An architecture including network QoS in scientific workflows

Zhiming Zhao Paola Grosso Ralph Koning Jeroen van der Ham Cees de Laat
System and Network Engineering research group
Informatics Institute, University of Amsterdam
Science Park 104, 1098XG, Amsterdam, the Netherlands
{Z.Zhao|P.Grosso|R.Koning|vdHam|C.T.A.M.Delaat}@uva.nl

Abstract—The quality of the network services has so far rarely been considered in composing and executing scientific workflows. Currently, scientific applications tune the execution quality of workflows neglecting network resources, and by selecting only optimal software services and computing resources. One reason is that IP-based networks provide few possibilities for workflow systems to manage the service quality, and limit or prevent bandwidth reservation or network paths selection. We see nonetheless a strong need from scientific applications, and network operators, to include the network quality management in the workflow systems. In this position paper, we discuss our vision on this issue and propose an agent based solution to include network resources in the loop of workflow composition, scheduling and execution when advanced network services are available. Our approach is conducted in the context of the CineGrid project.

Key words: Quality of Service, Advanced Network, Scientific Workflow, Grid

I. INTRODUCTION

The quality of the network connections and services has rarely been taken into account by current scientific workflow management systems, because 1) traditional IP-based networks provide limited reservation capability for workflow engines; 2) the existing e-Science applications assume available network connections as non-changeable services, and seek customized solutions at software level to optimize computing processes and data storage; and 3) the existing applications mainly consider the functionality of the e-Science services, and limited support has been provided for including (network) quality requirements for the services in the composition, enactment and execution of workflows. Still advanced network services are essential for many scientific applications, where data transmission delays become a bottleneck of the global performance of the application [1]. Without the quality guarantee at the network level, the global workflow quality requirements cannot be assured. Several strategies have been tried to improve the workflow performance in these cases, such as caching data in a closer location to the computing element [2], or reducing the load of computing tasks by reusing the previous computed results [3]. However, for applications that require data streams from remote data sensors, such as in [4], those solutions will not be sufficient, and advanced network services are crucial to accelerate large data transfer between the distributed application components. The recent emergence of advanced network infrastructures for e-Science enables tuning of network performance at the application level. For instance, the hybrid network architecture [5] can provide connections on different layers based on the same physical fibre; this allows applications to request dedicated circuits for transferring very large quantity data. By including network resources in the scheduling loop, the high level application gets an extra opportunity to optimize execution and improve performance. These new opportunities come with some challenges. Not all network infrastructures provide the network services for reserving specific connections or allocating network bandwidth; the service invocation in different network domains is often proprietary and not easily extensible, and makes request for network service provisioning across sites difficult [6]; scheduling network resources requires knowledge on the current state of the network, which implies the existence of a sophisticated monitoring system. In this paper, we discuss the challenges in including network resources in scientific workflows, and propose an agent based architecture to accomplish this goal and realize application level quality tuning of network resources. We apply this in the context of an ongoing project, CineGrid [7]. The paper is organized as follows; first, we will review the state of the art in this field, and then present our solution and the first prototype of our system.

II. QoS AND WORKFLOWS: THE STATE OF THE ART

From the life-cycle perspective of a scientific workflow, QoS is relevant to four aspects: workflow composition, service selection, execution control and provenance. In the following sections we briefly review the existing work on each issue.

A. QoS aware workflow composition

A workflow composition process that is QoS-aware must: 1) compose a service of the highest quality and 2) determine the quality of the composition process itself. The first goal is achieved by computing the global quality starting from the QoS attributes of constituting services [8]. Graph reduction is a widely used approach [9]; a pre-defined set of logic patterns define certain reduction rules which can be used to simplify the logical dependencies among constituting services. From the reduction rules, the quality parameters are computed; for
instance the computing time of two sequentially connected services is computed as the sum of the quality of each of them, the computing time of a two parallel services is computed as the maximal one from them. The second goal requires modelling the quality attributes of the semantic links between services, the composition quality of the workflow can then be evaluated by the semantic fit and the reliability of the selected service in the workflow [8].

B. QoS aware service selection

Searching for suitable services from available resources is a basic procedure in composing a workflow. QoS aware service selection implies two steps: properly formulating the requirements and selecting resources that meet these requirements. Rosenberg proposed a QoS enabled description language, the Vienna composition language (VCL) [10], to specify an abstract flow for workflow composition. The VCL defines an abstract workflow as four parts: feature definition, feature constraints, global constraints and the business protocol (the desired workflow language). The feature constraints and global constraints include both functional constraints and QoS attributes. The problem of resource selection has been formulated differently. A commonly used formulation is shortest path finding in a weighted graph, in which the available services are represented as a directed graph according to the service types, and the graph nodes are labelled by the quality attributes of the service [11]. Well known shortest path finding algorithms include Bellman-Ford and Dijkstra’s. These algorithms exhibit optimal performance because of their greedy search strategy and avoid backtracking operations during the search; however, the minimal cost path found by the algorithms is often not the most optimal solution if there are multiple constraints on the quality attributes. Therefore, the problem has also been formulated as a multi constraint optimal path problem [12], or multi objective optimization problem. Ant colony optimization (ACO) is a meta-heuristic search approach proposed in [13], [14] for discovering minimum cost path in a graph, and for solving NP-hard combinatorial optimization problems. Fang et al. [15] applied ACO in service selection and proposed a multi objective ACO approach which can simultaneously optimize several objectives. Genetic algorithm in searching optimal paths, and constraint programming or Integer programming methods are also widely used for the multi objective optimization problem.

C. QoS aware workflow execution

Workflow execution is the mapping of workflow processes to underlying computing resources and the scheduling of the execution sequence. Task based scheduling is a straightforward approach, in which the workflow tasks are submitted to the local manager of the computing infrastructure. Several researchers have instead proposed a workflow level scheduling that takes into account future task performance [16]; this approach will achieve higher performance and better resource utilization than only using local resource managers. Multi objective optimizations are widely used to formulate the problem of QoS aware scheduling. Avanes proposed a constraint programming based approach to search for best match between workflow requirements and the available computing resources [17]. The basic idea is to describe the quality requirements and resource dependencies as constraints by partitioning the workflow into different parts based on its patterns and their QoS requirements. One of the contributions from Avanes work is that the network dynamics has been also included in the procedure of constraint resolving. Resource provision plays an important role to improve the fault tolerance and the performance of the workflow [18]. Basically, provisioning can be either static or dynamic. Advance reservation is a typical static provisioning mechanism, and several batch based schedulers support it. Based on the high level quality requirements, the workflow engine reserves computing resources and time slots from the Grid resource manager. One of the disadvantages of static provisioning is its overhead on the total cost for computing the workflow. To improve this, Raicu et al. [19] proposed multi level scheduling strategies, in which the application level scheduler is able to interact with the low level resource manager to tune the requirements at runtime. This approach introduces a dynamic component in the provisioning process.

D. QoS and provenance

The provenance service tracks the events occurred in the workflow execution, and allows scientists to trace the evolution of data computed in the workflow and to obtain insights in the experiment processes. Moreover, provenance data can also be used to debug errors of the workflow execution and optimize the workflow design. The Open Provenance Model (OPM) [20] emerges as a standard model to represent workflow provenance information. Including QoS information of the workflow processes and the execution in the provenance model allows scientists to analyze the quality of the services and the workflow scheduling. In [21], the provenance service is provided by a QoS aware middleware, which records the changes of the service quality as events. Evaluating trust and reliability of the provenance data itself has also been discussed in the literature [22]. However, research on the provenance model which includes the QoS information of the workflow processes is still in its very early stage.

III. NETWORK QoS AND SCIENTIFIC WORKFLOWS

Our research interest focuses on the inclusions of the network quality of service in the high level e-Science workflows. Workflow systems have been recognized as an important tool to manage the invocation of lower level network services and the security related routines [23]. In SC09, the VLAM workflow system [24] demonstrated allocation of workflow modules over specialized network connections. Several e-Science environments already recognized the importance of the network resources reservation in the context of workflow scheduling, for instance in [25]. When including network
resources QoS in a scientific workflow, we have to solve several issues:

1) We need a representation and mapping mechanism between the user level requirements and the quality model of underlying network resources. When mapping high level workflow processes to low level resources, the abstract quality descriptions of the workflow also have to be translated to the proper quality constraints on the underlying resources.

2) A good network resource monitoring system is essential in using QoS in the system design, execution and evaluation [26]. A workflow description composed from carefully selected resources or services does not imply that the actual execution will achieve the desired performance. The quality guarantee of the workflow execution is a dynamically adapting procedure between the workflow engine and the actual state of the resources involved in the workflow execution, unless one can guarantee a priori that all the resources perform at their best state. A problem is that monitoring quality metrics of the network resources in the workflow context is also in its initial state. Truong proposed a monitoring framework for Grid services, which monitors the resources from four different levels: machine, network path, middleware and application [26], and derives the QoS value for the reliability and availability of the machines, network paths and middleware from the monitoring.

3) We need to optimize the negotiation between the workflow engine and the underlying network resource manager, for both resource provisioning and tuning the scheduling of workflow (or replacing workflow components). This is made more difficult by the ad-hoc APIs adopted by the different network providers, which prevent a generic solution.

4) In a scientific workflow we need to schedule multi level resources to support real time applications. Solving multi-level constraints between heterogeneous resources requires different optimization searching technologies in the problem space and it is time consuming compared to the state updates of the underlying resources. For instance, discovering suitable network paths often involves not only searching connected intra-domain paths between network devices, but also inter-domain exchange of topologies. Further, the evolution of the underlying network state make scheduling more difficult.

5) We need to adapt the provenance model to include the (network) quality of service information, and to let the logging facility obtain such information and record it in the database. The current provenance model mainly focuses on the evolution of the data, and uses certain partial relation to indicate the dependencies of the data process; it does not explicitly include the quality of actual services when the data was produced. Such information can be very important for improving the scheduling strategies utilised by the workflow engine.

We propose an agent based solution, which includes network QoS information in a workflow system not only at the runtime, but covering composition, scheduling and execution. Our system tackles the issues we just summarised above.

IV. AN AGENT BASED QOS WORKFLOW PLANNER

We had two alternatives when we looked at the inclusions of QoS aware functionalities in a scientific workflow system: 1) re-engineer the functional components of an existing workflow system to include the QoS support, or 2) consider the existing workflow systems as legacy systems, and provide QoS support as plugged components to the system. Each alternative exhibits advantages and disadvantages. In the context of our research, we chose the second approach; one of the motivations is that generic functional components can be encapsulated as reusable tools which can serve different specific scientific workflow systems to get QoS support.

A. Design requirements

We can highlight three scenarios where network QoS support can be applied: QoS aware resource selection, resource provisioning and quality assured workflow execution. The designed system thus needs to meet the following functional requirements:

1) The system must include QoS aware resource discovery and selection of network resources. Network resources and the quality attributes are necessarily described, and a search tool is provided to check the suitable resources based on the input requirements.

2) The system should be able to generate a resource provisioning plan for selected resources based on the input requirements. The plan is made based on the provisioning services that the available network infrastructure provides.

3) The system should be able to generate workflows handling large data movement between network resources with guaranteed data transfer quality, and wrap the generated workflow as a service which can be executed standalone or included in a third party workflow.

4) At runtime, the system should provide monitoring services to track the actual quality of the network resources. It should also provide interfaces for third party workflows to invoke during their provenance procedure to record all the runtime information.

B. An agent based architecture

Multi agent technologies provide a suitable model to decompose the system functionality and to realise the control intelligence between different components. For these reasons we propose an agent based architecture, composed of a QoS aware workflow planner (QoSWP) and five more agents: a Resource Discovery Agent (RDA), a Workflow Composition Agent (WCA), a Resource Provisioning Planner (RPP), a QoS Monitor Agent (QMA) and a Provenance Service Agent (PSA). Fig. 1 illustrates a conceptual schema of our agent system. The QoSWP coordinates the other agents to select suitable
services, to propose optimal network connections between the services, and to create the necessary scripts for the workflow engine to invoke the requested services. A typical use case for the CineGrid includes workflow management, to propose optimal network connections between the services, and to create the necessary scripts for the workflow engine to invoke the requested services.

The QoS aware Workflow Planner (QoSWP) receives the request for data process services and the service requirements from the user (step1). After that, the RDA reads the description of the resources and the network topologies from the registry, and searches suitable data sources and destinations, and network paths between them (step2). The RDA returns a list of qualified candidates, and sorts them based on the quality metrics of each candidate (step3).

From the candidates, the QoSWP selects the best one, and request WCA and RPP to generate a resource provisioning plan and a data transfer workflow (step4 and step5), both of which will be executed by the workflow engine (step6). At runtime, the QMA monitors the actual state of the resources and checks whether the global quality required by the workflow is satisfied (step7). Based on the states updated by the QMA, the QoSWP decides whether the resources of the workflow should be adapted. The provenance service records events in the resources provisioning, allocation, and combine the actual state of the quality attributes with the log data (step7).

V. THE CINEGRID USE CASE

The research is conducted in the context of CineGrid. An important mission of the CineGrid project is to provide a dedicated network environment to connect distributed parties from different domains to share large quantities of very-high-quality digital media, such as the high definition video material used in the movie industry. We are prototyping our ideas using a small portion of the CineGrid infrastructure as a test bed. Four locations in Amsterdam host CineGrid resources and are connected via dedicated and configurable circuits provided by SURFNet [27]. The results reach beyond the workflow field, and they can be beneficial to understand how advanced network connections enhance the digital media delivery in the academic and education context.

The CineGrid community uses semantic web technologies to describe the services, devices and the network topology. The UvA team in the project have developed two ontologies. The Network Description Language (NDL) [28] models the different levels of a network infrastructure: physical, domain, capability, layer and topology. The CineGrid Description Language (CDL) [7] describes the services and resources on top of the network infrastructure. Using these two languages, we have described the resources in the research test bed. Fig. 2 shows the topology of the test bed. Four locations (UvA, SARA, De Waag and the Dutch Film and TV institute) in Amsterdam are connected with up to two dedicated switchable 1Gbit/s links, which can be dynamically changed between locations using the openDRAC [29] network provisioning software used by SURFnet. This figure also shows a more detailed view of the resources in one of the four locations. In this section, we will demonstrate how the designed architecture works in a use case, and discuss the technical considerations to prototype the system.

A. QoS guaranteed high quality media on demand

We are focusing on a digital media delivery on demand use case: the goal is to retrieve media material from the infrastructure, and request quality guaranteed connections to deliver the data to qualified nodes for further processing, such as playback or visualization. Using the proposed agent framework, the use case will be prototyped as follows:

1) The user uses the schema provided by the system to describe the name and properties of the media, and to specify the quality requirements for visualizing the data.
2) The QoSWP parses the user input and creates queries for the RDA to look for data sources of the media;
3) Based on the input requirements, the RDA looks for data repositories which contains the required media, and the visualization devices which meet the required playback quality. Then the RDA looks for all possible network paths between the sources and the visualization devices.
4) The RDA returns a list of candidates in the form of (source, destination, path) triplets, and the candidates are ordered based on the quality they provide. The QoSWP selects the best candidate from the list and send it to the RPP and WCA to make resource provisioning plan, and to create a workflow which can deliver the media from the source to the visualisation device, and to play it back in the visualization device.
5) To help RPP and WCA make the provision plan and the workflow compliant to a specific workflow engine, the QoSWP also explicit tells the RPP and WCA what language of the third party engine will use.
6) After receiving the scripts generated by the RPP and WCA, the QoSWP sends them to the third party engine to execute the provisioning plan and the delivery plan.

B. QoSAWF: an abstract workflow description language

Based on the experience of early work [10], [30]–[32], we propose an ontology for describing abstract workflows (qosawf.owl). It defines the basic concepts of workflow processes, pre/post-execution conditions of the process, media data, and quality attributes, as shown in Fig 3. The description of the user request is described as an object of the Request class, and a Request consists of one or more Processes which can be accessed via the requestFunctionality property. A Process class uses preCondition and postCondition to indicate the requirements for Data the process requires and generates, and the quality for the required data. The Process class also uses executionCondition to indicate the service quality for the process. In the current definition, Data contains two specific types: Media and Scientific_Data. And the service quality is modelled as set of Quality_Attributes. Based on the QoS taxonomy defined in [33], Quality_attribute can more specifically be Precision, Timeliness, Reliability and Security_Level. In our case, where the pre and post conditions consist of requirements for data and the data quality, andCondition and orCondition are the two most important types. Using the above ontology, a user is able to formulate a request for obtaining and playing back a specific video material with a minimal resolution and frame rate.

C. First prototype

We have compared different options to realise the resource search mechanism; we have evaluated several Query languages (RQL, RDQL, N3, Versa, SeRQL, SPARQL) and Rule languages (SWRL, Prolog/RDF lib, JESS etc.). We have finally chosen the RDF library of SWI-Prolog; its triple based manipulation interface is easy for the high level language we use to implement the agents (Java); it is also easy to access the runtime state of the triples. Finally, the Prolog language provides effective solutions to realise graph path findings. In the current prototype, the RDA receives the URI of the user requirements and network resources from the QoSWP. The RDA parses the given abstract workflow and searches the resource description; it returns results in the form of (storage host, visualization host, path, quality rank).

VI. Summarizing remarks

In this paper, we have reviewed the state of the art of the QoS aware workflow management. We have discussed different technologies for realizing QoS aware resource discovery, workflow composition, scheduling and adaptation. Based on the existing work, we have proposed an agent based solution to include QoS aware network resources planning in the loop of workflow composition, provisioning and execution. We have proposed an RDF based schema for describing the data and QoS requirements in an abstract workflow.

The research is conducted in the context of the CineGrid project; however, the results of the research aim to be generic and applicable for any e-Science applications which suffer from the bottleneck of transferring large quantity data over not optimal networks. We will develop the QoSWP as a generic
service for legacy workflow engines to support QoS aware network resource selection, provisioning and invocation of network services for transferring data. Moreover we will define a provenance model which includes the causality relations between scientific data and the quality of the utilised resources. This will allow scientists to investigate the dynamics of the underlying resources allocation and to optimize the workflow scheduling strategies. The work described in the paper is still in its early stage. The research will proceed as follows. Firstly, we will prototype the RDA to enhance an early version of the CineGrid portal developed in the UvA for QoS aware network resources discovery. Secondly, we will realise the WCA and RPP; we will use the VLEWF-Bus system [34] as the first test case for the underlying third party workflow engine. Thirdly, we will focus on the QMA and PSA. The OPM will be used as starting model to develop PSA.

ACKNOWLEDGMENT
We would like to thank the National e-Science Research Center and the Dutch national and education network SURFnet, through the GigaPort Research on Network (RoN) project, for sponsoring this research.

REFERENCES