodological point of view, the pivotal approach appears a relevant 

one in that it provides a parsimonious alternative to the average and marginal 

calculation that populate the policy and part of the scientific debate about electric 

vehicles. While we are aware that the pivotal approach provides simplified 

representation compared with detailed microsimulation methods we see an interest 

                                                                                                                 
Sioshansi R., Fagiani R. et al. (2010). Cost and emissions impacts of plug-in hybrid vehicles 

on the Ohio power system. Energy Policy, 38(11): 6703-6712. 
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for the scientific community in considering pivotal approach in that it adds 

significant understanding of the energy system, especially considering the time 

pattern of reloading. Interestingly, it provides results that are strikingly close to 

microsimulation methods, but are reasonably less resource consuming at least by 

one (if not two) order of magnitude. 

Apart from the comparison of methodologies, our analysis provides insights 

about a number of issues relevant for the policy debate. First, we estimate EV 

emissions based on an endogenous simulation of EV market uptake.Second, our 

analysis provides information about which generation technology will be used to 

deliver electricity to EV’s. Our results indicate that fossil fuel-based plants provide 

most of the energy for charging EVs. The share of EVs’ energy requirements that 

are satisfied with renewables remains very low. The dominance of coal-based 

plants and, later, the expansion of natural gas plants will account for the bulk of the 

pivotal dispatch. Despite the substantial increase in onshore and offshore wind 

energy, the results shows that this technology, given its position on the merit order 

curve, only rarely happens to be the marginal technology. Almost all wind energy 

is absorbed by future non-EV demand and, if neither solar nor wind is temporarily 

available, they are substituted by gas. In other words, the future energy sector is 

organized based on the complementarity between gas and renewables: gas 

generation is used to compensate for changes in the output of renewables. 

In these conditions, our findings also indicate that there is little room for the use of 

potential wind or solar “excess supply” to charge EVs. Given the complementarity 

between gas and renewable generation, the increasingly flexible supply structure will 

only on rare occasions allow for a renewable surplus beyond the regular demand.  

Eventually, this limited reliance on renewable persists even considering 

possible coordination schemes. In the simple situation where reloading operations 

can be shifted during night (with the constraint of maximal reload at 6 am in the 

morning), average CO2 emissions of EV’s decrease by less than 1 percent. 

In conclusion, the notion of feeding electric cars with renewables, which is 

often used as an argument in favor of EV’s, seems discussible in the future German 

energy scenario. The advantage of electromobility as a buffer for excess renewable 

energy may therefore be overstated, even under investment scenarios that are 

already strongly promoting renewables.  

Eventually the picture that emerges from our analysis is polyedric. On the one 

side, looking at merely technological aspects, an EV car is generating less CO2 than 

an ICE, although certainly not so few emissions as to make the “zero emissions” 

label a correct one. On the other side, one should recall that EV non-tailpipe 

emissions may not be additional emissions, due to the insertion of energy production 

in the capped Emissions Trading Systems, but are rather substitutions to other CO2 

emitting uses of energy. It is however legitimate and necessary to bear in mind that 

these emissions are a cost to society as they substitute other energy uses. 
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