Jens Pietzsch

Jens Pietzsch
Helmholtz-Zentrum Dresden-Rossendorf | HZDR · Institute of Radiopharmaceutical Cancer Research

Ph.D., M.D., Prof.

About

441
Publications
38,820
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,664
Citations
Citations since 2016
181 Research Items
3203 Citations
20162017201820192020202120220100200300400500600
20162017201820192020202120220100200300400500600
20162017201820192020202120220100200300400500600
20162017201820192020202120220100200300400500600
Introduction
Head of the Department of Radiopharmaceutical and Chemical Biology; research focus on pheochromocytoma, pancreatic ductal adenocarcinoma, hepatocellular carcinoma; keywords: pathomechanisms, radionuclide theranostics, therapy resistance, drug delivery, small animal molecular imaging. Member of faculty, Technische Universität Dresden.
Additional affiliations
March 2002 - present
Helmholtz-Zentrum Dresden-Rossendorf
Position
  • Research
Description
  • Head of Department

Publications

Publications (441)
Article
We report a nonadentate bispidine (3,7-diazabicyclo[3.3.1]nonane) that unveils the potential to bind theranostically relevant radionuclides, including indium-111, lutetium-177, and actinium-225 under mild labeling conditions. This radiopharmaceutical candidate allows the simultaneous application of imaging and treatment (radionuclide theranostics)...
Article
Full-text available
Overexpression of the neurotensin receptor type 1 (NTS1R), a peptide receptor located at the plasma membrane, has been reported for a variety of malignant tumors. Thus, targeting the NTS1R with 18F- or 68Ga-labeled ligands is considered a straightforward approach towards in vivo imaging of NTS1R-expressing tumors via positron emission tomography (P...
Article
Full-text available
COX-2 can be considered as a clinically relevant molecular target for adjuvant, in particular radiosensitizing treatments. In this regard, using selective COX-2 inhibitors, e.g., in combination with radiotherapy or endoradiotherapy, represents an interesting treatment option. Based on our own findings that nitric oxide (NO)-releasing and celecoxib-...
Article
Full-text available
Pheochromocytomas (PCCs) are rare but potentially lethal tumors that arise from the adrenal medulla. The clinical suspicion and diagnosis of PCC can be challenging due to the non-specific nature of signs and symptoms. In many patients, infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could lead to long-term symptoms inclu...
Article
Full-text available
The characterization of novel radiotracers toward their metabolic stability is an essential part of their development. While in vitro methods such as liver microsome assays or ex vivo blood or tissue samples provide information on overall stability, little or no information is obtained on cytochrome P450 (CYP) enzyme and isoform-specific contributi...
Preprint
Functional interaction between cancer cells and the surrounding microenvironment is still not sufficiently understood, which motivates the tremendous interest for the development of numerous in vitro and in vivo tumor models. Diverse parameters, e.g., transport of nutrients and metabolites, availability of space in the confinement, interaction with...
Article
Full-text available
Mefenamic acid represents a widely used nonsteroidal anti-inflammatory drug (NSAID) to treat the pain of postoperative surgery and heavy menstrual bleeding. Like other NSAIDs, mefenamic acid inhibits the synthesis of prostaglandins by nonselectively blocking cyclooxygenase (COX) isoforms COX-1 and COX-2. For the improved selectivity of the drug and...
Article
Ligands combining a bis(phosphonate) group with a macrocycle function as metal isotope carriers for radionuclide-based imaging and for treating bone metastases associated with several cancers. However, bis(phosphonate) pendant arms often...
Article
Full-text available
Transglutaminase 2 (TGase 2) is a multifunctional protein which is involved in various physiological and pathophysiological processes. The latter also include its participation in the development and progression of malignant neoplasms, which are often accompanied by increased protein synthesis. In addition to the elucidation of the molecular functi...
Article
Full-text available
Transglutaminase 2 (TG2) is a protein expressed in many tissues that exerts numerous, sometimes contradictory, intra- and extracellular functions, under both physiological and pathophysiological conditions. In the context of tumor progression, it has been found to be involved in cell adhesion, DNA repair mechanisms, induction of apoptosis, and mese...
Article
Full-text available
Recent oncological studies identified beneficial properties of radiation applied at ultrahigh dose rates, several orders of magnitude higher than the clinical standard of the order of Gy min –1 . Sources capable of providing these ultrahigh dose rates are under investigation. Here we show that a stable, compact laser-driven proton source with energ...
Article
Aggressive pheochromocytomas and paragangliomas (PPGLs) are difficult to treat, and molecular targeting is being increasingly considered, but with variable results. This study investigates established and novel molecular-targeted drugs and chemotherapeutic agents for the treatment of PPGLs in human primary cultures and murine cell line spheroids. I...
Article
Full-text available
The inducible isoenzyme cyclooxygenase-2 (COX-2) is an important hub in cellular signaling, which contributes to tumor progression by modulating and enhancing a pro-inflammatory tumor microenvironment, tumor growth, apoptosis resistance, angiogenesis and metastasis. In order to understand the role of COX-2 expression in melanoma, we investigated th...
Article
Stem cell bioengineering and therapy require different model systems and materials in different stages of development. If a chemically defined biomatrix system can fulfill most tasks, it can minimize the discrepancy among various setups. By screening biomaterials synthesized through a coacervation‐mediated self‐assembling mechanism, a biomatrix sys...
Article
Malignant melanoma has a steadily increasing incidence, but treatment options are still limited and prognosis for patients, especially for men, is poor. To investigate whether targeting estrogen receptor (ER) signaling is a valid therapeutic approach, we retrospectively analyzed ER gene expression profiles in 448 melanoma patients. High ERα gene ex...
Article
The intentional binding of radioligands to albumin gains increasing attention in the context of radiopharmaceutical cancer therapy as it can lead to an enhanced radioactivity uptake into the tumor lesions and, thus, to a potentially improved therapeutic outcome. However, the influence of the radioligand’s albumin-binding affinity on the time profil...
Article
Full-text available
Polyamines are highly attractive vectors for tumor targeting, particularly with regards to the development of radiolabeled probes for imaging by positron emission (PET) and single-photon emission computed tomography (SPECT). However, the synthesis of selectively functionalized derivatives remains challenging due to the presence of multiple amino gr...
Article
Full-text available
Radiolabeled fluorescent dyes are decisive for bimodal imaging as well as highly in demand for nuclear- and optical imaging. Silicon-rhodamines (SiRs) show unique near-infrared (NIR) optical properties, large quantum yields and extinction coefficients as well as high photostability. Here, we describe the synthesis, characterization and radiolabelin...
Article
Knowledge of the physiological and pathological processes, taking place in bone during fracture healing or defect regeneration, is essential in order to develop strategies to enhance bone healing under normal and critical conditions. Preclinical testing allows a wide range of imaging modalities that may be applied both simultaneously and longitudin...
Article
Full-text available
All over the world, societies are facing rapidly aging populations combined with a growing number of patients suffering from Alzheimer’s disease (AD). One focus in pharmaceutical research to address this issue is on the reduction of the longer amyloid-β (Aβ) fragments in the brain by modulation of γ-secretase, a membrane-bound protease. R-Flurbipro...
Article
Full-text available
We show the synthesis of an in vivo stable mercury compound with functionality suitable for radiopharmaceuticals. The designed cyclic bisarylmercury was based on the water tolerance of organomercurials, higher bond dissociation energy of Hg‐Ph to Hg‐S, and the experimental evidence that acyclic structures suffer significant cleavage of one of the H...
Article
Full-text available
Conductive hydrogels (CHs) are emerging as a promising and well-utilized platform for 3D cell culture and tissue engineering to incorporate electron signals as biorelevant physical cues. In conventional covalently crosslinked conductive hydrogels, the network dynamics (e.g., stress relaxation, shear shining, and self-healing) required for complex c...
Article
Full-text available
Many features of extracellular matrices, e.g., self-healing, adhesiveness, viscoelasticity, and conductivity, are associated with the intricate networks composed of many different covalent and non-covalent chemical bonds. Whereas a reductionism approach would have the limitation to fully recapitulate various biological properties with simple chemic...
Poster
Full-text available
Spatial resolution is one of the key parameters for assessment of PET scanner performance. However, spatial resolution is usually determined with point or line sources, not allowing to study the finite object size and contrast effects known to affect iterative image reconstruction results. We present an approach to determine the spatial resolution...
Article
The transamidase activity of transglutaminase 2 (TGase 2) is considered to be important for several pathophysiological processes including fibrotic and neoplastic tissue growth, whereas in healthy cells this enzymatic function is predominantly latent. Methods that enable the highly sensitive detection of TGase 2, such as application of radiolabeled...
Article
Full-text available
Imaging of Ghrelin receptors in vivo provides unique potential to gain deeper understanding on Ghrelin and its receptors in health and disease, in particular, in cancer. Ghrelin, an octanoylated 28-mer peptide hormone activates the constitutively active growth hormone secretagogue receptor type 1a (GHS-R1a) with nanomolar activity. We developed nov...
Article
Currently, we are experiencing a true pandemic of a communicable disease by the virus SARS-CoV-2 holding the whole world firmly in its grasp. Amazingly and unfortunately, this virus uses a metabolic and endocrine pathway via ACE2 to enter our cells causing damage and disease. Our international research training programme funded by the German Resear...
Article
Full-text available
The establishment of confluent endothelial cell (EC) monolayers on implanted materials has been identified as a concept to avoid thrombus formation but is a continuous challenge in cardiovascular device engineering. Here, material properties of gelatin-based hydrogels obtained by reacting gelatin with varying amounts of lysine diisocyanate ethyl es...
Article
Full-text available
Pheochromocytomas and paragangliomas (PCCs/PGLs) are rare neuroendocrine tumors arising from chromaffin tissue located in the adrenal or ganglia of the sympathetic or parasympathetic nervous system. The treatment of non-resectable or metastatic PCCs/PGLs is still limited to palliative measures, including somatostatin type 2 receptor radionuclide th...
Article
Full-text available
Neural precursor cells (NPC) are primary cells intensively used in the context of research on adult neurogenesis and modeling of neuronal development in health and diseased states. Substrates that can facilitate NPC adhesion will be very useful for culturing these cells. Due to the presence of laminin in basal lamina as well as their involvement in...
Article
Immunocompatibility and non-thrombogenicity are important requirements for biomedical applications such as vascular grafts. Here, gelatin-based hydrogels formed by reaction of porcine gelatin with increasing amounts of lysine diisocyanate ethyl ester were investigated in vitro in this regard. In addition, potential adverse effects of the hydrogels...
Article
Full-text available
Biomaterials with attenuated adverse host tissue reactions, and meanwhile, combining biocompatibility with mimicry of mechanical and biochemical cues of native extracellular matrices (ECM) to promote integration and regeneration of tissues are important for many biomedical applications. Further, the materials should also be tailorable to feature de...
Article
Full-text available
In a previous study, EphB4 was demonstrated to be a positive regulator of A375-melanoma growth but a negative regulator of tumor vascularization and perfusion. To distinguish between EphB4 forward and ephrinB2 reverse signaling, we used the commercially available EphB4 kinase inhibitor NVP-BHG712 (NVP), which was later identified as its regioisomer...
Article
Mutations that drive the stabilization of hypoxia inducible factor 2α (HIF2α) and downstream pseudohypoxic signaling are known to predispose to the development of pheochromocytomas and paragangliomas (PPGLs). However, any role of HIF2α in predisposition to metastatic disease remains unclear. To assess such a role we combined gene-manipulations in p...
Article
Full-text available
The inducible isoenzyme cyclooxygenase-2 (COX-2) is closely associated with chemo-/radioresistance and poor prognosis of solid tumors. Therefore, COX-2 represents an attractive target for functional characterization of tumors by positron emission tomography (PET). In this study, the celecoxib derivative 3-([¹⁸F]fluoromethyl)-1-[4-(methylsulfonyl)ph...
Article
Full-text available
Barium-131 is a single photon emission computed tomography (SPECT)-compatible radionuclide for nuclear medicine and a promising diagnostic match for radium-223/-224. Herein, we report on the sufficient production route 133 Cs(p,3n) 131 Ba by using 27.5 MeV proton beams. An average of 190 MBq barium-131 per irradiation was obtained. The SR Resin-bas...
Article
Full-text available
In preclinical cancer research, three-dimensional (3D) cell culture systems such as multicellular spheroids and organoids are becoming increasingly important. They provide valuable information before studies on animal models begin and, in some cases, are even suitable for reducing or replacing animal experiments. Furthermore, they recapitulate micr...
Article
Full-text available
In the past decade, there have been extensive efforts to open up the Eph/ephrin subfamily of the receptor tyrosine kinase family for diagnostic and therapeutic applications. Besides classical pharmaceutical developments, which focus either on drugs targeting the extracellular ligand binding domains or on the intracellular tyrosine kinase domains of...
Preprint
Full-text available
Maternal immune stimulation (MIS) is strongly implicated in the etiology of neuropsychiatric disorders. Magnetic resonance imaging (MRI) studies provide evidence for brain structural abnormalities in rodents following prenatal exposure to MIS. Reported volumetric changes in adult MIS offspring comprise among others larger ventricular volumes, consi...
Article
Resorbable biomaterials based on artificial extracellular matrices (aECM) represent promising scaffolds for the treatment of large bone defects. Here, we investigated various glycosaminoglycan (GAG) derivatives of varying sulfation degree with respect to their influence on in vivo bone healing. The materials used in this study consisted of GAG-coat...
Article
Full-text available
Bone defects of critical size after compound fractures, infections, or tumor resections are a challenge in treatment. Particularly, this applies to bone defects in patients with impaired bone healing due to frequently occurring metabolic diseases (above all diabetes mellitus and osteoporosis), chronic inflammation, and cancer. Adjuvant therapeutic...
Article
Full-text available
Phaeochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumours with a hereditary background in over one third of patients. Mutations in succinate dehydrogenase (SDH) genes increase the risk for PPGLs and several other tumours. Mutations in subunit B (SDHB) in particular are a risk factor for metastatic disease, further highlighting th...