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Abstract

Spatial statistical methodology can be useful in the arena of environmental regulation. Some
regulatory questions may be addressed by predicting linear functionals of the underlying signal,
but other questions may require the prediction of nonlinear functionals of the signal. For ex-
ample, in order to be in regulatory compliance, air-pollution levels have to fall within specified
limits over some geographic region; whether or not they are in compliance and where they are
out of compliance are nonlinear functionals. We propose a spatial empirical Bayes model for
environmental data collected over a region.

Further, we propose a predictor, based on the kriging methodology with extra constraints, that
implies useful unbiasedness properties in predicting nonlinear spatial functionals. This predictor,
called covariance-matching constrained kriging, is an optimal linear predictor that matches not
only first moments but second moments (including specified covariances) as well.
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1. Introduction

The motivation for the spatial statistical methodology presented in this paper comes
from problems commonly encountered in the arena of environmental regulation. For
example, the US Environmental Protection Agency (EPA) has a federal mandate
to identify air pollutants injurious to public health and then to propose air pollu-
tion “standards” (i.e., threshold levels of the pollutants) that should not be exceeded.
A major component of air pollution is particulate matter (PM), and this is catego-
rized by size. Consequently, PM, refers to the category of particulate matter in which

* Corresponding author. Tel.: +1-614-292-5194; fax: +1-614-292-2096.
E-mail address: ncressie@stat.ohio-state.edu (N. Cressie).

0378-3758/03/$ - see front matter (©) 2002 Elsevier Science B.V. All rights reserved.
PII: S0378-3758(02)00321-X


mailto:ncressie@stat.ohio-state.edu

4 J. Aldworth, N. Cressiel Journal of Statistical Planning and Inference 112 (2003) 3—41

particles do not exceed 10 pm in aerodynamic diameter. The PM;y, measurement is an
indicator for particles that penetrate to the tracheobronchial and gas-exchange regions
of the lung (US EPA, 1996, p. IV-3a). The EPA has adopted an annual average daily
PM,, standard in the range 40—50 pg/m> and a 24-hour standard of 150 pug/m3. This
means that if the PM;g level of some region (e.g., the city of Pittsburgh, PA) exceeds
the standard over the appropriate time period, then that region is deemed to be out
of compliance with federal regulations. The problem here is how to predict reliably
whether or not the PM;( level exceeds the standard, based on observations obtained
from a small number of monitoring stations in the region of interest. Now, it is en-
tirely possible that, even if the region of study is in PM;y compliance, there may be
local neighborhoods that are not (e.g., neighborhoods downwind of pollution-emitting
factories). Ideally, one would like to identify such neighborhoods based on the data
available. Other quantities to predict might be the proportion of the entire region not in
compliance or the average amount of PM in the neighborhoods out of compliance, as
compared to the average amount in the neighborhoods in compliance. Such predictands
are clearly nonlinear functionals of the study variable, here the PM,q level throughout
the region of study.

Let us now return to a generic spatial statistical set-up, where we consider some
study variable that varies over a given spatial domain (e.g., PMj levels over Pitts-
burgh), and suppose that measurements associated with it are taken at selected loca-
tions in the domain. We are interested in the prediction of some measurable func-
tional of the study variable, based on the observed data, but it is unlikely that the
study variable can be measured exactly (i.e., without measurement error). Notice that
in much of the geostatistics literature there is an implicit assumption that observa-
tions are exact measurements of the study variable in question (e.g., Journel and
Huijbregts, 1978; Rivoirard, 1994); a geostatistical model in which a measurement-error
component is explicitly included is given by Cressie (1988) and, as we show in this
paper, it can be viewed as a spatial empirical Bayes model.

Consider the prediction of /inear functionals of the study variable, such as its pre-
diction at some unsampled location, or the prediction of its spatial mean over some
subregion in the domain (e.g., Matheron, 1963; Journel and Huijbregts, 1978; Cressie,
1993a). Ordinary-kriging and universal-kriging predictors are natural choices for pre-
dicting such functionals. They are linear in the data, simple to construct (e.g., Journel
and Huijbregts, 1978, Chapter V; Cressie, 1993a, Chapter 3), and they can be extended
casily to the case where the data are multivariate (e.g., Myers, 1982; Ver Hoef and
Cressie, 1993). In addition, these linear kriging predictors easily handle additive mea-
surement error; the unbiasedness of the linear predictors remains unchanged in the
presence of measurement error and the mean-squared prediction error simply includes
the measurement-error variance as an additive component (Cressie, 1988).

When predicting nonlinear functionals of the study variable (or linear functionals of
a non-Gaussian study variable), the major thrust in geostatistics has been to use nonlin-
ear predictors, such as indicator kriging (Journel, 1983), indicator cokriging (Lajaunie,
1990), and disjunctive kriging (Matheron, 1976). However, when a measurement-error
component with positive variance is modeled (here using empirical Bayes), these non-
linear predictors are no longer unbiased and can perform poorly (Aldworth, 1998).
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Furthermore, they are not well suited to prediction of the spatial mean over some
subregion of the domain (Cressie, 1993a, Section 5.2).

Another approach to the problem of prediction of nonlinear spatial functionals is
conditional simulation, which is a simulation algorithm originally developed by Journel
(1974) that yields more realistic realizations of the spatial process of interest than the
smoothed predictions obtained from the linear kriging predictors. Later manifestations
of conditional simulation have shown up in the statistical literature in the form of
Markov chain Monte Carlo simulation of spatial processes (e.g., Besag and Green,
1993; Diggle et al., 1998). Predictors based upon a single realization of a conditional
simulation may have poor optimality properties but, by the law of large numbers,
these properties will improve for predictors based on averages of many realizations
of a conditional simulation (provided that all relevant parameters have been correctly
specified). It should be noted that conditional simulation can be viewed as an empirical
Bayes Monte Carlo procedure. Such a procedure requires the joint distribution of all
random components to be (implicitly or explicitly) specified, and known values of, or
estimates of, deterministic parameters to be specified. It also requires large data storage
and computer resources.

In this paper, we propose a new kriging predictor, in the spirit of the linear and
second-order moment nature of other kriging predictors, but with constraints forcing
elements of the variance matrix of a vector of linear predictors to match those from
the corresponding predictands. This predictor, which we term covariance-matching con-
strained kriging (CM), has useful unbiasedness properties, approximate second-order
optimality properties, handles additive measurement error straightforwardly, and can
predict spatial means over subregions just as easily as at points. It is a multivariate
generalization of the constrained kriging predictor (Cressie, 1993b), where the vari-
ance of a scalar-valued linear predictor is constrained to match that of its corresponding
scalar-valued predictand.

The underlying spatial empirical Bayes model (consisting of a spatial signal con-
taminated with measurement error) is presented in Section 2, and Section 3 discusses
prediction of nonlinear functionals of the signal. The CM methodology is presented
in Section 4. In Section 5, a computer-simulation experiment is conducted to explore
the properties of the different predictors, and Section 6 illustrates the CM methodol-
ogy on PMj, data in the Pittsburgh area. Finally, Section 7 contains discussion and
conclusions.

2. Spatial empirical Bayes Model

A spatial process is a real- (or vector-) valued stochastic process
Z(-)={Z(s): se D},

where D C R?. In this paper we consider only real-valued Z(-).

Suppose that data from the spatial process Z(-) consist of the observations {Z(s;),...,
Z(s,)} taken at the locations in 4 = {sy,...,s,} C D, where A4 is called a sample (of
spatial locations). We assume that the sample has been specified somehow and so we
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treat the locations as fixed. Readers interested in how randomness in 4 can be con-
sidered within the context of geostatistics might consult the review given in Aldworth
and Cressie (1999).

The observations are assumed to have been contaminated with additive measurement
error, according to the following model:

Z(s)=S(s)+¢(s), seD, 2.1)

where S(-) represents the spatial process of fundamental interest, namely the “signal”,
and ¢(-) is a zero-mean, white-noise process representing the measurement error.
The signal and noise components are assumed independent. This is an empirical Bayes
model because, conditional on {S(s): s€ D}, (2.1) can equivalently be written
as Pr(Z(s) <z|S(s)) = Pr(e(s) <z — S(s)); independent for s€ D. Any parameters
associated with specification of the distribution of S(-) and &(-) are to be estimated.

Now we specify the distribution of the signal process S(-). This can be viewed as
a prior distribution; we write

S(s)=u(s) +4(s), se€D, (2.2)

where u(-) is the large-scale, deterministic, mean structure of the signal (i.e., u(-) =
E[S(-)] is the trend), and J(-) is the small-scale stochastic structure that models the
spatial dependence. That is

E[5(s)] =0, seD, (2.3)

cov[d(s),o(u)] = C(s,u), s,ueD, 2.4)
where C(-,-) is the covariance function of d(-) (equivalently, of S(-)). If we denote
var[e(s)] =%, seD, (2.5)

then we can easily calculate the spatial covariance function of the observed “noisy”
process,

C.(s,u) = cov[Z(s),Z(u)], s,ueD
to be
{ C(s,u)+ 1%, s=u,
C.(s,u) =
C(s,u), s # u

Another useful measure of the spatial dependence among the data is the variogram,
defined as

2y.(s,u) = var[Z(s) — Z(u)] = C.(s,s) + C.(u,u) — 2C.(s,u), s,ueD.
When s # u,
27:(s,u) = 2(y(s,u) + 7°),

where 2y(-,-) is the variogram of d(-) (equivalently, of S(-)). When s =u, 2y.(s,u) =
27(s,u) = 0. Note that if 72 =0, then C(-,-) = C.(-,-) and 2y(-,-) = 27.(-,-). The
quantities 7,(-,-) and y(-,-) are called the semivariograms of Z(-) and S(-), respectively.
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Suppose that replicate observations are taken at one or more of the sites in 4. Then
the spatial model (2.1) can be generalized to accommodate the replicate observations
as follows:

Zi(Sj):S(Sj)+8i(Sj), l':l,...,l/lj, jzl,...,J, Si,...,Sy €D, (26)

where {¢(-): i =1,...,max;(n;)} are independent, zero-mean, white-noise processes
with var[e;(s)] = 1%, s€D, i= 1,...,max;(n;). Then,
C(s,s))+ 12, i=i, j=],
COV[Zi(Sj)sZi’(Sj’ )] = { ( ’ j) " ] /
C(sj,s)7 ), otherwise.

We conclude this section by restating our goal in technical terms: Assuming the
measurement-error model (2.1) (or (2.6)) and the prior model (2.2)—(2.4), we are inter-
ested in predicting some functional of the “noiseless” (prior) S-process, not that of the
“noisy” Z-process. Of course, what we actually observe are “noisy” data {Z(s;),...,
Z(s,)}, which are used in making the prediction. This Bayesian problem becomes
empirical Bayesian because we assume that the noise and spatial-covariance parameters
are unknown and require estimation.

3. Spatial prediction of functionals of the S-process

Prediction presupposes some target. If the measurement-error spatial model (2.1) is
assumed, then the target, or predictand, will be some functional of S(-) (i.e., not some
functional of Z(-)). Consider the linear predictand given by

nS()=SMB), BcCD.
If B={s¢}, then we call S(sy) a point predictand. If B is a block of nonzero volume,
namely |B| = [, 1du > 0, then
1
SB)= -— [ S(u)du, 3.1)
Bl /s
which we shall call a block predictand (also known as the spatial mean over the
subregion B). Such predictands can easily be made nonlinear by considering

h(S(-))=¢(S(B)), BCD,

where g is some nonlinear measurable function and B is any measurable subset of
D, including a countable number of points. Examples of nonlinear g might include
the “smooth” function, g(S(B)) = log(S(B)), or the “nonsmooth” function, g(S(B)) =
I(S(B) < t), where I(-) is the indicator function (i.e., /(4)=1 if 4 is true, and is zero
otherwise), and ¢ is some specified threshold.

3.1. Block prediction

From Bayesian decision theory applied in the context of spatial statistics (e.g.,
Cressie, 1993a, p. 107), the best predictor of g(S(B)) (with respect to squared-error
loss) is

E[g(S(B))|Z],
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where g is some measurable function. Consider, for the moment, linear functions g, such
as that given by (3.1). Gotway and Cressie (1993) show that the best (heterogeneous)
linear predictor, also known as the simple kriging predictor, of S(B) is given by

S«(B) = u(B) + ¢(B)' X (Z — p), (3.2)

where u(B) = E[S(B)], u = E[Z], X = var[Z] = var[(S(s),...,S(s,))'] + 7°I, I is the
n x n identity matrix, ¢(B) = cov[Z,S(B)] = (C(s1,B),...,C(sy,B)), and C(s,B) =
ﬁ fB C(s,u)du; if B={sg} then c(sg) = var[Z,S(s9)] = (C(s1,50),---,C(Sy,80)). The

mean-squared prediction error (MSPE) of Sy (B) is given by
MSPE[Sg(B)] = C(B,B) — ¢(B)' X~ '¢(B), 3.3)

where C(B,B) = var[S(B)]=|B|~* [, [, C(s,u)ds du, if |B| > 0; otherwise, C(so,S0) =

var[S(sp)]. By definition, the best predictor of S(B), E[S(B)|Z], has smaller MSPE than

(3.3), but if (S(-),&(-)) is a bivariate Gaussian process, then Sg(B) = E[S(B)|Z)].
Suppose that E[S(-)] = p(-; B) is linear in B, which implies that

(B; ) =x(B)'p, BCD, (3.4)

where X(B) = (xo(B),...,x,(B)), x;(B) = ﬁ foj(u) du; j=0,1,..., p, and {xo(-),...,
xp(-)} are known functions. If B is unknown, then the best linear unbiased estimator
(BLUE) of B is defined as

p=X2"'X)"'X'3x7'7, (3.5)

where X = (X(s1),...,X(s,)), X(8;) = (x0(S7),...,xp(s8;)); i=1,...,n, and X = var[Z].
From Goldberger (1962), it is easy to show that the best linear unbiased predictor
(BLUP), also known as the universal kriging (UK) predictor, of S(B) is given by

Su(B) = x(B)' B+ (B2~ (Z — Xp). (3.6)
The MSPE of Sy (B) is given by
MSPE[Sw(B)] = C(B,B) — ¢(B) X~ 'e(B)
+(x(B) —e(BYZ " X)X'Z7'X)"I(x(B) = X' 2 'e(B)).

Now, consider prediction of g(S(B)), where g is a nonlinear function. Cressie (1993b)
shows that the optimality properties of the linear predictors (3.2) and (3.6) do not carry
over to prediction of g(S(B)), where ¢ is nonlinear. In particular, Cressie (1993b) shows
that g(S’uk(B)) is a biased predictor of ¢g(S(B)), where the direction of the first-order
bias depends on g¢”’(+). If one is doing many such nonlinear predictions, as one might
do when mapping small areas that are above or below a prespecified threshold, this
bias can result in an inaccurate map. However, classical nonlinear predictors such as
indicator kriging, indicator cokriging, and disjunctive kriging are problematic when
applied to the prediction of g(S(B)), whenever B is not a single point; see the discus-
sion in Cressie (1993a, Section 5.2) and Aldworth (1998). We require a predictor that
adapts easily to linear/nonlinear predictands, absence/presence of measurement error,
and point/block support in the predictand.
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3.2. Conditional simulation

Universal kriging predictors are generally smoother than their corresponding
predictands and consequently yield biased predictors of nonlinear functionals of S(-).
Journel (1974) constructed a simulation algorithm that yielded more realistic looking
realizations of the spatial process of interest (in his case, this was Z(-)) than the
surface defined by universal kriging. The algorithm (and later versions) is called
conditional simulation because all realizations are conditional on having observed Z.
In the case where Z(-) is of interest, conditional simulation “honors” the data.

We shall now modify the development in Journel (1974) to obtain conditional-
simulation algorithms for the signal S(-). Suppose that we can generate (nonconditional)
simulation processes Sy(-) and ey(-), independent of one another (and of S(-) and &(+)),
such that

E[Sy(s)] = E[S($)] = i(s),  s€D,
Elen(s)] = E[e(s)] =0, seD,
cov[Sy(s),Sy(u)] = cov[S(s),S(u)], s,ueD,

covley(s), ey(u)] =cov[e(s),e(u)], s,ueD.

Then consider the nonconditional simulation process, Zy(s) = Sy(s) + enx(s); s€ D.
Recall that the distribution of interest is the posterior distribution of S(-)|Z. What

we require is a simulation process whose distribution at least approximately matches

that of S(-)|Z. Define the conditional simulation of S(-), based on simple kriging, as

Sc(s) = Sa(s) + (Sn(s) — Sna(s)),  sED,
=Sy(s)+c(s)X(Z—Zy), seD, (3.7)

since Sq(s) = u(s) 4+ ¢(sY X (Z — p) and Sy g (s) = u(s) + ¢(sY X~ '(Zy — ), where
Zy=(Zy(s1),...,Zn(s,)) . Observe that Sc(s) depends on u(-) only through Sy(s) and
Zy (i.e., knowledge of u(-) is required to generate Sy(-)).

From (3.7) and the orthogonality property of simple kriging, it can be seen that

E[Sc(s)] = E[Sn(s)] = E[S(s)], s€D,
cov[Sc(s),Sc(u)] = cov[S(s),(S(u)], s,ueD
and
E[Sc(s)|Z] = S«(s), seD,
var[Sc(s)|Z] = var[S(s) — Sg(s)] = MSPE[S4(s)], seD.

Furthermore, if (Sy(:),en(+)) and (S(-),&(-)) are both bivariate Gaussian processes,
then

E[Sc(s)|Z] = Sq(s) = E[S(s)|Z], seD
and

cov[Sc(s), Sc(u)|Z] = cov[S(s), S(u)|Z].
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Because the posterior distribution is Gaussian, it is seen in this case that conditional
simulation given by (3.7) generates realizations from a Gaussian posterior distribution
S()|Z, with mean and covariance functions as above. When (S(-),&(-)) are no longer
bivariate Gaussian, the realizations from (3.7) may not be from S(-)|Z, even though
their first two (conditional) moments match.

It is easy to show that the MSPE of Sc(s) satisfies

MSPE[Sc(s)] =2 x MSPE[S«(s)], seD,

which suggests that, for the purpose of prediction of S(s), S (s) is always to be
preferred to Sc(s). Of course, one never predicts with just one conditional realization;
conditional simulation allows many realizations to be drawn. Better predictors can then
be obtained that depend on all realizations.

Let Sc(-) denote the /th conditional simulation, and suppose that its conditional
distribution matches exactly that of S(-)|Z; then, by definition,

E[g(S()IZ] =Elg(Sci(DIZ], 1=1,....L (3.8)

for any measurable function g. For example, if g(S(-)) =1(S(B) > t), then a condi-
tionally unbiased estimator of the optimal predictor is

L
E[I(S(B) > )| Z] =L~ > I(Sc.(B) > 1), (3.9)
I=1
where (3.9) converges a.s. to the best predictor E[I(S(B) > t)|Z], as L — oc.

One of the advantages of geostatistics and kriging has been its dependence only
on the second-order properties of S(-) and Z(-). This nonparametric feature has had a
great deal to do with its popularity in the earth, atmospheric (where it is called objec-
tive analysis), and environmental sciences. However, conditional simulation is highly
parametric in that its definition implies all possible joint, marginal, and conditional dis-
tributions (which could all eventually be determined using estimates like the right-hand
side of (3.9)). As has already been noted, these (conditional) distributions of Sc ;(-)
may not match those of S(-), beyond their first two moments. So, although one obtains
a very precise estimate of the right-hand side of (3.8) with a large number L of condi-
tional simulations, it may be a very biased estimate of the quantity of interest, namely
E[g(S(-))|Z]. This is borne out in the simulation experiment presented in Section 5
and is also illustrated by Gotway (1994).

4. Kriging with constraints

Suppose that
g1(5()) = (S(s0))*

a nonlinear function that is quadratic in a point value. Consider the simple-kriging
predictor S (Sg), which is a best linear predictor for S(sp). It is tempting to use

G1(S()) = (S (50))?
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as a predictor for (S(sp))?, but a quick calculation of means shows this to be an
inherently biased predictor. For example, suppose that S(-) is second-order stationary
with E[S(s)] = ¢ and var[S(s)] = ¢?. Then,

E[(S(s0))"] = i* + o7,
which is larger than or equal to
E[(Sa(50))] = 1 + e(s0) T~ e(s0);

see (3.3). The bias, ¢(so)' 2 'e(sy) — o2, can be substantial.

Intuitively, the simple-kriging predictor “oversmooths” for some purposes. Although
the first moments of S(sy) and ~§sk(So) are matched, S‘sk(so) is obtained by minimizing
the mean-squared prediction error without any regard for other moments of S(sg).
Typically, a histogram of simple-kriging predictors shows a much tighter distribution
than that of its predictands. In view of this, Cressie (1993b) proposed the constrained
kriging (CK) predictor Sa(so), which is the best predictor that matches not only
first moments but second moments (excluding covariances) as well. He shows that
for prediction of g(S(B)), where ¢ is smooth, the predictor g(Sc(B)) is approximately
unbiased and approximately best and, if (S(-),&(+)) is bivariate Gaussian, then g(S(B))
is exactly unbiased. We extend this methodology to the case where covariances are
also matched.

Suppose we wish to predict g(S), where g is some scalar-valued function that is
nonlinear in its vector-valued argument,

S =(SB),...,S(By)), Bi,...,Bw CD.

Consider predictors of the form g(é), where S = A’Z is a linear predictor of S, and
A =(ay,...,a,) is an n X m matrix.
Assume that the coefficients A satisfy the constraints,

(C1): E[A'Z] = E[S],
(C2): var[A'Z] = var[S].

Notice that (C1) is standard in geostatistics and (C2) matches the variances and co-
variances of random variables in the prediction set {S(B;),...,S(By)}; cf. conditional
simulation, for which al/l first and second moments of the process are matched (Section
3.2). For future reference, we write u,, = E[S] and X,, = var[S], where recall that S
is an m x 1 vector. If (S(-),&(+)) is bivariate Gaussian, and if (C1) and (C2) hold, then
A’Z and S are equal in distribution. As a consequence,

E[g(A"Z)] = E[¢(S)]

for any integrable function g, and hence g(A’Z) is an unbiased predictor of g(S).
Suppose that (S(-),&(-)) is not bivariate Gaussian, but suppose that g is smooth
enough to possess two continuous derivatives; that is, the m x 1 vector of first deriva-
tives, ¢'(x) = 0g(x)/0x, and the m x m matrix of second derivatives, ¢’ (x) = 0°g(x)/
0x0x’, both exist and are continuous. In what is to follow, we use the J-method
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(e.g., Schott, 1997, Chapter 8) to motivate why constraints (C1) and (C2) are desir-
able when looking for optimal predictors of g(S). We have,

E[g(A'Z)] ~ g(E[A'Z]) + E[(A'Z — E[A'Z])'g"(E[A'Z])(A'Z — E[A'Z]))])2
= g(E[A'Z)) + tr{g"(E[A'Z])var[A'Z]}/2
and similarly,

E[g(S)] =~ g(E[S]) + tr{g"(E[S])var[S]}/2,

where tr(-) denotes the trace operator, and g”(w) = 02g(x)/0x0x’|x—y. Consequently,
if (C1) and (C2) hold, we see that

E[g(A'Z)] ~ E[g(S)]

for g smooth enough to possess two continuous derivatives. Thus, we could look for
an optimal predictor by choosing the n x m matrix A that satisfies constraints (C1)
and (C2) and minimizes the scalar quantity, MSPE[g(A’Z)]. The problem is that this
latter quantity cannot be calculated from the model specified in (2.1)—(2.5). But, if A
satisfies constraints (C1) and (C2) and ¢ is smooth enough to possess two continuous
derivatives, then by the J-method,

MSPE[¢(A'Z)] = E[g(A'Z) — ¢(S)I
~ [¢'(m,)) var[A'Z][g'(m,)] + [¢'(m,)] var[S][g'(n,,)]
—2[4'(,,)] cov[A'Z, S][g' (n,,)];
where ¢/(p,,) = 09(x)/0x|x—,, and recall that g, = E[S] = E[A'Z]. Therefore,
MSPE[¢(A'Z)] ~ y'M,y,

where y = ¢'(n,,) and My = MSPE[A'Z] = var[A’Z — S], by (C1).

These calculations motivate looking for a predictor of ¢(S) given by g(AjZ), where
Ay minimizes y'M,y subject to (C1) and (C2) being satisfied. In empirical Bayes
terminology, we are seeking the best predictor from the class of homogeneously linear
predictors that satisfy a mean constraint and a covariance-matrix constraint, where the
loss function is assumed to be squared-error loss; this results in an approximately
unbiased and minimum MSPE predictor g(A(Z). If we further assume Gaussianity, the
predictor is exactly unbiased. In what is to follow, we shall investigate this optimization
problem, including existence, uniqueness, and properties of the solution.

Assume that the linear model (3.4) holds. Then, u,, = ((B1),...,1(Bw)) = X,B,
where X, = (x(B)),...,X(By)) is a (p+ 1) x m matrix. Consequently, conditions (C1)
and (C2) can be written as

(Cl): A'X =X,
(C2): A’ZA =3,
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These constraints can also be written as
(Cl): aX=x(B;), i=1,....m,

(C2): aj¥a; = C(B;,B;), 1<i<j<m, 4.1)
where recall that A = (ay,...,a,).
Now,

YM,y =Yy'E[(A'Z - S)(A'Z - S)'ly
=y {A’ZA-A'C-CA+2ZX,}y,
where C = cov(Z,S) = (¢(By),...,¢(By)) and ¢(B;) is defined just after (3.2). If A
satisfies (C2), then
Y' M,y =2y'{Z, — A'Cly,

which we want to minimize with respect to A, subject to (C1) and (C2). Therefore,

the objective function to maximize, with respect to A, {Ay;}, and {A;}, is
m m

f(A)=2yA'Cy +2> @)X = x(B) i — Y Y Jayi(ajZa; — C(B:, B))),
i—1 i=1 j=1
where Ayj; = Aoy, for i < j.
Because we are assuming the linear model (3.4), it is useful to consider the vector
of universal kriging (UK) predictors, which we denote as Syk. From (3.6),

Su =X, p+C X (Z-Xp). (4.2)
Notice that éuk can be written as A{lkZ, a linear predictor in Z. From the second-order
properties of universal kriging, E [Suk] = E[S], but typically var[Su] # var[S]. Thus,
although Sk satisfies (C1), typically it does not satisfy (C2).

The following propositions suggest how to formulate a predictor g(A(Z) that pos-
sesses certain optimality properties subject to constraints (C1) and (C2).

Proposition 1. Assume that P = var[S] — var[X/,f] and O = var[Su] — var[X, ]
are positive definite (p.d.), where B is the BLUE of B given by (3.5) and Sy is
the UK predictor given by (4.2). Define the symmetric p.d. matrices P, = PY? and
Q. = Q'2. Then there exists an invertible m x m matrix T and a diagonal matrix
N = diag(vy,..., V) with positive entries {v;} such that

TQ,'T'=N=(T)"'P,T"L
Furthermore, if we define

K=Q;'P,
then

K=T"'N’T=) VW,

i=1

where T~ = (Vy,..., V), and hence T' = (W,...,W,,) and VIW; =1, if i=j; =0,
otherwise.
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Proof. Define R = Ql_l/ 2P1Q1_]/ % which is symmetric and p.d. Let U be the matrix
whose columns are R’s normalized eigenvectors and write its eigenvalues as {v?}. That
is, UU =1 and U'RU = diag(v3,...,v%). Define

T= diag(vi/z, e v,ln/z)U’Q}/z.
Then TQ; 'T" = diag(vi,...,v,) = (T")~'P,T~'. Consequently,
K =Q;'P, =T 'diag(v3,...,v})T

=) VW,
i=1
Since (T~')Y'T’ =1, we see that V/W; = 1, if i = j; =0, otherwise. [J
Proposition 2. Assume that P, Q, and X are p.d. Recall from Proposition 1 that

P, = P2, Q, = Q'2, and K = Q;'P,. Recall that the objective function to be
maximized is

S(A)=2y'A'Cy +2> @)X = x(B) )i — 3 Y Jay(alZa; — C(Bi, B))),
i=1 i=1 j=i
where y = ¢'(p,,). Then f(A) is maximized at
Ag=2'T-XXZ X)Xz HeK + 27 'X(X' 2 'X)7'X,, (4.3)

for y=Vy,...,V,, defined in Proposition 1.
Proof. See the appendix. [

Definition. Suppose that P, Q, and X are p.d. Then the covariance-matching con-
strained kriging (CM) predictor of S is
Scm = A6Z,

where Ay is given by (4.3).

It is not difficult to show that
Sem =X, p+K'C' 2 (Z - Xp), (4.4)

where f=(X'27'X)"'X'27'Z, K=Q; 'P,, and recall that P=P,P, and Q=Q,Q,.
Proposition 2 establishes the optimality of the CM predictor (4.4) in m well-defined
directions of R”. In Proposition 3 below, we verify that Ay does indeed satisfy con-
straints (C1) and (C2), as it should.

Proposition 3. Assume that P, Q, and X are p.d. Then the coefficients Ay in AjZ
given by (4.4), satisfy constraints (C1) and (C2).

Proof. See the appendix. [
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Recall that if a predictor S of S satisfies (C1) and (C2), then g(é) is an exactly
unbiased predictor of g(S) for any integrable function ¢ if (S(-), &(-)) is bivariate Gaus-
sian. Further, even if (S(-),&(+)) is not bivariate Gaussian, g(S) is an approximately
unbiased predictor of g(S) if g is smooth enough to possess two derivatives. Conse-
quently, even if y & {Vy,...,V,} given in Proposition 2, g(gcm) is still approximately
unbiased.

From (4.4), we obtain

MSPE[Scm] = E[(Sem — S)(Sem — S)']
=23, - X, (X2 'X)"X'2'C- O IX(X'2'X) X,
—(P1Qi + QiPy), (4.5)
since
cov[Sem, S = X/, (X'27'X)"'X'27'C + P,Q,. (4.6)

Expression (4.5) gives not only prediction variances, but also prediction covariances,
and may be useful for defining design criteria.
Assuming that X is p.d., we see that the CM predictor (4.4) of S exists if,

(E1): Q = var[Sy] — var[X/, §] is p.d.,
(E2): P = var[S] — var[X/,§] is p.d.
Consider the following result:

Proposition 4. Suppose that X is p.d. Then the matrix Q = Var[Suk] - Var[XjnﬁA] is
n.n.d (i.e., all of the eigenvalues of Q are nonnegative).

Proof. See the appendix. [

Thus, existence condition (E1) can only be violated if Q possesses some zero-valued
eigenvalues. Should this occur, a practical solution to this problem might be to add a
small positive constant to the zero-valued eigenvalues of Q. Clearly, the more stringent
of the two conditions is (E2), since P =X, — X/ (X2~ 'X)~'X,, may not be n.n.d.
(i.e., it may possess negative eigenvalues).

If (E2) is violated, a possible solution is to partition the prediction vector S into
subvectors and relax the covariance-matching constraints so that they apply only to
elements within, but not between, partitions. For example, suppose that S is partitioned
into r parts,

S=[S|...|S.

Then, the “partitioned” constraints may be written as
(P1): E[AIZ)=E[S], i=1,...,r,
(P2): var[A!Z]=var[S;], i=1,...,r,
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where A is partitioned conformably as
A=T[A...|A]

Note that (P1) is exactly equivalent to (C1), but that (P2) represents weaker constraints
than (C2) because there are fewer covariance conditions to be satisfied in (P2).

Proposition 2 can be applied to the prediction of each of the subvectors Sy,...,S,,
and if in each case the predictors exist, then we obtain the “partitioned” covariance-
matching constrained kriging (PC) predictor of S, given by

Spe = X, +K,C'2H(Z - Xp), 4.7)

where K, = Q;llel, and P, and Q,; are defined below.
Define P, as the positive-definite block-diagonal matrix whose ith block comprises
the positive-definite submatrix,
P,; = var[S;]] —var[X, f1 =P, P,i; i=1,...r

where {P,;;} are symmetric square roots and X,, = [X,,1]...|X,,]. Similarly, Q, is
the positive-definite block-diagonal matrix whose ith block comprises the positive-definite
submatrix,

Q. = var[Sy. ] —var[X), f1=Q,1. Qpin i=1,....1,

where {Q,;} are symmetric square roots and Sy = [SA{lk’1|...\SA(lk .]'. That is, the

elements in the diagonal blocks of P, are identical to the corresponding elements of
P, but all other elements of P, are zero; a similar structure holds for Q,,.

If necessary, the partitioning of S could be refined to the situation where each
partition contains only one element; that is,

S =[SB1)|...|SBw)]-
Then, P, is a diagonal matrix with ith diagonal entry,

P, =P, P, ;i =var[S(B;)] — var[x(B;))Bl, i=1,....m,
and Q, is a diagonal matrix with ith diagonal entry,

Q)i = Q1.iQp; = var[Su(B)] — var[x(B)Bl, i=1,....m.
In this case,

Spe = (Sck(B1)s- ., Sek(Bi))'s

where Sq(B) is the (univariate) constrained kriging predictor of S(B), which we shall
now describe briefly.
Consider the special case where m=1. Then, Ay in (4.3) reduces to the n x | vector,

a) =2 1T —-XX'Z'X)" X' T HeB)k + Z7IX(X'271X)"'x(B),

where

(= { var[S(B)] — var[x(B]'B] }1/2
N ]

var[Su(B)] — var[x(B) B

and §uk(B), given by (3.6), is the universal kriging predictor of S(B). Provided that
the numerator and denominator in the previous expression are positive, then & is well
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defined. In this case, we obtain the (univariate, variance-matching) constrained kriging
(CK) predictor of S(B), namely

S(B) = ahZ = x(B) p + ke(BY 2~ (Z — XP), (4.8)

Cressie (1993b) shows that (4.8) minimizes MSPE[a’Z] subject to a satisfying con-
gitions (C1) and (C2) given by (4.1) for m = 1. After some algebra, the MSPE of
S« (B) is given by

MSPE[S«(B)] =2[C(B,B) — x(B)Y (X' 27'X)"'X' 2 !¢(B)
—{(C(B,B) —x(BY(X'E™'X)"'x(B))

x(e(BYZ 'e(B) — e(BY Z7IX(X'Z7'X)"IX' T e(B))} .
(4.9)

It will be seen in the simulation experiment (Section 5) and the example (Section
6) that the real benefits of extra constraints come when covariances are matched, in
addition to matching variances.

Thus, we propose using CM in its purest form given by (4.4) and, if it does not
exist, then we could use CM in its partitioned form given by (4.7). We use finer
partitions until the constraint (P2) is satisfied. It is possible (although less desirable)
that (P2) could reduce to just m univariate CKs given by (4.8). And, in particular cases
where (4.8) does not exist (i.e., where & is not well defined), we may have to choose
instead the universal kriging predictor (3.6) or a conditional-simulation predictor of the
form described in (3.9). Cressie and Johannesson (2001) develop neighborhood-based
constraining sets as a practical alternative to partitioning, avoiding the arbitrariness
associated with defining the partitions.

5. Computer-simulation experiment

We designed a computer-simulation experiment to explore how covariance-matching
constrained kriging compares with ordinary kriging, constrained kriging, and condi-
tional simulation. The experiment yielded predictors of certain linear and nonlinear
functionals of the state process S(-) defined over a given spatial domain, under differ-
ent experimental conditions. The details of this experiment are now presented.

5.1. Spatial domain and spatial model

In this experiment, we consider a rectangular domain in R?, over which a triangu-
lar grid D ={(x,y): x=1,2,...,9, y =14+ 2kv0.75, k=0,1,....4} U{(x,y): x =
1.5,25,...,95, y=1+ 2k + 1)v/0.75, k=0,1,...,4}, is laid; see Fig. 1. The tri-
angular grid was chosen for its superior properties to discretize a continuous domain
(Serra, 1982), and because there is a natural partition of the grid into prediction sets
that each consist of three near-neighbor grid nodes. Two triangular, discrete subdo-
mains, By = {(2,1 + 2v/0.75),(2.5,1 + v/0.75),(3,1 + 24/0.75)} and B, = {(4.5,1 +
9v/0.75),(5,1 + 8v/0.75),(5.5,94/0.75) }, are given special emphasis in the simulation;
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1 2 3 4 5 6 7 8 9 10
z

Fig. 1. Domain D for simulation comprises a triangular grid of 90 locations over a rectangular area. The
subregions, B; and B;, each comprise a triangular grid of 3 locations, and their locations are identified as
“1” and “2”, respectively. The 10 locations marked with a circle represent the sample A.

their locations are identified as “1” and “2”, respectively, in Fig. 1. Observe that B,
lies where the sample is most concentrated and that B, lies where the sample is least
concentrated.

In addition, the 10 locations {si,...,s10} in D, marked with a circle in Fig. 1,
represent the fixed set 4 of sampling locations. Data Z = (Z(sy),...,Z(s10)) were
generated on A4 according to the following spatial model:

Z(s) = S8(s) + &(s), s=(x,y) €D,

where &(-), independent of S(-), is a zero-mean, Gaussian, white-noise measurement-error
process such that var[e(s)] = 72, and values for 7> are specified in Section 5.2 below.
The state process S(-) is also specified in Section 5.2.

5.2. Factors of the experiment

Four factors were considered in this experiment: (i) distribution of the random
field S(-), (ii) strength of spatial correlation, (iii) noise (i.e., measurement error),
(iv) predictor.

Four random fields {S;(s): s€D}; i = 1,...,4, were considered. The rationale for
their choice can be found in Cressie (1993b). In the first case,

Si(s) =104+ 6(s), s=(x,y) €D, (5.1)
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where J(-) is a zero-mean, Gaussian spatial process with “spherical” covariance func-
tion, given by

Ci(h) = cov[d(s), (s + h)]

[ 1= 5Uml/a) + 3(Ihll/a)’,  |h]| < a
0, Ih]| > a,

0> =1, and the range parameter a (specified below) governs the strength of spatial
correlation. The second random field is a log Gaussian process, defined as

$y(s) = ki + kyexp(Si(s)), s=(x,y) €D,

where k; and k; are chosen so that the mean and variance of S,(s) are equal to those
of Si(s); s € D. The third random field is defined as

SS(S) = k3 - k4 eXp(Sl (S))’ S = ()C, y)/ eD.

That is, the distribution of S3(s) is a “mirror image” of that of S,(s), and the constants
ks and k4 are chosen so that the mean and variance of S3(s) are equal to those of Sx(s)
and Si(s); s€D.

Finally, the fourth random field is a mixed Gaussian process, defined as

Su(s) = ks — ke{I(s)U(s) + (1 = 1(s))V'(s)}, s=(x, ) €D,

where /(-) is a 0—1 random field such that for any s # u, /(s),/(u) are independent
Bernoulli(0.75) random variables; U(-) is a Gaussian random field with mean equal to
16 and covariance function given by C;; V(-) is a Gaussian random field with mean
equal to 4 and covariance function given by (1/4/10)>C; I(-), U(-), and V(-) are
mutually independent random fields; and finally, ks and k¢ are chosen so that the mean
and variance of Ss(s) are equal to those of S3(s), S2(s), and S;(s); s€D.

From Cressie (1993a, Section 3.2.2), it is easy to show that k; = 10 — kye'®>, &y =
('(e—1)""2, ks =10+ k4e'%, ky = ky, ks =0.18975, and ks = 7.5333. Observe that
the marginal distribution of Si(s) is symmetric, that of S,(s) is skewed to the right,
that of S3(s) is skewed to the left, and that of S4(s) is bimodal with asymmetric peaks.

The strength of spatial correlation in model (5.1) is governed by the range parameter
a. Three levels of a were chosen: a =4.1, 7.5, and 30. These values represent weak,
moderate, and strong correlation structures, respectively.

Two levels of measurement error were considered: t>=0.1 and 2. These two levels
will be referred to as low noise and high noise, respectively. The two values of 72
were chosen according to the square-root signal-to-noise ratio scale, ¢/t, from which
we obtain the two ratios: o/t € {0.71,3.16}.

Four types of predictor were considered, namely ordinary kriging (OK), ordinary
constrained kriging (CK), ordinary covariance-matching constrained kriging (CM), and
conditional simulation (CS).

In the case of the covariance-matching constrained kriging predictor, S was parti-
tioned into 30 subvectors, each of length three, in a manner described in Section 4. The
first subvector corresponds to the locations {(1,1),(1.5,1 + +/0.75),(2,1)}, the second
subvector corresponds to the locations {(2.5,1 + +/0.75),(3,1),(3.5,1 + +/0.75)}, and
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so forth. This yielded the predictor Spc given by (4.7). Notice that we also could have
partitioned S into one 90 x 1 vector (which yields Sem given by (4.4)), two 45 x 1
vectors, three 30 x 1 vectors or, for that matter, forty five 2 x 1 vectors. The higher
the dimension of the vectors, the less chance there is for covariance matching to be
possible. Yet, if the dimension is too low, the full power of covariance matching is
not felt. The 30 three-dimensional vectors chosen here represents a nice compromise
for which covariance matching was possible for all 30 vectors.

The crucial component of (4.7) is the matrix K, that allows matching of covariances.
That matrix is obtained from two positive-definite symmetric matrices P, and Q,, such
that K, = Q;IIP p1. To obtain these matrices, we carry out a spectral decomposition of
P, and Q,. That is, we write

P, = HAH/,
where A = diag{4,,...,/,} is a diagonal matrix of positive eigenvalues, and H is a
matrix of corresponding normalized eigenvectors. Then P is the symmetric matrix,

P, = HA'’H, (5.2)

where A% = diag{)»}/z,...,)v,l,/z}; Q1 is chosen similarly. It is our intention in this
simulation experiment to use empirical optimality criteria to determine how well §pc
performs.

Finally, the conditional simulation predictor of g(S(B)) is defined as

L
Pes(9(S(BY)) =LY g(Sc.u(B)),
=1

where S¢ ;(B) is defined in Eq. (3.9) and, in this experiment, L = 1600. We chose the
value L=1600, because the width of the relative confidence interval (i.e, the confidence
interval one would obtain if the standard error were equal to one) is 4L~/ =0.1.

5.3. Predictands

The predictands g(S(-)) under consideration fall into three broad classes. In the first
class, the following predictands were included,

{S(D),S(B1),5(B2)},
where S(B), for a generic subset B of D, is defined as
SB)=[B"'Y S(s), BCD,
sEB

and B; and B; are shown in Fig. 1. Note that these three predictands are linear func-
tionals of S(-), and ordinary kriging is expected to predict these well, particularly if
S(-) is Gaussian.

The second class of predictands consists of

{Fs(q(x)): o= 0.50,0.75,0.90},
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where
Fs(t)=|D|7' > I(S(s) <1), teR

seD

and g(a) = inf{z: Fs(¢) = a}. Observe that Fs(¢) is a linear function of univariate
nonlinear functionals of S(-). Cressie (1993b) proposed constrained kriging (CK) for
predictands of this type, where variances only are matched for each of the summands.
Indeed, it is for predictands of this type (i.e., an average of nonlinear functionals) that
the approximate unbiasedness property of CK can be very useful in reducing the exper-
imental MSPE. Clearly, CM will also be approximately unbiased but with larger theo-
retical MSPE than that of CK, since it matches more second-order moments (namely,
covariances). It remains to be seen whether these theoretical MSPE inequalities hold
in the experiment.

Nonlinear functions of univariate nonlinear functionals of S(-) make up the third
class of predictands, and this class includes

{Os(g(a)): o =10.50,0.75,0.90},

where
Os(t) =Y _S()M(S(s) > 0)/|D|(1 = Fs(1)),  1€R
seD

In environmental applications, this quantity represents the average value of the pollutant
above a threshold. Predictands of this type can only be expressed as some functional
of the vector-valued argument S, and hence seem well suited for CM.

5.4. Responses of the experiment

We considered two responses in this experiment: The experimental mean-squared
prediction error (MSPE) and the experimental bias of the predictors. Suppose that
p(g(S(+)); Z) is a generic predictor of the predictand g(S(-)). Then the MSPE of
p(g(S());Z) is

MSPE[ p(g(S(-)); Z)] = E[ p(9(S(-)); Z) — g(S(-)))*
=var[p(g(S(-)); Z) — g(S(-))]

+{ELH(9(S()): Z2)] — g(S())F.

The MSPE and bias of each predictor for all combinations of the factors and predic-
tands of the experiment were estimated by generating 1600 realizations of the appropri-
ate S-processes and e-processes, yielding the experimental MSPE and the experimental
bias:

1600
MSPE[ 5 NN Z)] = —— 5(a(SD(Y). ZDY — g(SD(-)))2
SPE[p(9(S()): DI = 100 ;(p(g(S (O Z7) = g(S ()

1600
bias{p(g(S()): 2] = 15 > (A(9(SV().Z7) = g(SV (),
i=1
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where S)(-) represents the ith simulation of the random field S(-); i = 1,...,1600,
Z0 = (SO(s)+e(s)),...,8D(s19)+e(s19)) represents the ith simulated data vector;
i=1,...,1600, and £)(-) represents the ith simulation of the measurement-error process;
i=1,...,1600.

5.5. Results of the experiment

In this computer-simulation experiment, all the covariance parameters of Z(-) (i.e.,
this includes the parameter t>) were completely specified. An advantage of specifying
these parameters is that a “clean” comparison can be made among the predictors in
question, without any confounding effects that may be due to parameter estimation.
Since estimated covariance parameters are used in the same empirical-Bayes, “plug-in”
fashion for each of the four predictors, we are in effect assuming their influence is the
same in each case. Estimation of such parameters using geostatistical methodology is
given in Section 6.2.

Prediction of S(D), S(B1), and S(By): With respect to the bias criterion, all pre-
dictors performed well in predicting S(D), S(B;), and S(B,), in all cases.

With respect to the MSPE criterion, the differences among the predictors were
more pronounced. Ordinary kriging (OK) performed best (or nearly best) in every
case, as expected. Conditional simulation (CS) compared well with OK, except when
the random field was S4(-) (i.e., bimodal, mixed Gaussian), where it performed worst.
Covariance-matching constrained kriging (CM) outperformed constrained kriging (CK)
in every case, a welcome but slightly surprising outcome. The differences among the
predictors diminished markedly as the strength of spatial dependence increased, to the
point where all predictors were comparable when the range was large, namely a = 30.

In Table 1 we present, as an example, bias and MSPE results for the prediction of
S(B3), recalling that B, is located where the sample is most sparse. We see that even
in these cases (where the absolute bias and MSPE were generally larger than in the
prediction of S(D) and S(B;)), bias contributed little towards the MSPE.

Prediction of Fs(q(0.50)), Fs(q(0.75)), and Fs(g(0.90)): With respect to the bias
criterion, CK and CM performed best in the Gaussian case, and reasonably well in
the non-Gaussian cases. Surprisingly, OK performed well (sometimes best) in some
non-Gaussian cases, but CS consistently performed worst.

With respect to the MSPE criterion, OK consistently performed worst and CS usu-
ally performed best, and the difference between the two predictors was pronounced
when the measurement error was large, namely t> = 2. The predictors CM and CK
consistently performed very similarly, but with CM usually slightly better. The per-
formance of all predictors often worsened as the strength of spatial dependence, a,
increased.

In Table 2 we present, as an example, bias and MSPE results for the prediction of
Fs(g(0.75)), and these results reflect those of Fs(¢(0.50)) and Fs(g(0.90)) reasonably
closely.

Prediction of Qs(q(0.50)), Os(q(0.75)), and QOs(¢(0.90)): Observe that Qs(¢) is
not defined if 1 — Fs(¢) = 0. Among all predictors with # = ¢(0.75) and ¢(0.90),
there were many occasions among the 1600 simulations generated where predictions
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Table 1
The MSPE and bias of predictors of S(B;), for all combinations of the experimental factors in the simulation
experiment

S(B2)
RF =581(-) RF = 5(-) RF = 83(-) RF = 84(-)
MSPE Bias MSPE Bias MSPE Bias MSPE Bias
a=41 OK 0.587 0.011 0.596 —0.022  0.666 —0.016  0.027 0.001
=01 CK 1.886 0.020  2.002 —0.031 2.088 —0.030  0.146 —0.007
M 1.588 0.022 1.652 —0.036 1.775 —0.028  0.113 —0.005
Cs 0.730 0.033 0.654 —0.021 0.765 —0.002  0.960 —0.016
a=715 OK 0.909 0.009  0.921 —0.001 0.892 —0.028  0.052 0.007
=01 CK 1.843 —0.011 2.002 —0.011 1.917 —0.008  0.143 0.006
CM 1.713 —0.007 1.856 —0.008 1.776 —0.010  0.127 0.006
CS 0.962 0.004  0.858 0.003 0.838 —0.028  0.220 0.034
a=30 OK 0.378 0.006  0.532 —0.006  0.563 0.011 0.043 —0.004
=01 CK 0.548 0.014  0.724 —0.010  0.812 0.007  0.077 —0.009
CM 0510 0.013 0.678 —0.010  0.757 0.008  0.070 —0.008
Cs 0.378 0.006  0.530 —0.005  0.561 0.011 0.044 —0.005
a=4.1 OK 0.731 —0.015  0.769 0.020 03814 0.032  0.230 0.019
2= CK 1.832 0.005 1.801 0.059 1.807 0.021 0.691 0.041
CM 1.511 —0.005 1.495 0.049 1.512 0.021 0.524 0.032
Cs 0.805 —0.023 0.780 0.016  0.783 0.041 1.039 —0.055
a=175 OK 0.786 —0.014  0.732 —0.025  0.787 0.010  0.285 —0.006
=2 CK 1.508 —0.006 1.405 —0.033 1.521 —0.028  0.648 —0.019
CM 1.354 —0.009 1.258 —0.029 1.363 —0.020  0.561 —0.016
Cs 0.870 —0.017  0.756 —0.022  0.771 0.008  0.635 —0.016
a=30 OK 0.391 0.008  0.380 —0.002  0.687 0.034  0.234 —0.012
=2 CK 0.424 0.008  0.408 —0.002  0.737 0.035  0.252 —0.013
CM 0372 0.008  0.364 —0.002  0.657 0.033 0.224 —0.011
Cs 0.365 0.002  0.343 —0.011 0.776 0.037  0.204 —0.006

Ordinary kriging is denoted “OK”, constrained kriging “CK”, covariance-matching constrained kriging
“CM”, and conditional simulation “CS”; the abbreviation “RF” refers to random field.

of 1 —Fg(t) were found to be zero; these simulations were excluded from the analysis.
Consequently, estimates of bias and MSPE of predictors of Qg(#) may be optimistic in
those cases where predictions of 1 — Fg(¢) were zero for a non-negligible proportion
of simulations. In all cases, the proportion of all simulations for which the predictions
of 1 — Fg(t) were found to be zero, was consistently highest for OK, next highest for
CK, lower for CM, and lowest for CS.

With respect to the bias criterion, OK performed worst when the random field was
S1(+) or S2(+), and best for S3(-) or Sa(-). Conversely, CS performed well (sometimes
best) when the random field was S;(-) or S3(-), and worst for S3(-) or S4(-). The
predictors CM and CK consistently performed very similarly; they performed well for



24 J. Aldworth, N. Cressiel Journal of Statistical Planning and Inference 112 (2003) 3—41

Table 2
Similar to Table 1, except the MSPE and bias of predictors of Fs(g(0.75)) for all combinations of the
experimental factors, are given

Fs(q(0.75))
RF =81(-) RF =$5(-) RF = 83(-) RF = 84(-)
MSPE Bias MSPE Bias MSPE Bias MSPE Bias
a=4.1 OK 0.031 —0.126 0.059 0.032 0.034 —0.136 0.060 0.049
2 =0.1 CK 0.022 0.006 0.032 0.065 0.025 0.037 0.052 0.138
CM 0.020 —0.004 0.035 0.075 0.021 0.025 0.050 0.134
CS 0.008 0.014 0.038 0.165 0.006 0.060 0.078 0.198
a=175 OK 0.024 —0.078 0.046 0.050 0.031 —0.062 0.068 0.103
2=0.1 CK 0.020 0.002 0.039 0.079 0.031 0.041 0.063 0.141
CM 0.018 0.003 0.039 0.084 0.028 0.042 0.062 0.142
CS 0.010 0.017 0.038 0.145 0.012 0.066 0.052 0.194
a=30 OK 0.028 —0.062 0.057 0.053 0.053 0.010 0.096 0.148
2=0.1 CK 0.026 —0.002 0.052 0.082 0.053 0.068 0.094 0.174
CM 0.025 —0.001 0.050 0.084 0.051 0.068 0.092 0.175
CS 0.014 0.024 0.038 0.122 0.028 0.087 0.056 0.204
a=4.1 OK 0.081 —0.086 0.153 0.114 0.098 —0.032 0.179 0.169
2= CK 0.048 0.011 0.085 0.144 0.063 0.060 0.106 0.196
CM 0.046 0.001 0.086 0.144 0.061 0.054 0.108 0.194
CS 0.011 0.027 0.047 0.185 0.006 0.061 0.119 0.207
a=175 OK 0.077 —0.053 0.153 0.144 0.100 0.013 0.173 0.194
=2 CK 0.055 0.010 0.107 0.166 0.077 0.078 0.129 0.210
CM 0.053 0.010 0.105 0.167 0.075 0.079 0.126 0.210
CS 0.024 0.043 0.062 0.188 0.015 0.078 0.098 0.209
a=30 OK 0.144 0.034 0.198 0.146 0.169 0.081 0.230 0.220
2=2 CK 0.138 0.037 0.193 0.148 0.164 0.084 0.222 0.221
CM 0.132 0.038 0.183 0.148 0.155 0.083 0214 0.222
CS 0.056 0.100 0.088 0.185 0.052 0.117 0.102 0.229

S1(+) or S3(+), and adequately or well (certainly superior to CS) for S3(-) and Sy(+).
The differences among the predictors diminished markedly as a increased, to the point
where all predictors were comparable when the strength of spatial dependence was
large, namely a = 30.

With respect to the MSPE criterion, the predictors performed almost as they did
in terms of bias. That is, OK performed worst for S;(-) or S;(-), and best for S3(-)
or S4(-); CS performed best for S;(-) and some cases of S>(-), and worst for S3(-)
or S4(-). The predictor CM, which usually outperformed CK, performed well in most
cases (sometimes best) and never performed worst.

In Table 3 we present, as an example, bias and MSPE results for the prediction of
0s5(¢(0.75)), and these results reflect those of Qg(¢(0.50)) and QOs(¢(0.90)) well. In
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Table 3
Similar to Table 1, except the MSPE and bias of predictors of Qs(¢(0.75)) conditional on 1 — Fs(g(0.75))
> 0, for all combinations of the experimental factors, are given

0s(¢(0.75)), conditional on 1 — Fg(¢(0.75)) > 0

RF = 81(-) RF =5,(-) RF =53(-) RF = 84(-)
MSPE Bias MSPE Bias MSPE Bias MSPE Bias
a=4.1 OK 0.089 0.241 0.489 0.533 0.008 —0.049 0.005 —0.038
2 =0.1 CK 0.080 0.042 0.488 0.177 0.039 —0.153 0.028 —0.131
CM 0.063 0.073 0.408 0.260 0.055 —0.179 0.024 —0.122
CS 0.021 —0.004 0.287 0.205 0.190 —0.434 0.416 —0.577
a=175 OK 0.063 0.188 0.366 0.345 0.009 —0.042 0.009 —0.058
2=0.1 CK 0.051 0.055 0.406 0.181 0.041 —0.139 0.022 —0.113
CM 0.047 0.053 0.368 0.196 0.052 —0.166 0.023 —0.117
CS 0.022 —0.009 0.334 0.144 0.122 —0.340 0.188 —0.416
a=30 OK 0.020 0.100 0.085 0.115 0.011 —0.020 0.009 —0.070
2=0.1 CK 0.016 0.043 0.059 0.055 0.019 —0.072 0.018 —0.104
CM 0.015 0.037 0.060 0.056 0.019 —0.080 0.018 —0.110
CS 0.008 —0.010 0.094 0.003 0.038 —0.162 0.060 —0.238
a=4.1 OK 0.148 0.331 0.663 0.596 0.038 —0.125 0.076 —0.185
2= CK 0.102 0.079 0.420 0.293 0.204 —0.361 0.252 —0.426
CM 0.089 0.107 0.429 0.338 0.172 —0.337 0.220 —0.401
CS 0.029 —0.015 0.391 0.206 0.252 —0.500 0.718 —0.730
a=175 OK 0.115 0.253 0.483 0.374 0.061 —0.153 0.099 —0.222
=2 CK 0.088 0.088 0.382 0.200 0.163 —0.302 0.212 —0.376
CM 0.079 0.081 0.382 0.204 0.156 —0.306 0.211 —0.381
CS 0.041 —0.037 0.480 0.103 0.202 —0.441 0.488 —0.619
a=30 OK 0.051 0.047 0.142 0.007 0.084 —0.150 0.114 —0.233
2=2 CK 0.051 0.034 0.139 —0.012 0.088 —0.167 0.119 —0.244
CM 0.047 0.042 0.132 —0.003 0.079 —0.152 0.112 —0.236
CS 0.043 —0.107 0.195 —0.128 0.105 —0.283 0.207 —0.421

addition, as a visual aid to fix ideas, plots in terms of the squared-bias and MSPE
results for the prediction of Qg(¢(0.75)) are given in Fig. 2.

5.6. Summary

Several general conclusions can be made from this computer-simulation experiment:

1. For the prediction of linear predictands, all predictors had excellent unbiasedness
properties, but ordinary kriging (OK) is the preferred predictor in all cases, because
of its superior performance in terms of the MSPE. The MSPE performance of
covariance-matching constrained kriging (CM) was always quite good, and
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consistently better than constrained kriging (CK); on the other hand, conditional
simulation (CS) had MSPEs that were sometimes the best and sometimes the worst.

2. For the prediction of Fg(¢), an average of univariate nonlinear predictands, the unbi-
asedness properties of CK and CM were best in the Gaussian case and good in the
non-Gaussian cases. Although OK showed surprisingly good unbiasedness properties
in some cases, its relatively high MSPEs in all cases rule it out as a potential pre-
dictor here. And, while CS usually displayed very good MSPE properties, it usually
also displayed the worst bias.

3. For the prediction of Qs(¢), a nonlinear function of nonlinear predictands, CM and
CK performed well in terms of bias, except in some non-Gaussian cases with noisy
data. CM usually outperformed CK with respect to the MSPE. The performance of
OK and CS was highly dependent on the nature of the random field; in some cases,
OK performed best and CS performed worst with respect to bias and the MSPE,
and in other cases the converse was true.

4. CM and CK usually performed fairly similarly, irrespective of predictand, but CM
usually had the smaller MSPE, which was a welcome bonus.

5. In the prediction of S(B) or QOs(t), the four predictors performed similarly when the
spatial-dependence parameter a was large.

In conclusion, covariance-matching constrained kriging (CM) offers an attractive al-
ternative to ordinary kriging (OK) and conditional simulation (CS), especially when
the distribution of the underlying process is far from Gaussian (e.g., bimodal mixed
Gaussian) and the predictand possesses some degree of nonlinearity. Moreover, while
it is tempting to treat the realizations from CS as “typical” spatial surfaces, the per-
formance of CS in this experiment shows that it cannot be trusted in a number of
important cases (see also Gotway, 1994).

6. Spatial analysis of particulate matter in the Pittsburgh area

In this section, we shall apply the four predictors, encountered in Section 5, to
the analysis of PM( (i.e., particulate matter with particles smaller than 10 pm, in
aerodynamic diameter, per cubic meter of air; see Section 1) over the Pittsburgh area.
In 1996, PM;y was monitored at 27 sites in the Pittsburgh area. The monitoring stations
were scattered throughout the Pittsburgh Metropolitan Area and environs. At the 27
sites, four different monitoring devices (probe types) were used, at several sites more
than one probe type was used, and at two sites the same probe type was duplicated.
In addition, the monitoring intervals varied from daily to 3 to 6-day (synchronous)
intervals.

6.1. Exploratory data analysis

The exploratory data analysis, which is described in more detail in Cressie et al.
(1999), consisted of two phases. In the first phase, the analysis focused on differences
among the probe types and on appropriate transformations of the data to stabilize the
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Fig. 3. Map of configuration of 22 sites in the Pittsburgh area on day 226 (August 13), 1996. The site marked
“x” corresponds to the location of two spatial outliers. The horizontal axis is in the east-west direction, the
vertical axis is in the north—south direction, and the units of both axes are in miles.

variance and obtain an approximately symmetric distribution; this analysis was based
on all the data recorded in 1996.

Observations corresponding to the two most frequent probe types were compared (the
other two probe types were too poorly represented for any meaningful comparisons),
from which it was concluded that all probe types were essentially measuring the same
quantity with the same measurement error, resulting in more monitoring sites with
essentially replicate observations. After considering various transformations from among
the power family of transformations, a log transformation was found to perform well
in stabilizing the variance and allowing a Gaussian distribution as a model for the data.

In the second phase, an exploratory spatial data analysis was performed on the data
corresponding to a particular day, August 13, 1996 (day 226), upon which a detailed
spatial analysis was done for illustrative purposes. Day 226 was chosen because a
graphical analysis of the corresponding data exhibited a spatial-dependence structure
sufficiently interesting to warrant a more detailed analysis. On this day, PM;, was
monitored at 22 sites, eight of which had duplicate measurements. Fig. 3 shows a map
of the configuration of these 22 sites, centered near Avalon, about 5 miles northwest of
downtown Pittsburgh, and extending about 20 miles in each of the compass directions.
At the scale of the problem, the earth’s surface is approximately flat and the units on
each axis are given in miles.
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An analysis of semivariogram clouds detected two outlying values (i.e., unusual
values relative to nearby values) that corresponded to a single site marked with an
“x” in Fig. 3. This site (site 3004) was removed for variogram estimation (but not
for prediction). Further analysis of semivariogram clouds and semivariogram estimates
(with site 3004 removed) in several directions indicated that the spatial variability was
anisotropic (i.e., not homogeneous in all directions), and that the spatial correlation
appeared to be strongest in the ENE-WSW direction (i.e., 67.5° clockwise from N)

and weakest in the NNE-SSW direction (i.e., 157.5° clockwise from N).
6.2. Modeling the semivariogram

Define
S(s) =logPM,((s), seD,

where D represents a two-dimensional convex region surrounding Pittsburgh and con-
taining the 22 sampling locations. Assuming that the measurement error is normal and
additive on the log-transformed scale, we obtain the measurement-error spatial model,

Z(s)=S8(s)+¢(s), se€D,

where Z(-) represents the set of actual (and potential) observations on the log-trans-
formed scale, and for each s€ D, &(s) is distributed identically and independently as
N(0,7?). In addition, S(-) and &(-) are assumed to be independent. As we have seen in
Section 2, this is a spatial empirical Bayes model. We now focus on the “empirical”
part, namely estimation of the model parameters.

Nonparametric estimates of the semivariogram of the data (excluding site 3004)
were calculated (see Cressie, 1993a, Section 2.4), yielding {j.(h;): i=1,...,H}, where
h;; i=1,...,H, are lag vectors taken in only two directions, 67.5° and 157.5°, each with
an angle tolerance of +45° and a lag tolerance of 1.5 miles (i.e., any distance between
pairs that lie within 1.5 miles of ||h;|| was considered to be of length ||h;||;=1,...,H).

A semivariogram is said to possess geometric anisotropy if a simple rotation and
scaling of the original axes exist such that under the transformed axes the semivari-
ogram is isotropic (i.e., a function of the length ||h|| of the spatial lag h). Assuming
geometric anisotropy for the directional semivariograms, Journel and Huijbregts (1978,
pp. 179-181) give the matrix that performs the appropriate rotation and scaling of the
original axes as

cos’ ¢+ Asin® ¢ (1 — A)sin ¢ cos ¢
a (1—2)singcos¢  sin® ¢+ Lcos’ ¢ ’

where ¢ represents the angle of rotation (clockwise) required to align the original N—S
axis with the direction in which the spatial correlation is weakest. From the discussion
above, ¢ =157.5°. The anisotropy-ratio parameter A represents the scaling of the axes
required for isotropy under the new axes, which is estimated by weighted least squares
below.

Therefore, consider the following parametric semivariogram model:

(6.1)
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where A is given by (6.1). The parameters in @ are fitted by the method of weighted
least squares, proposed by Cressie (1985). That is, from nonparametric estimates
{72(]|Ah;||): i=1,...,H}, we choose @ in y?(||A(1)h]];0) to minimize

H N 5
3 72([A(Dh) }

A(L hi _—— — 1 ,
P NA) |){V§(||A(A)h||;0)

with respect to 6 = (/, a%, aiV,a)’ , where we have chosen to feature the anisotropy-ratio
parameter A in A(1); N(||A(A)h;]]) is the number of pairs of sites whose distance (after
the axes have been transformed by A(/1)) lies within a tolerance of 1.5 miles of
[IA(A)h;||; and the parameters 05, o3, and a are parameters of the spherical semivario-
gram model (see Cressie, 1993a, p. 61). This results in the estimated (geometrically
anisotropic) semivariogram model given by

67 + Gy, |A(Dh| > 4,
1:(h;0) = < 62 + 63, {3(|A(Dh]|/a) — J(|ACDR]/a)*}, 0 < [[ACDR| <4,
0, h=0,

where 1= 0.46923, 6% =0.00726, 62, = 0.05188, and &= 22.720. This semivariogram,
and the nonparametric estimates to which it was fitted, is displayed in Fig. 4.

Finally, from the seven duplicates, we can estimate the measurement-error variance
7% as £2=0.00706, which allows us to construct ¥ and ¢(B), defined in (3.2), for predic-
tion. For example, we estimate var[Z(s;)] as 6,27 +6%,=0.05914, and cov[Z(s;), Za(s;)]
as &,27 + 62W — 2 = 62 =0.05208, where Z\(s;) and Z,(s;) represent duplicates from site
s;, and recall that var[S(s)] = o7 + o3, — 7> = ¢. It should be noted that should prior
distributions be put on the parameters Z, a;, a7y, a, and 7*, the empirical Bayes model
becomes a fully Bayesian model.

6.3. Spatial prediction of PM,q

Define
X(s) =exp(S(s)), seD,

where X (s) is the true PM;( value devoid of measurement error, and D represents a
two-dimensional convex region surrounding Pittsburgh and containing the 22 sampling
locations that reported on day 226, 1996.

In this section, we address several prediction objectives. A “smooth” surface of PM,
values is predicted to provide some idea of the nature of PM;y over D. Observed and
predicted values of PM,, indicate that the region D is well within PM;, compliance
(i.e., PMjo(s) < 150 pg/m?, for all s € D), so prediction of the proportion of D exceed-
ing 150 pg/m? is expected to be zero. However, for illustrative purposes, two arbitrary
cutoff values (both within the range of observed values) were specified, and the pro-
portion of D exceeding those two values is predicted. Finally, the average amount of
PM;, that exceeds/does not exceed the two cutoff values are also predicted. The two
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Fig. 4. Fitted isotropic spherical semivariogram. The lag distance is the scalar quantity ||Ah||, where h is
the spatial lag vector between sites in the original co-ordinate system. The horizontal axis represents lag
distance in miles, and the vertical axis represents fitted semivariogram values.

outliers discussed in Section 6.1 were included in the prediction part of this study since,
although it is often justifiable to exclude unusual observations from over-influencing a
global variogram model, local effects are usually of interest when predicting various
features of X(-).

For mapping the PM;, values, we created a triangular grid of 279 prediction lo-
cations, {u;: i =1,...,279}, at which X(-) was predicted by ordinary kriging (OK),
constrained kriging (CK), covariance-matching constrained kriging (CM), and condi-
tional simulation (CS).

Define the OK predictor of X(sy) as

Xok(s0) = exp(Sok(s0)), S0 €D,

where Soi(so) is the OK predictor of S(sg). Observe that the ordinary kriging predictor
of X(sg) is biased, but since X(-) is a log Gaussian process, a bias correction can
be applied to the predictor and the MSPE of the corrected predictor is easy to obtain
(e.g., Cressie, 1993a, Section 3.2.2). Suppose that E[S(s)] = u, var[S(s)] = ¢2, and
var[Z] = X. Then, adjusting for measurement error, the bias-corrected OK predictor of
X(sp) is given as follows:

X ok(s0) = exp{Sok(so) + (6% — var[Sox(so)])/2}
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and the MSPE of X ok(So) 1s given by
MSPE[X ok(s0)] = {exp(2u + 0°)}

x{exp(a?) + exp(var[Sox(s0)]) — 2 exp(cov[S(so), Sok(s0)])}-

Such a bias correction is not generally available for other nonlinear functionals of S(-).
Thus, using the OK predictor X o instead of X is being generous to the methodology.
(No bias correction was made in the simulation experiment in Section 5.)

Define the CK predictor of X (sg) as

Xe(so) = exp(Se(s0)), S0 €D,
where Sc(so) is the CK predictor of S(sg). Observe that since exp(-) is a smooth
function, the CK predictor of X(s¢) is at least approximately unbiased, whatever the

distribution of S(-). However, under the model that S(-) is Gaussian, the CK predictor
X ck(sp) is exactly unbiased. It is not difficult to show that its MSPE is given by

MSPE(X c(80)) = 2{exp(2pt + 0°) Hexp(a?) — exp(cov[S(so). Sei(s0)])}-
Define the “partitioned” CM predictor of X = (exp(S(s1)),...,exp(S(s279))) as
ch = (exp(§p0(51 )) N exp(Spc(5279)))l,

where §pc(si) denotes the ith element of §pc; i=1,...,279, and s},c is the “par-
titioned” CM predictor of S = (S(s1),...,S(s279))’, partitioned into 93 subvectors
each of length 3; see (4.7). (The set of configurations of triangular locations within
which covariances were matched are {(6.76,—20.80),(7.76,—19.06),(8.76, —20.80)},
{(9.76,—19. .06),(10.76, —20.80), (11.76, —19. 06)}, and so on.) Denote the ith element
of ch as X pc(si). Then, it is not difficult to show that X pc(+) 1s exactly unbiased for
X(+), and

MSPE(X'F,C(S,-)) = 2{exp(2u + 02)}{exp(a2) - exp(cov[ﬁpc(si), S(s)D}s
i=1,...,279,

where cov[S'pc(s,-),S(s,-)] is the ith diagonal element of cov[ng,S]. From (4.6), we can
show that

coV[Spe, S] = Lo {1/(I'Z'DH'Z™'C+ P,Q,,

where 1579 is a vector of 279 ones, 1 is the usual vector of n(=30) ones, and P,; and
Q1 are symmetric matrices obtained by the spectral decomposition method as given
by (5.2).

Define the CS predictor of X(sy) as

L

. 1

Xes(S0) = I E exp(Sc,i(s0)), S0 €D,
=1

where Sc ;(sp) is defined in Eq. (3.9). Observe that since all first and second moments

of each realization of the conditional simulation match those of S(so) and S(-) is

Gaussum then X s(So) is unbiased. Now, for L large, we expect X () to be like
X ok(+), modulo the effect of estimating the unknown mean u.
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It is not difficult to show that its MSPE is given by
MSPE[X es(s0)] = (1 + 1/L){exp(2t + 0*) Hexp(a?) — exp(e(so) X e(s0))}

where ¢(sg) =cov[Z,S(sg)]. For L large, this MSPE is slightly more than half the size
of the MSPE that would result from a predictor based on only one realization of the
conditional simulation.

Rather than choose a large value of L (e.g., L = 1600 was chosen in the simulation
of Section 5), we shall calibrate CS to CM as follows. Define the spatial variance of
any surface X*(-) as

SV(X*) = ﬁ /B(X*(u) —X*) du,

where X* = ﬁ fBX*(u) du. We solve for L in:

SV(Xes) = SV(Xem), (6.2)

and obtain L=10. (Note that L satisfying (6.2) may vary from one set of CS to another.)
Choice of this value of L allows us to compare qualitatively the prediction surfaces of
CS and CM. Any difference will be due to the inherently different approaches of the
two methods. (We already know that a large value of L will yield a surface like that
of OK.)

Contour maps of the bias-corrected OK predictions and root MSPEs, the CK pre-
dictions and root MSPEs, the CM predictions and root MSPEs, and the CS predictions
and root MSPEs (with L=10) of PM,y over D are presented in Figs. 5-8, respectively.
The sampling sites and the prediction sites are shown in each of the figures. Notice
that the map of the OK predictions appears to be a little smoother than that of CK
which, in turn, is somewhat smoother than that of CS. But the remarkable difference
is between these rather smooth maps and that of CM, which shows features of local
peaks and valleys. Indeed, the CM-prediction contour map in Fig. 7 is beginning to
take some semblance of a single realization from a conditional simulation! Yet, we
have constructed it to have MSPE-optimality properties. We appear to have the best of
both worlds: a more realistic-looking map, but with MSPEs that have been minimized
(subject to covariance-matching constraints). Also notice that the root MSPEs of the
four predictors are fairly similar: those of OK are the smallest and those of CM are
the largest. We observe that the results presented in Figs. 5-8 are consistent with the
theory established in Section 4.

Inspection of Figs. 5-8 shows that the region D is well within PM;y compliance on
day 226, 1996, since the largest predicted value is well below the 24-hour standard
of 150 pg/m3. However, for illustrative purposes, suppose that we wish to know the
proportion of D for which PM exceeds the cutoff value of 28.75 pg/m? (third quartile
of the data). The predictand describing this quantity is defined as

1

Fy(28.75) = i

D I(exp(S(s)) < 28.75). (6.3)

seD
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Fig. 5. Contour maps of bias-corrected ordinary kriging predictions and root MSPEs of PM;q. There are 279
prediction locations marked “.”, and 22 sampling locations marked “+”.

Further, suppose we wish to predict the average amount of PMj, that exceeds the
cutoff value. The predictand describing this quantity can be written as

! >~ exp(S(s)I(exp(S(s)) > 28.75)/(1 — Fx(28.75)). (6.4)

0x(28.75) = —
|D| seD

Ordinary kriging (OK), constrained kriging (CK), covariance-matching constrained
kriging (CM), and conditional simulation for a given L (CS(L)) were used to predict
(6.3) and (6.4). In predicting Fx(28.75), OK, CK, CM, CS(10), and CS(1600) yielded
the values 0.853, 0.810, 0.860, 0.824, and 0.828, respectively. In predicting Ox(28.75),
OK, CK, CM, CS(10), and CS(1600) yielded the values 30.68, 31.77, 31.56, 31.13,
and 30.95, respectively.

Which prediction do we choose in each case? We believe that S(-) is a Gaussian
spatial process, that 2 = 0.007 is small compared with ¢ = 0.052, and that 4 = 22.7
suggests a fairly strong spatial dependence structure in the signal. Armed with this
knowledge and based on the results of the simulation experiment in Section 5, we
should rule out OK as a candidate in both cases. Indeed, by checking the cell in Table 2
(where Fs(q(0.75)) is the predictand) and the cell in Table 3 (where Qs(g(0.75)) is
the predictand) for which the random field is Gaussian (i.e., S(:)=S1()), > =0.1, and
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Fig. 6. Contour maps of constrained kriging predictions and root MSPEs of PM;q. There are 279 prediction
locations marked “.”, and 22 sampling locations marked “+”.

a=30, we see that OK has the largest absolute bias in both cases. The cell in question in
Table 2 suggests that in predicting Fs(¢(0.75)), CM has the smallest absolute bias but
CS(1600) has the smallest MSPE (and a relatively large absolute bias). By also noting
that Fy(28.75) has an extra degree of nonlinearity (i.e., X(-) = exp(S(-))), we might
prefer CM in this case. The corresponding cell in Table 3 suggests that in predicting
0s5(¢(0.75)), CS(1600) performs best in terms of unbiasedness and the MSPE, with
CM taking second place. Also noting the extra degree of nonlinearity in Ox(28.75), it
may be difficult to choose between CM and CS(1600) in this case.

7. Conclusions

Several conclusions can be drawn from this paper. The first is that if a measurement-
error component is explicitly added to a spatial model, then this may have a profound
effect on the nature of spatial prediction. Indeed, popular nonlinear kriging predictors
such as indicator (co)kriging and disjunctive kriging, are biased in the presence of
measurement error. On the other hand, linear kriging predictors can be adjusted easily
to filter out measurement error. In addition, the spatial model with additive measure-
ment error can handle replicated data (i.e., multiple observations at a single sampling
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Fig. 7. Contour maps of covariance-matching constrained kriging predictions and root MSPEs of PM;y.
There are 279 prediction locations marked “.”, and 22 sampling locations marked “+”.

location) and data where the same underlying spatial phenomenon is observed via two
or more distinct types of measuring instrument.

The second conclusion is that for the prediction of nonlinear spatial functionals,
covariance-matching constrained kriging has good unbiasedness properties in almost
all cases, with some exceptions as noted in Section 5. Its MSPE properties are some-
times good or best, but almost never worst among the four predictors, and they usually
beat those of constrained kriging. In terms of bias and MSPE, the performance of con-
ditional simulation is sometimes very good and sometimes very poor, depending on the
random field and the degree of nonlinearity of the predictand. While conditional simula-
tion matches all means, variances, and covariances, it requires a lot of computing time
and storage of simulations. Covariance-matching constrained kriging presents a com-
promise between conditional simulation and ordinary kriging, where some covariances
are matched but only one prediction surface is computed. (Olea and Pawlowsky, 1996,
take an empirical, data-driven approach to compensating for the smoothing inherent in
kriging.) Ordinary kriging usually performed very poorly for nonlinear predictands, but
in a few cases did better than expected. To sum up, covariance-matching constrained
kriging fills a useful niche in predicting nonlinear spatial functionals, especially when
the predictand has a high degree of nonlinearity and when the distribution of the under-
lying signal is unknown.
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Fig. 8. Contour maps of conditional simulation predictions (with L calibrated to be 10) and root MSPEs of
PMjo. There are 279 prediction locations marked “.”, and 22 sampling locations marked “+”.
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Appendix

Before we prove Propositions 2—4, we need to establish the following lemma.

Lemma. Assume that P, Q, and X are p.d., where P and Q are defined in the
statement of Proposition 1, along with Py = P2, Q; = Q'2, and K = Q; 'P;. Then
for any m x m matrix A satisfying (C1) and (C2),

(Ag—AYC=(Z, —A'ZAOK ',
where Ay is given by (4.3).
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Proof. Since (C1) implies that A’X = X/

m>

we have
A ZAK T =A T - XX'ZT'X)"IX'ZTHC+ AXX'Z'X)7 X, K™!
=AC+X,(X2'X)" (X, K -X'27'C)
and hence,
AC=AZAK ' - X (XZ7'X)" (X, K - X'27'C).
Now,
A)C=KCI-2 XXz 'X)" X r'c+ X (X 'X)" X'z 'C.
Therefore,
(Ao —AYC=K'C'(I -2 'XX'z7'X)"'X")z"!C
—(A'ZA) - X, (X' 27'X)7 !X, )K™!
=P(Q)Q—(A'ZA - X, + P)K ',

since P= 2, — X/ (X’27'X)"'X,, and Q= C'2'C - C'Z7'XX'Z7'X)"'X'2~'C.
Therefore,
(Ag —AYC=P|Q, + (X, — A'ZA)K ' — PP, 'Q,
=(Z, — A/ ZAOK . O

Proof of Proposition 2. (i) Differentiate f(A) with respect to A and equate with zero
to obtain

Af (A

aal:,-

f'(A) = ( ) =2Cyy +2XA4; —2XAA; =0,

where A1 = (My,...,hiw) is @ (p + 1) X m matrix and 4y = (Ay;) is an m X m
symmetric matrix. The expression for f/(A) follows from

(0/0as) ( > anM,) =Xk,
i=1
and

(0/0a) ( > a(ajza; - C(Bi,BJ-))) =2 JaiZa;.

i=1 j=i k=1
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Thus,
Ady =27 !(Cyy' + X4y),
since X is p.d. Consequently,
A =X'Z7X) ' [X, 4, — X'Z7Cyy],
since (C1) implies that X’A = X,,. Hence,
Ad, =X XXX Z'X)" X' Heyy + XX Z'X) " 'X,4,. (A)
Also, (C2) implies that
Ay = A A EAA,
—yyC'Z - 2XX'27'X)"'X
+ XX ZTX) XTI X)X 2T IX) T IX 2 cyy’
+ AX, (X' Z7X) T (X ETIX)X ETIX) T IX A4,
since yy'C'{I — Z7'X(X’Z7'X)"'X'}27'X(X’27'X)~! = 0. Therefore,
A Zp Ay =yy' (C'27IC - C27 XX 27'X)" X' 271 C)yy
+ XX Z7IX) X, 4,.
That is,
AP A, = yy'Qyy'. (A2)
Now (A.2) can be equivalently written as
(A3 A5 =y Yy,
where A3 = P, 4,Q; and y* = Q,y. Its solution is A4} = y*y*, or equivalently,
A, =P7'Quyy,

provided the right-hand side is symmetric. This is true if y=V; in Proposition 1, since
then

PrQuyy =) v VWV Vi =v 2V Vi ji=1...m.
i=1

Then it is a simple matter to demonstrate that A = Aq, y=V;, and 4, = Pl_lQlyy’
satisfy (A.1) with A, symmetric. Thus A = A is a stationary point of f(A).

(ii) It only remains to prove that y'Myy, subject to A satisfying (C1) and (C2), is
in fact minimized by A = Ag. Now M, =2X,, — A’C — C’'A, due to (C2). Hence,

M, — My, =(Ag—A)YC+C'(Ag — A)
=(Zn —A'ZAOK ™ + (K71Y(Z, — AGZA),
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due to Lemma. Hence,
Y (M —My)y =y (Zn — A'ZADK 'y + (K y) (2, — AGZA)y
=v;2Vi{(Ag — AYZ(Ag — A)}V; >0,
where y=V;; j=1,....m. 0O

Proof of Proposition 3. Constraint (C1) is satisfied, since
AX=K'C(I -2 'XXZ'X) X)X+ X, (X'27'X)" X2 'X
=X
Further,
ALZA =K CZ I - XX'27'X)"IX'27)CK + X, (X'27'X) "X,

since (I — Z7'X(X'27'X)" X)X 'X' = 0. And, since P = %,, — X/ (X'27'X)"'X,,
and Q=C'27'C— U2 IX(X'Z7'X)"'X'’27!C, we have

AZA)=K'QK+2Z2,-P=2,,
which is (C2). O
Proof of Proposition 4. Since X is p.d., we can write £~' = F'F for a nonsingular F.
Then,
Q=Czr'c-Cr'xxzr X)Xz 'c
=G’'G,

where G = JFC, and J = (I — FX(X'27'X)"'X'F’) is symmetric and idempotent.
Hence Q is n.nd. [
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