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Introduction
The rapid evolution of drug discovery science, fuelled by combinatorial library-

based synthesis programmes, has led to increased pressure on the drug safety

evaluation process. Once potential drugs have passed the primary biological

screening procedures, losses of drug candidate compounds from the product

development pipeline (known as ` attrition’ ) need to be minimized. Hence, there is

an intensive search for new analytical technologies that will maximize eæ ciency of

lead compound selection based both on eæ cacy and safety and will minimize overall

attrition rates. Current bioanalytical approaches include measurements of responses

of living systems to drugs either at the genetic level or at the level of expression of

cellular proteins, using so-called genomic and proteomic methods respectively. At

present both genomics and proteomics are expensive and labour-intensive, yet

potentially are powerful tools for studying diå erent levels of the biological response

to xenobiotic exposure. However, even in combination,genomics and proteomics do

not provide the range of information needed for an understanding of the integrated

cellular function in living systems, since both ignore the dynamic metabolic status

of the whole organism. Thus, a new NMR-based ` metabonomic ’ approach is

proposed that is aimed at the augmentation and complementationof the information

provided by measuring the genetic and proteomic responses to xenobiotic exposure.

Metabonomics is de® ned as ` the quantitative measurement of the dynamic

multiparametric metabolic response of living systems to pathophysiological stimuli

or genetic modi® cation ’ . This concept has arisen from work on the application of
" H-NMR spectroscopy to study the multicomponent metabolic composition of

bio¯ uids, cells and tissues over the past two decades (e.g. Nicholson et al. 1983,

1985, Bales et al. 1984, Gartland et al. 1989, Nicholson and Wilson 1989, Moka et
al. 1998). Also studies utilizing pattern recognition (PR), expert systems and related

bio-informatic tools are used to interpret and classify complex NMR-generated

metabolic data sets (Gartland et al. 1991, Holmes et al. 1992, 1994, 1998a, b,

Anthony et al. 1994, Spraul et al. 1997, Beckwith-Hall et al. 1998). There is also

a signi® cant background to this work in other research ® elds, notably metabolic

control analysis (Kacser and Burns 1973, Kacser 1993, Goodacre et al. 1996), and

there is a related concept of the ` Metabolome ’ that represents the total small

molecule complement of a cell. However, metabonomics deals with detecting,
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identifying, quantitating and cataloguing the history of time-related metabolic

changes in an integrated biological system rather than the individual cell. Such

multidimensional metabolic trajectories are then related to the biological events in

an ongoing pathophysiological process. Here, provided is a brief background to the

useful properties of metabonomic data sets and the possible uses of NMR-based

metabonomics for toxicological classi® cation and biomarker or surrogate marker

identi® cation in vivo.

Genomic and proteomic approaches to drug toxicity assessment
Development of new tools in structural molecular biology has led to an increased

understanding of the organization of the genome. This knowledge combined with a

massive increase in the ability to identify and sequence genes has led to the point

where the entire genome of " 20 prokaryotic organisms, e.g. Archaeoglobus fulgidus
(Klenk et al. 1997), has already been sequenced together with one eukaryotic

organism with C 19000 genes and " 93 3 10 ’ bp (Caenorhabditis elegans ; The C.

elegans Sequencing Consortium 1998). A complete description of the human

genome with C 80000 genes is probably only a few years away. One of the

intellectual products of the molecular biology revolution has been the concept of

` genomics ’ , which is basically a semiquantitative approach to the measurement of

gene expression. In the context of drug discovery and for the purposes of

toxicological assessment, the genomic approach involves the observation of altered

gene expression after drug exposure. The technology involves a new generation of

proprietary ` gene chips ’ , which are small disposable devices encoded with an array

of genes that respond to extracted cellular mRNA produced after exposure to a

foreign compound which has caused the ` switching on ’ of various genes (Sinclair

1999). Many genes can be placed on a chip array and patterns of gene switching

caused by xenobiotic exposure can be monitored rapidly in this way, although at

some considerable cost. However, relationships between gene regulation } expression

and the integrated function and control of cellular systems (so-called functional

genomics) are still far from clear, and will remain so for many years after the

complete sequencing of the human genome. The main reason for this is that the vast

majority of DNA is non-coding, yet protein coding sequences or genes cannot

function as isolated units and can require the presence of neighbouringgenes and } or

non-coding DNA. The lack of understanding of the biological consequences of

altered gene expression has led to the development of proteomics, which is

concerned with the semiquantitative measurement of the production of cellular

proteins in response to drug exposure and other pathophysiological processes

(Anderson et al. 1996, Aicher et al. 1998, Geisow 1998). Proteomic measurements

utilize a variety of technologies, but all involve a protein separation method,

e.g. 2D gel-electrophoresis, allied to a chemical characterization method, usually,

some form of mass spectrometry (MS). While potentially less expensive than

genomics, proteomics is very slow and labour-intensive at present. More

importantly, although these measurements may ultimately give profound insights

into toxicological mechanisms and provide new surrogate biomarkers of disease,

at present it is very diæ cult to relate genomic and proteomic ® ndings to

classical indices of toxicity or toxicological end-points. One simple reason for this

is that the current technology and approach precludes the measurement of a detailed

time-course of the response to drug exposure or the measurement of responses in

a multi-organ system. This may be particularly important for the many known
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cases where the metabolism of the compound is a prerequisite for toxicity and

especially true where the target organ is not the site of primary metabolism.

An example is the case of compounds that form glutathione S-conjugates in the

liver that are subsequently processed by b -lyase thus generating reactive inter-

mediates that show ultimate target organ toxicity in the renal proximal tubules

(Elfarra et al. 1986). There is a need for the development of novel methods

that give information of in vivo multi-organ functional integrity in real time. NMR-

based metabonomics oå ers one such approach to the generation of this type of

information.

NMR-based metabonomics
Foreign compounds may interact with tissue and extracellular components of an

animal at a series of organizational levels ranging from changes in genetic expression

through protein production and integrated cellular biochemical regulation and

control. In such cases there will be alterations detectable at all levels of bio-

molecular organization and a complete approach to the description of these changes

might be termed as ` bionomics’ (proposed by Professor Ian D. Wilson). In many

cases, drugs exert their toxic eå ects by interacting directly with genetic material

or by inducing the synthesis of drug metabolizing enzymes, which generate toxic

products. In such cases genomic and proteomic approaches to toxicity assessment

may be useful. However, xenobiotics may act only at the pharmacological level and,

hence, may not aå ect gene regulation or expression. Also signi® cant toxicological

eå ects may be completely unrelated to gene switching or protein synthesis. Exposure

to ethanol in vivo may switch on many genes, but this does not explain drunkenness!

Hence, in many cases facile consideration of genomic and proteomic responses are

likely to be ineå ective at predicting drug toxicity. However, all drug-induced

pathophysiological perturbations result in disturbances in the ratios and concen-

trations, binding or ¯ uxes of endogenous biochemicals, either by direct chemical

reaction or by binding to key enzymes or nucleic acids that control metabolism. If

these disturbances are of suæ cient magnitude, toxic eå ects will result that will aå ect

the eæ cient functioning of the whole organism. In body ¯ uids, metabolites are in

dynamicequilibrium with those inside cells and tissues and, consequently, abnormal

cellular processes in tissues of the whole organism following a toxic or metabolic

insult will be re¯ ected in altered bio¯ uid compositions. In all cases the analytical

problem usually involves the detection of ` trace ’ amounts of analytes in a very

complex matrix with many potential interferences. It is critical, therefore, to choose

a suitable analytical technique for the particular class of analyte of interest in the

biomatrix, for example blood, plasma, urine, bile or organ samples. High-resolution
" H-NMR spectroscopy appears particularly appropriate for investigating abnormal

body ¯ uid compositions as a wide range of metabolites can be quanti® ed

simultaneously with no sample preparation and ` without prejudice ’ . Other

techniques such as MS may also be useful for generating metabolic data, but

diå erential ionization eæ ciency in the complex could aå ect detectability and

quantitiation. NMR spectroscopy may also be used eå ectively to screen for

abnormal metabolite pro® les in tissue extracts or cell suspensions. It has also been

shown that the same approach can be used to investigate the metabolic composition

of intact tissues using high-resolution magic angle spinning " H-NMR spectroscopy

(Moka et al. 1998).
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Figure 1. Partial 600 MHz " H-NMR spectra of a series of urines from the control rat, and those
collected 8± 24 h after treatment with various model toxins. HCBD, hexachloro-1,3-butadiene.
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The exact pattern of endogenous metabolites in body ¯ uids as detected by " H-

NMR spectroscopy depends strongly on the type of toxin to which an animal has

been exposed (Nicholson et al. 1983, 1985, Bales et al. 1984, Gartland et al. 1989,

Nicholson and Wilson 1989). Each class of toxin produces characteristic changes in

the concentrations and patterns of endogenous metabolites in bio¯ uids and this

provides information on the sites and basic mechanisms of the toxic process. A

typical series of spectra from urine of rat treated with diå erent toxins are shown in

® gure 1. Bio-analytically, the processes of generating such information is highly

eæ cient, taking only a few minutes per sample and requiring little or no sample

pretreatment or reagents. The spectra are very similar in the case of controls (two

common models the Han Wistar and Sprague Dawley being shown), but diå erent

toxins cause characteristic metabolic perturbations. Because nearly all major classes

of metabolic intermediate have characteristic NMR spectra, the technique is very

useful for ® ngerprinting toxin-induced metabolic variations. Thus, " H-NMR

spectroscopic analysis of bio¯ uids has successfully uncovered numerous novel

metabolic biomarkers of organ-speci® c toxicity in the rat, and it is in this

` exploratory ’ role that NMR as an analytical biochemistry technique excels. For

example, changes in the levels of trimethylamine-N-oxide, N,N-dimethylglycine,

dimethylamine and succinate are indicative of damage to the renal papilla for which

no biochemical biomarkers existed previously (Gartland et al. 1989, 1991). Other

urinary markers uncovered by " H-NMR urinalysis include taurine and creatine,

which have been correlated with acute liver and testicular toxicity respectively

(Nicholson et al. 1989, Gray et al. 1990, Sanins et al. 1990). Similar approaches can

be used using 2D NMR spectroscopy (Nicholson and Wilson 1989). However, the

biomarker information in NMR spectra of bio¯ uids is much more subtle and rich

than this, as hundreds of compounds representing many pathways can often be

measured simultaneously, and it is the overall metabonomic response to toxic insult

(occurring over time) that so well characterizes the lesion (Beckwith-Hall et al. 1998,

Holmes et al. 1998a). The most eæ cient way to investigate these complex

multiparametric data is to continue the 1D and 2D NMR metabonomic approach

with PR methods.

Pattern recognition and expert system analysis of NMR-generated
metabonomic data

A limiting factor in understanding the biochemical information from both 1D

and 2D NMR spectra of tissues and bio¯ uids is their very complexity; even 1D " H-

NMR spectra (at 600 MHz or above) of bio¯ uids may contain several thousand

resolved lines. The NMR spectrum of a sample under study can be considered as an

n-dimensional object the dimensions of which could be the concentrations of

individual measurable metabolites or more simply the spectral intensity dis-

tribution. Thus, the NMR spectrum of the bio¯ uid or tissue provides an n-

dimensional metabolic ® ngerprint of the organism based on the sample studied, and

this metabolic pro® le is characteristically changed according to the disease or toxic

process. Hence, computer-based PR and expert system approaches have been used

to interpret the NMR data obtained in various experimental toxicity states (Gartland

et al. 1991, Holmes et al. 1992, 1994, 1998a, b, Anthony et al. 1994, Spraul et al.
1997, Beckwith-Hall et al. 1998). These statistical tools are very similar to those

currently being explored by those in the ® elds of genomics and proteomics. The
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Figure 2. (a) Principal components map of data obtained from rat urines after treatment with lead
acetate (* ) hydrazine ( 3 ) and renal proximal tubular toxins aå ecting the S3 region ( E ) and
controls (_ ). (b) Cooman’ s residuals plot of test data set using a SIMCA model previously
` trained ’ using the same spectra shown in (a). Quadrant (i) shows samples unambiguously
classi® ed as controls, quadrant (ii) shows ` pure ’ hydrazine-toxicity classi® cation, quadrant (iii)
shows spectra from animals classi® ed as neither control nor hydrazine-treated type, and quadrant
(iv) shows an unoccupied ® eld that would indicate mixed hydrazine-toxicity and control
classi® cation. In this example, two hydrazine-treated data points are misclassi® ed and two
controls are also misclassi® ed as abnormal samples. The lines show the 95% con® dence limits of
the classi® cations based on the training set data.

simplest approach is to treat the NMR signal intensity data as a multi-sample array

of metabolite concentration or excretion rate scores ; it is not necessary to assign the

spectrum at this stage as it is treated solely as a statistical object. PR is a general term

applied to methods of data analysis that can be used to generate scienti® c hypotheses

as well as testing hypotheses by reducing mathematically the many parameters. One

of the most useful and easily applied PR techniques is principal components analysis

(PCA). Principal components (PC) are new variables created from linear com-

binations of the starting variables with appropriate weighting coeæ cients. The

properties of these PC are such that (1) each PC is orthogonal (uncorrelated) with all

other PC and (2) the ® rst PC contains the largest part of the variance of the data set

(information content) with subsequent PC containing correspondingly smaller

amounts of variance. Thus, a plot of the ® rst two or three PC gives the ` best ’

representation, in terms of biochemical variation in the data set in two or three

dimensions. Such PC maps can be used to visualize inherent clustering behaviour

for drugs and toxins acting on each organ according to toxic mechanism (Nicholson

and Wilson 1989, Gartland et al. 1991). Such an application of PCA to toxicological

mapping of NMR-generated metabonomic data is shown in ® gure 2a in which there

is distinct clustering of data points from the urines of individual animals exposed to

diå erent toxins. The position on a PC plot of a sample from a xenobiotic-treated

animal is determined purely by its metabolic response as opposed to any other

independent knowledge of the compound action; hence, the method is termed

` unsupervised ’ . Of course, the clustering information might be in lower PC and this

also has to be examined. In this simple metabonomic approach a sample from an

animal treated with a compound of unknown toxicity is compared with a database of

NMR-generated metabolic data and its topographical ® t on the PR map is

determined (Holmes et al. 1998a, b). However, in the real world, toxicological data
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are more complex as lesions develop and resolve in real time and, hence, there are

time-related changes in NMR-detected metabolic pro® le (Holmes et al. 1992,

Beckwith-Hall et al. 1998).Also, it is more rigorous to compare eå ects of xenobiotics

in the original n-dimensional NMR metabonomic space. Hence, as an alternative

approach and to develop automatic toxicity classi® cation methods, it has proved

eæ cient to use a ` supervised ’ approach to NMR data analysis. Here, a ` training set ’

of NMR metabonomic data is used to construct a mathematical model that predicts

correctly the class of each sample. This training set is then tested with independent

data (` test set’ ) to determine the robustness of the computer-based model. These

models are sometimes termed expert systems, but may comprise systems based on a

range of diå erent mathematical procedures such as principal components, arti® cial

neural networks and rule induction. In all cases the methods allow the quantitative

description of the multivariate boundaries that characterize and separate each class

of xenobiotic in terms of their metabolic eå ects. Certain supervised methods, such

as SIMCA (soft independent modelling of class analogy; Kowalski et al. 1986)

also allow a level of probability to be placed on the goodness of ® t. Using such

systems a sample can be classi® ed as belonging to a single class of toxicity, to

multiple classes of toxicity (more than one target organ) or to no class. The latter case

would indicate deviation from normality (control) based on the training set model

but having a dissimilar metabolic eå ect to any toxicity class modelled in the training

set (unknown toxicity type). An example of an expert systems based classi® cation of

toxicity data is shown in ® gure 2b. In this simple illustrative case SIMCA models

were constructed for both control rat urines and for rat urines from hydrazine-dosed

animals using a training set of NMR data. The Cooman’ s residuals plot shown in

® gure 2b demonstrates that the majority of the test controls and test hydrazine-

treated spectra are correctly classi® ed and S3 type renal cortical toxins and lead

acetate (which causes a range of renal, haemopoeitic and hepatotoxic eå ects) are all

correctly classi® ed as neither control nor hydrazine type. By building an exhaustive

series of models it is possible to use SIMCA and other methods to provide

classi® cation probabilities for a wide range of toxicity types.

The metabonomic expert systems currently under construction in our group can

be considered to operate at three distinct levels of pathophysiologicaldiscrimination:

1. Classi® cation of the sample or organism as ` normal or abnormal ’ according to

metabonomic criteria derived from a large database of controls (this will be a

useful tool in the control of NMR spectrometer automation using sequential ¯ ow

injection NMR spectroscopy; Spraul et al. 1997).

2. Classi® cation of the target organ for toxicity and site of action within the tissue.

3. Identi® cation of the biomarkers of toxic eå ect and toxic mechanism classi® cation

for the compound under study.

Interestingly, these levels of classi® cation or discrimination would also apply even if

data were derived from genomic or proteomic studies and similar arguments could

be applied to clinical diagnostic screening procedures. As the size of toxicological

databases increases together with improvements in rapid throughput of NMR

samples (300 samples per day per spectrometer is now possible with the ® rst

generation ¯ ow injection systems), more subtle expert systems will be necessary

using techniques such as ` fuzzy logic ’ , which permits greater ¯ exibility in decision

boundaries between classes. Using the metabonomic methods described above, it

has already been possible to develop a prototype expert system for classi® cation
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at level 1, and has also eå ected level 2 classi® cation procedures for a range of

toxicological endpoints and target organs. The level 3 classi® cation poses more

complex problems in terms of expert system development, but detailed bio-

marker information can already be obtained from inspection of the PC loadings

(Holmes et al. 1998b).

In conclusion, there is a vast range of biochemical, toxicological and clinical

chemical problems that can be addressed using metabonomics based on high-

resolution " H-NMR spectroscopy of biomaterials. At present even simple " H-NMR

experiments on whole bio¯ uids can generate substantial amounts of metabolic data

that can give surprisingly detailed insight into the biochemical processes in the

whole organisms and the investigation of species diå erences in terms of toxicological

biomarkers. The numbers of applications of metabonomics is bound to increase in

parallel with ongoing developments in instrumentation and techniques. In par-

ticular, the development of computer-based PR and expert systems for data analysis

is expected to make major contributions to the advancement of NMR-based

metabolic science. Other important areas accessible to metabonomic investigation

include studies on biochemical consequences of genetic modi® cation, e.g. in ` knock-

out animals ’ , investigations into eå ects of environmental pollutants, for clinical

evaluation of drug therapy and eæ cacy, and the investigation of idiosyncratic

toxicity in man. Finally, it should soon be possible to combine genomic, proteomic

and metabonomic data sets into comprehensive ` bionomic ’ systems for the holistic

evaluation of perturbed in vivo function.
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