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ABSTRACT
The mid-Pliocene warm period (MPWP, 3.3–2.9 Ma), with reconstructed atmospheric 

pCO2 of 350–450 ppm, represents a potential analogue for climate change in the near future. 
Current highly cited estimates place MPWP maximum global mean sea level (GMSL) at 21 
± 10 m above modern, requiring total loss of the Greenland and marine West Antarctic Ice 
Sheets and a substantial loss of the East Antarctic Ice Sheet, with only a concurrent 2–3 °C rise 
in global temperature. Many estimates of Pliocene GMSL are based on the partitioning of oxy-
gen isotope records from benthic foraminifera (d18Ob) into changes in deep-sea temperatures 
and terrestrial ice sheets. These isotopic budgets are underpinned by the assumption that the 
d18O of Antarctic ice (d18Oi) was the same in the Pliocene as it is today, and while the sensitiv-
ity of d18Ob to changing meltwater d18O has been previously considered, these analyses neglect 
conservation of 18O/16O in the ocean-ice system. Using well-calibrated d18O-temperature rela-
tionships for Antarctic precipitation along with estimates of Pliocene Antarctic surface tem-
peratures, we argue that the d18Oi of the Pliocene Antarctic ice sheet was at minimum 1‰–4‰ 
higher than present. Assuming conservation of 18O/16O in the ocean-ice system, this requires 
lower Pliocene seawater d18O without a corresponding change in ice sheet mass. This effect 
alone accounts for 5%–20% of the d18Ob difference between the MPWP interglacials and the 
modern. With this amended isotope budget, we present a new Pliocene GMSL estimate of 
9–13.5 m above modern, which suggests that the East Antarctic Ice Sheet is less sensitive to 
radiative forcing than previously inferred from the geologic record.

INTRODUCTION
The magnitude of sea-level rise to which 

anthropogenic global emissions of CO2 commit 
us over the coming centuries remains a pressing 
problem in the Earth sciences. The mid-Plio-
cene warm period (MPWP) offers a unique win-
dow into this problem, as it represents an Earth 
system equilibrated with modern to near-future 
radiative forcing (Pagani et al., 2009). Estimates 
of MPWP global mean sea level (GMSL) range 
between 10 m and 70 m above modern, with a 
value of 25 m often assumed for general circula-
tion models (GCMs) configured with Pliocene 
boundary conditions (Haywood et al., 2010). 
Historically well-cited estimates come primar-
ily from field-mapped elevations of Pliocene 
shoreline deposits and depth paleoecology of 
benthic mollusk and foraminifera assemblages 
(e.g., Dowsett and Cronin, 1990; Kaufman 
and Brigham-Grette, 1993; Naish and Wilson, 
2009; Miller et al., 2012); however, recent work 
has shown that these estimates are confounded 
by the effects of glacial isostatic adjustment 
(Raymo et al., 2011) and dynamic topography 
(Rowley et al., 2013).

Alternatively, a number of studies have used 
oxygen isotope records from benthic foramin-
ifera (d18Ob) to independently constrain total 
ice sheet volume and Pliocene GMSL. In these 
studies, temperature controls on equilibrium 
fractionation during calcification are decon-
volved from the evolution of seawater d18O 

(d18Osw) through several methods: (1) signal par-
titioning (Miller et al., 2012); (2) independent 
Mg/Ca temperature reconstructions (e.g., Dw-
yer and Chandler, 2009; Woodard et al., 2014); 
or (3) models of water exchange into restricted 
basins (Rohling et al., 2014). Pliocene GMSL 
is then calculated assuming a relationship be-
tween d18Osw and GMSL of 0.1‰ ± 0.02‰/10 
m. Using this method, estimates of peak MPWP 
GMSL are up to 30 m above modern, neces-
sitating the full deglaciation of the Greenland 
Ice Sheet (GIS), the West Antarctic Ice Sheet 
(WAIS), and as much as 30% of the East Ant-
arctic Ice Sheet (EAIS). These estimates con-
flict with both cosmogenic nuclide data of EAIS 
thickness (Yamane et al., 2015) and physical 
ice sheet models forced with MPWP boundary 
conditions that are only able to simulate 1–29 
m GMSL rise, even with the recent inclusion 
of dynamic ice-sheet processes (Dolan et al., 
2011; Pollard and DeConto, 2009; De Boer et 
al., 2015; Pollard et al., 2015).

The widely used 0.1‰/10 m relationship 
between d18Osw and sea level is based on de-
glaciation following the Last Glacial Maxi-
mum (LGM), calibrated using estimates of 
volume and ice d18O (d18Oi) of the LGM ice 
sheets (Olausson, 1963; Dansgaard and Tauber, 
1969), temperature-corrected change in d18Ob 
between the LGM and Holocene (Emiliani, 
1958; Shackleton and Opdyke, 1973), and in-
dependent estimates of deglacial sea-level rise 
(Fairbanks and Matthews, 1978). Implicit in this 
calibration is the assumption that d18Oi does not 

vary with climate. The Last Glacial Maximum 
(LGM)–Holocene is characterized by the full-
scale deglaciation of the Laurentide and Fenno-
Scandinavian Ice Sheets. Consequently, while 
the temporal evolution of d18Oi during LGM ice 
sheet growth and deglaciation amplifies d18Osw 
signals (Mix and Ruddiman, 1984), compari-
sons between LGM and modern d18Osw are still 
dominated by the large volumetric changes in 
terrestrial ice. In contrast, higher GMSL during 
the MPWP involves melting of currently extant 
ice sheets (i.e., GIS, WAIS, EAIS) and smaller 
changes in ice sheet volume compared to the 
Pleistocene. The transfer of 16O into these ice 
sheets as climate cooled from the MPWP to the 
modern increases d18Osw without correspond-
ing changes in ice sheet volume. Therefore, 
late Cenozoic cooling has the potential to am-
plify d18Osw signals of glaciation, rendering the 
LGM-calibrated d18Osw–sea level relationship 
inappropriate for estimating Pliocene GMSL. 
Herein, we argue that the inclusion of this pre-
viously neglected process into the isotope mass 
balance of the ocean-ice system substantially 
reduces estimates of MPWP GMSL and rec-
onciles d18Ob-based sea-level estimates with ice 
sheet models.

ANTARCTIC PLIOCENE 
TEMPERATURES AND d18O

The fact that d18Oi and temperature co-vary 
at high latitudes is well established and has been 
exploited to reconstruct Greenland and Antarctic 
surface temperatures from ice cores (Dansgaard, 
1964; Jouzel et al., 1987; EPICA Community 
Members, 2004). Physically, this co-variation is 
the result of temperature-dependent changes in 
the saturation vapor pressure of water in the at-
mosphere that cause changes in rainout as mois-
ture is transported poleward, toward and over 
the ice sheets. The precise isotopic composition 
is further moderated by vapor source conditions, 
kinetic effects of snow formation, inversion 
layer dynamics, and transport type (Jouzel and 
Merlivat, 1984; Hendricks et al., 2000).

Globally, Pliocene temperatures were 2–3 
°C warmer than pre-industrial, and ensemble 
estimates from the Pliocene Model Intercom-
parison Project (PlioMIP) experiments indicate 
higher Antarctic temperatures, ranging from 
2.5 to 12.5 °C above modern (Haywood et al., 
2013); however, higher-end simulated tempera-
tures are due to ice-albedo feedbacks caused by 
imposed deglaciated WAIS and reduced EAIS 
boundary conditions (Lunt et al., 2012). Proxy *E-mail: mwinnick@stanford.edu
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estimates of Pliocene Antarctic warmth from 
the Sirius Group in East Antarctica and recon-
structed Ross Sea sea-surface temperatures 
range from 2 to 20 °C above modern (Retal-
lack et al., 2001; Francis et al., 2007; McKay et 
al., 2012), though the chronology of the Sirius 
Group deposits is controversial (Barrett, 2013). 
Coupled Model Intercomparison Project Phase 
5 (CMIP5) projections of summertime Antarc-
tic warming in A.D. 2100 range from ~1 to 4 
°C (Representative Concentration Pathways 
[RCPs] 2.6–8.5) even with no change in the ar-
eal distribution of the Antarctic Ice Sheet (IPCC, 
2013). Modern observations, combined with re-
analysis and GCM projections, show that the 
WAIS is one of the fastest-warming regions on 
Earth (Bromwich et al., 2012), while EAIS ac-
cumulation is increasing at ~5%/°C due to the 
greater moisture-holding capacity of warmer air 
(Frieler et al., 2015). In short, though signifi-
cant uncertainty surrounds Pliocene Antarctic 
temperature estimates, available evidence sug-
gests that with near-modern pCO2, the climate 
was warmer and wetter resulting in higher d18Oi. 
Given that the average residence time for ice 
in the WAIS and EAIS is 44 k.y. and 125 k.y., 
respectively (Lhomme et al., 2005), d18Oi–tem-
perature (T) co-variability must be considered 
when comparing modern Antarctic ice to Plio-
cene Antarctic ice.

METHODS
To test the sensitivity of the d18Ob record 

and GMSL estimates to changing d18Oi, we use 
equations that describe the isotope mass bal-
ance of 18O/16O in the ocean-ice system between 
modern and MPWP interglacial end members:

+ + + = + + +M M M M M M M MO GIS WAIS EAIS pO pGIS pWAIS pEAIS

	+ + + = + + +M M M M M M M MO GIS WAIS EAIS pO pGIS pWAIS pEAIS,	 (1)

and

+ + + = + + +M R M R M R M R M R M R M R M RO O GIS GIS WAIS WAIS EAIS EAIS pO pO pGIS pGIS pWAIS pWAIS pEAIS pEAIS

+ + + = + + +M R M R M R M R M R M R M R M RO O GIS GIS WAIS WAIS EAIS EAIS pO pO pGIS pGIS pWAIS pWAIS pEAIS pEAIS

+ + + = + + +M R M R M R M R M R M R M R M RO O GIS GIS WAIS WAIS EAIS EAIS pO pO pGIS pGIS pWAIS pWAIS pEAIS pEAIS,	 (2)

where Mx and Rx represent total mass and 
18O/16O ratio, respectively, of the modern (O) 
and Pliocene (pO) ocean and the modern and 
Pliocene GIS, WAIS, and EAIS. Modern Mx 
and Rx values are listed in Table 1. We assume 
RpO based on the 0.3‰ offset between modern 
and MPWP interglacial d18Ob, calculated from 
the benthic stack of Lisiecki and Raymo (2005), 
and a bottom-water temperature effect that ac-
counts for 0.1‰ of this offset (i.e., 67:33 signal 
partitioning ratio of Dd18Osw:DT; Miller et al., 
2012). To calculate RpWAIS and RpEAIS, we assume 
a linear temperature dependence of WAIS and 

EAIS d18Oi with possible end-member slopes of 
0.42‰/°C and 0.8‰/°C, representing average 
modeled temporal d18Oi-T based on GCM simu-
lations of modern and LGM climate (Lee et al., 
2008) and the modern spatial relationship (Mas-
son-Delmotte et al., 2008), respectively. For 
RpGIS, we use the averaged modeled temporal 
d18Op-T slope (0.37‰/°C) at the three ice-core 
localities on GIS examined by Lee et al. (2008).

Because d18Osw records an integrated signal 
from all terrestrial ice, we present two end-
member scenarios of MpGIS and MpWAIS to exam-
ine the sensitivity of the d18Ob record and sea-
level estimates to variable d18Oi: we treat both 
the WAIS and GIS as entirely deglaciated in the 
Pliocene (scenario 1); and we deglaciate only 
the marine-based sectors of the WAIS (Pollard 
and DeConto, 2009) and half of the GIS (Dolan 
et al., 2015) in the Pliocene (scenario 2). In both 
scenarios, we then solve for the two remaining 
variables (MpO and MpEAIS) which provides the 
required additional melt from the EAIS to ac-
count for the full d18Osw change across the range 
of estimated Pliocene Antarctic temperatures 
(2–20 °C). Sensitivity analyses to differential 
Pliocene warming of the WAIS and GIS along 
with assumed Dd18Osw:DT partitioning ratios 
of 80:20 and 50:50 are presented in the GSA 
Data Repository1. We note that our analysis is 
restricted to comparisons of end-member values 
of MPWP interglacials and the modern, though 
future work will aim to incorporate isotope mass 
balance into the temporal evolution of d18Oi 
within the Pliocene to investigate orbital-scale 
changes in sea level.

RESULTS AND DISCUSSION
The temperature-dependent increases in 

d18Oi act to amplify signals of terrestrial ice 
melt in d18Ob records under warmer conditions; 

1 GSA Data Repository item 2015295, sensitiv-
ity analyses, calculation of WAIS marine and ter-
restrial sector masses, supplementary references, 
Table DR1 (MPWP sea-level estimates compilation), 
and Figures DR1–DR4, is available online at www​
.geosociety​.org​/pubs​/ft2015.htm, or on request from 
editing@geosociety.org or Documents Secretary, 
GSA, P.O. Box 9140, Boulder, CO 80301, USA.

consequently, partitioning of the 0.3‰ d18Ob 
signal into EAIS mass loss and increased d18Oi 
becomes a function of Pliocene high-latitude 
temperature change. Deglaciation of half of the 
GIS and the marine-based portion of the WAIS 
(scenario 2) combined with bottom-water tem-
perature change accounts for 0.2‰ of the full 
MPWP–present offset (Fig. 1). As estimated 
Pliocene Antarctic temperatures increase, less 
EAIS mass loss must be invoked to account for 
the full 0.3‰ offset. Given the d18Oi-T relation-
ship of Masson-Delmotte et al. (2008), only a 
7 °C increase is required to completely elimi-
nate the need for any Pliocene EAIS mass loss. 
Under scenario 1, even smaller temperature in-
creases are needed to explain the d18Ob record 
without invoking EAIS mass loss (Fig. DR1 in 
the Data Repository).

These deglaciation scenarios can be used 
to calculate the associated GMSL rise needed 
to reproduce the 0.3‰ d18Ob offset using the 
sea-level equivalent of each modern ice sheet 
(Fig. 2; Table 1). The total GMSL rise encap-
sulated in the d18Ob record becomes a function 
of Pliocene Antarctic temperatures, with higher 
temperatures resulting in lower GMSL. Under 
scenario 2, less total melt, and subsequently 
lower GMSL, is required to account for the 
d18Ob record than under scenario 1. In scenario 
2, the EAIS accounts for a greater proportion of 
the total meltwater signal, and as the EAIS has 
the lowest d18Oi (–56.5‰), less total mass loss is 
needed to account for the d18Ob record.

We note that even without changes in d18Oi 
(i.e., DT = 0), our maximum Pliocene GMSL 
estimates are only 15 m above modern, com-
pared to an estimate of 21 m from Miller et al. 
(2012) using similar constraints. This estimate 
is lower due to two key differences. First, our 
mass balance budget allows for distinct meltwa-
ter signals from each of the ice sheets based on 
their modern d18Oi. The generalized 0.1‰/10 m 
sea level relationship derived from LGM–Holo-
cene records assumes negligible contributions 
from the isotopically light EAIS to the total 
meltwater signal, and therefore leads to an over-
estimate of Pliocene sea level. Second, by con-
sidering independent estimates of mass changes 

TABLE 1. MODERN PARAMETERS USED IN EQUATIONS 1 AND 2

Variable Modern volume
(106 km3)

Modern mass
(1018 kg)

Sea-level equivalent 
(m)

Modern δ18O
(‰)

Ocean N.A. 1358 N.A. 0
GIS 2.9* 2.66† 7.3* –35**
WAIS marine-based 3§ 2.43†,# 3.4§ –41**
WAIS non–marine-based N.A. 0.322†,# 0.9§ –41**
EAIS 23.5§ 21.55† 53.3§ –56.5**

Note: GIS—Greenland Ice Sheet; WAIS—West Antarctic Ice Sheet; EAIS—East Antarctic Ice Sheet.
*Bamber et al. (2001).
†Masses are calculated assuming an ice density of 917 kg/m3 (Fretwell et al., 2013).
§Fretwell et al. (2013).
#Calculation of the separate masses of the WAIS marine-based and non–marine-based sectors is 

shown in the Data Repository (see text footnote 1).
**Lhomme et al. (2005).
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and sea-level rise due to deglaciation, we avoid 
the assumption that all mass loss contributes to 
global sea level implicit in the 0.1‰/10 m sea 
level relationship. This is most significant for 
the WAIS where a significant mass proportion 
of the marine-based sector will not contribute to 
global sea level (Fretwell et al., 2013).

Figure 2 also shows the increase in Plio-
cene d18Oi and Antarctic temperature needed 

to account for the d18Ob record without invok-
ing additional mass loss from the EAIS. This 
point occurs where the GMSL rise is equal to 
the combined GMSL rise from GIS and WAIS 
melting in each of our deglaciation scenarios 
and occurs at Pliocene Antarctic temperatures 
of 3–13.1 °C above modern (marked by solid 
and dashed lines along the x-axis in Fig. 2). Any 
additional temperature increase above this point 

implies an increase in EAIS mass. While some 
modeling studies suggest that EAIS growth may 
occur up to pCO2 levels of 400—560 ppm (Lig-
tenberg et al., 2013; De Boer et al., 2015), the 
increase in temperature needed to sufficiently 
alter d18Oi is likely physically incompatible with 
EAIS mass growth.

Additionally, changes in d18O of other ter-
restrial water reservoirs such as global ground-
water may amplify d18Oi signals and further 
reduce Pliocene sea level estimates. However, 
we neglect these changes from our analysis as 
there are no estimates as to how the mass of 
these global reservoirs changed in magnitude 
or distribution in the Pliocene, and because d18O 
of precipitation is less sensitive to changes in 
global temperature at lower latitudes.

IMPLICATIONS
Though estimates of Pliocene Antarctic tem-

perature have considerable uncertainty, we view 
a 2.5–5 °C increase as conservative, given that 
globally averaged Pliocene temperatures were 
2–3 °C above modern. This translates into a 
1‰–4‰ increase in the average d18Oi of Ant-
arctica. With these assumptions, we estimate 
that GMSL was ~9–13.5 m above modern, with 
a 2–4.5 m contribution from the EAIS. This esti-
mate, with a maximum 8.5% loss of the EAIS, is 
significantly less than previous estimates based 
on paleoshorelines and benthic mollusk and for-
aminifera assemblages, and reconciles the d18Ob 
record with ice-sheet models of the Pliocene 
WAIS and EAIS as well as recent cosmogenic 
nuclide data suggesting negligible Pliocene 
EAIS mass loss (Pollard and DeConto, 2009; 
De Boer et al., 2015; Yamane et al., 2015). As-
suming the full uncertainty in Dd18Osw:DT par-
titioning from 80:20 to 50:50, the full range of 
calculated maximum GMSL becomes 5–17 m 
above modern (see the Data Repository). These 
estimates suggest that the EAIS is substantially 
less sensitive to radiative forcing than previ-
ously inferred from the MPWP, and that dra-
matic deglaciation of the EAIS under modern 
pCO2 is not supported by the geologic record.
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Figure 2. A: Total estimated global mean sea level (GMSL) due to melting of terrestrial ice at 
mid-Pliocene warm period (MPWP) as function of estimated Pliocene temperature increase. 
Solid lines correspond to scenario 1, and dashed lines correspond to scenario 2 (see text). 
Horizontal gray lines are total Greenland Ice Sheet (GIS) and West Antarctic Ice Sheet (WAIS) 
sea-level equivalents for these scenarios. Error bars above plot are full range of estimated 
Antarctic temperature change as in Figure 1. B: Previously published estimates of MPWP 
GMSL (Table DR1 [see footnote 1]), organized by method. Our estimate is indicated at left. 
Dashed error bar at right indicates full range of estimates from Dolan et al. (2011). PlioMIP—
Pliocene Model Intercomparison Project; EAIS—East Antarctic Ice Sheet; SLE—sea-level 
equivalent; IPCC—Intergovernmental Panel on Climate Change.
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