Jennifer M Donelson

Jennifer M Donelson
James Cook University | JCU · Department of Marine Biology

PhD, B Sci (Honours)

About

93
Publications
29,079
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,946
Citations
Additional affiliations
February 2016 - July 2019
University of Technology Sydney
Position
  • PostDoc Position

Publications

Publications (93)
Article
Marine heatwaves (MHWs) are increasing in frequency and intensity. Coral reefs are particularly susceptible to MHWs, which cause mass coral bleaching and mortality. However, little is known about how MHWs affect coral reef fishes. Here, we investigated how MHWs affect the physiology of a coral reef mesopredator, Lutjanus carponotatus. Specifically,...
Article
Full-text available
How species respond to climate change will depend on the collective response of populations. Intraspecific variation in traits, evolved through genetic adaptation and phenotypic plasticity, can cause thermal performance curves to vary over species’ distributions. Intraspecific variation within marine species has received relatively little attention...
Article
Full-text available
Population and species persistence in a rapidly warming world will be determined by an organism’s ability to acclimate to warmer conditions, especially across generations. There is potential for transgenerational acclimation but the importance of ontogenetic timing in the transmission of environmentally induced parental effects remains mostly unkno...
Article
The environment experienced by one generation has the potential to affect the subsequent one through non‐genetic inheritance of parental effects. Since both mothers and fathers can influence their offspring, questions arise regarding how the maternal, paternal and offspring experiences integrate into the resulting phenotype. We aimed to disentangle...
Article
Full-text available
Elasmobranchs (i.e., sharks, skates, and rays) have survived five mass extinction events and changed relatively little throughout their ~450-million-year evolutionary history. Therefore, elasmobranchs may provide critical evolutionary perspectives on how species and populations can elicit phenotypic plasticity and adaptation responses to climate ch...
Preprint
Full-text available
The environment experienced by one generation has the potential to affect the subsequent one through non-genetic inheritance of parental effects. Since both mothers and fathers can influence their offspring, questions arise regarding how the maternal, paternal and offspring experiences integrate into the resulting phenotype. We aimed to disentangle...
Preprint
Full-text available
Population and species persistence in a rapidly warming world will be determined by an organisms' ability to acclimate to warmer conditions, especially across generations. There is potential for transgenerational acclimation, but the importance of ontogenetic timing in the transmission of environmentally induced parental effects remains mostly unkn...
Article
Full-text available
There is overwhelming evidence that tropical coral reefs are severely impacted by human induced climate change. Assessing the capability of reef-building corals to expand their tolerance limits to survive projected climate trajectories is critical for their protection and management. Acclimation mechanisms such as developmental plasticity may provi...
Article
Full-text available
Tropical ectotherms are highly sensitive to environmental warming, especially coral reef fishes, which are negatively impacted by an increase of a few degrees in ocean temperature. However, much of our understanding on the thermal sensitivity of reef fish is focused on a few traits ( e.g. , metabolism, reproduction) and we currently lack knowledge...
Article
Full-text available
Rising ocean temperatures are threatening marine species and populations worldwide, and ectothermic taxa are particularly vulnerable. Echinoderms are an ecologically important phylum of marine ectotherms and shifts in their population dynamics can have profound impacts on the marine environment. The effects of warming on echinoderms are highly vari...
Article
Full-text available
Ocean warming and acidification are set to reshuffle life on Earth and alter ecological processes that underpin the biodiversity, health, productivity, and resilience of ecosystems. Fishes contribute significantly to marine, estuarine, and freshwater species diversity and the functioning of marine ecosystems, and are not immune to climate change im...
Preprint
Full-text available
Rising ocean temperatures are threatening marine species and populations worldwide, and ectothermic taxa are particularly vulnerable to warming. Echinoderms are an ecologically important phylum of marine ectotherms and shifts in their population dynamics can have profound impacts on the marine environment. The effects of warming on echinoderms are...
Article
Full-text available
Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 (‘Life below Water’) of the United Nations. SDG 14 seeks to secure marine sustainability by 2030. In a time of increasing social-...
Article
Full-text available
Ocean warming and population irruptions of crown-of-thorns starfish (CoTS; Acanthaster cf. solaris ) are two of the greatest threats to coral reefs. As such, there is significant interest in understanding how CoTS may be directly impacted by rising ocean temperatures. Settlement of planktonic larvae and subsequent metamorphosis is purported to be a...
Article
Full-text available
The success of individuals during the pelagic larval phase is critical to maintaining healthy and viable populations of coral reef fishes; however, it is also the most environmentally sensitive and energetically demanding life stage. Climate change is increasing the frequency and intensity of marine heatwaves, which could have significant effects o...
Article
Full-text available
The parental environment can alter offspring phenotypes via the transfer of non‐genetic information. Parental effects may be viewed as an extension of (within‐generation) phenotypic plasticity. Smaller size, poorer physical condition, and skewed sex ratios are common responses of organisms to global warming, yet whether parental effects alleviate,...
Article
Full-text available
Population irruptions of Pacific crown-of-thorns starfish ( Acanthaster cf. solaris ) have caused substantial damage to coral reefs, but it is largely unknown how this asteroid will fare in a warmer ocean. We exposed these starfish to one of four thermal treatments, with final temperatures of 26 °C (control, annual average), 28 °C (summer average),...
Article
Full-text available
Ocean warming is a threat to marine biodiversity, as it can push marine species beyond their physiological limits. Detrimental effects can occur when marine poikilotherms are exposed to conditions beyond their thermal optima. However, acclamatory mechanisms, such as plasticity, may enable compensation of detrimental effects if warming is experience...
Article
Full-text available
Global warming is expected to drive some ectothermic species beyond their thermal tolerance in upcoming decades. Phenotypic plasticity, via developmental or transgenerational acclimation, is a critical mechanism for compensation in the face of environmental change. Yet it remains to be determined if the activation of beneficial phenotypes requires...
Article
Climate change and population irruptions of crown-of-thorns sea stars (Acanthaster sp.) are two of the most pervasive threats to coral reefs. Yet there has been little consideration regarding the synergies between ocean warming and the coral-feeding sub-adult and adult stages of this asteroid. Here we explored the thermosensitivity of the aforement...
Article
Full-text available
The majority of our understanding of the effects of climate change on coral reef fishes are currently based on studies of small-bodied species such as damselfishes. By contrast, we know little about the potential impacts of ocean warming on larger species of herbivorous and detritivorous reef fish, despite them being a critical functional group and...
Article
Full-text available
Global warming can disrupt reproduction or lead to fewer and poorer quality offspring, owing to the thermally sensitive nature of reproductive physiology. However, phenotypic plasticity may enable some animals to adjust the thermal sensitivity of reproduction to maintain performance in warmer conditions. Whether elevated temperature affects reprodu...
Article
Rising water temperature and increased uptake of CO2 by the ocean are predicted to have widespread impacts on marine species. However, the effects are likely to vary, depending on a species’ sensitivity and the geographical location of the population. Here, we investigated the potential effects of elevated temperature and pCO2 on larval growth and...
Article
Full-text available
Elevated temperature can have detrimental effects on the physiological performance of many marine organisms. However, phenotypic plasticity may enable some populations to maintain their performance under thermal stress. Two longitudinally separated populations of the coral reef fish, Acanthochromis polyacanthus from the Great Barrier Reef have show...
Article
Understanding the determinants and consequences of predation effort, success and prey responses is important since these factors affect the fitness of predators and prey. When predators are also invasive species, the impacts on prey can be particularly far‐reaching with ultimate ecosystem‐level consequences. However, predators are typically viewed...
Article
Full-text available
Under projected levels of ocean acidification, shifts in energetic demands and food availability could interact to effect the growth and development of marine organisms. Changes to individual growth rates could then flow on to influence emergent properties of social groups, particularly in species that form size-based hierarchies. To test the poten...
Article
Full-text available
As climate change advances, coastal marine ecosystems are predicted to experience increasingly frequent and intense heatwaves. At the same time, already variable CO2 levels in coastal habitats will be exacerbated by ocean acidification. High temperature and elevated CO2 levels can be stressful to marine organisms, especially during critical early l...
Article
Full-text available
Ocean warming associated with global climate change is already inducing geographic range shifts of marine species. Juvenile coral reef fishes transported into temperate latitudes (termed ‘vagrant’ fishes) can experience winter water temperatures below their normal thermal minimum. Such environmental extremes may increase energetic costs for such fi...
Article
Full-text available
Marine heatwaves, which are increasing in frequency, duration and intensity owing to climate change, are an imminent threat to marine ecosystems. On coral reefs, heatwave conditions often coincide with periods of peak recruitment of juvenile fishes and exposure to elevated temperature may affect their development. However, whether differences in th...
Article
Full-text available
How populations and species respond to modified environmental conditions is critical to their persistence both now and into the future, particularly given the increasing pace of environmental change. The process of adaptation to novel environmental conditions can occur via two mechanisms: (1) the expression of phenotypic plasticity (the ability of...
Article
Full-text available
Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for unde...
Article
Full-text available
Extreme thermal events are increasing in frequency and duration as the climate continues to warm, with potential detrimental effects on marine organisms. However, the effects of heatwaves may differ among geographically separated populations depending on their capacity for thermal plasticity. Here, we compared the response to simulated summer heatw...
Article
Full-text available
Global warming will have far‐reaching consequences for marine species over coming decades, yet the magnitude of these effects may depend on the rate of warming across generations. Recent experiments show coral reef fishes can compensate the metabolic challenges of elevated temperature when warm conditions are maintained across generations. However,...
Article
Full-text available
Epigenetic inheritance is a potential mechanism by which the environment in one generation can influence the performance of future generations¹. Rapid climate change threatens the survival of many organisms; however, recent studies show that some species can adjust to climate-related stress when both parents and their offspring experience the same...
Article
Climate change is expected to pose a significant risk to species that exhibit strong behavioural preferences for specific habitat types, with generalist species assumed to be less vulnerable. In this study, we conducted habitat choice experiments to determine how water temperature influences habitat preference for three common species of coral reef...
Article
Full-text available
Tropical species are predicted to be particularly vulnerable to the impacts of climate change given the relatively narrow thermal range they naturally experience. Within the tropics, average temperature and thermal variation can differ among populations and consequently low-latitude populations may respond differently to increased temperatures than...
Article
Full-text available
Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emp...
Article
Full-text available
Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emp...
Article
Range shifts of tropical marine species to temperate latitudes are predicted to increase as a consequence of climate change. To date, the research focus on climate-mediated range shifts has been predominately dealt with the physiological capacity of tropical species to cope with the thermal challenges imposed by temperate latitudes. Behavioural tra...
Article
Full-text available
The appropriate behavioural response to predation risk is critical to survival; however, behavioural responses can be subjected to trade-offs. For example, individuals may engage in riskier foraging behaviour to secure sufficient energy if resources are limited. Additionally, elevated CO2 can influence foraging and antipredator behaviour of marine...
Article
Full-text available
Reproduction in marine fish is generally tightly linked with water temperature. Consequently, when adults are exposed to projected future ocean temperatures, reproductive output of many species declines precipitously. Recent research has shown that in the common reef fish, Acanthochromis polyacanthus, step-wise exposure to higher temperatures over...
Article
Full-text available
Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental condi...
Article
Pivotal to projecting the fate of coral reefs is the capacity of reef-building corals to acclimatize and adapt to climate change. Transgenerational plasticity may enable some marine organisms to acclimatize over several generations and it has been hypothesized that epigenetic processes and microbial associations might facilitate adaptive responses....
Chapter
The ocean is a vast and varied habitat for organisms, and contains most of the known phyla and at least 250,000 species. Patterns of biodiversity vary by depth, habitat type and region, with numerous hotspots of diversity of particular taxa, such as fishes. Patterns of fish diversity globally, and their sensitivities to climate change, need to be u...
Article
Full-text available
The threat of predation, and the prey’s response, are important drivers of community dynamics. Yet environmental temperature can have a significant effect on predation avoidance techniques such as fast-start performance observed in marine fishes. While it is known that temperature increases can influence performance and behaviour in the short-term,...
Data
Dataset for behavioural and kinematic perfromance Percentages, means, and standard deviations for responsiveness (percent of reactions), directionality (percent of turns), response latency (ms), max speed (body lengths s−1), and response distance (cm).
Article
Full-text available
Global climate change is increasingly considered one of the major threats to tropical coastal fisheries, potentially undermining important revenue and food security provided by coral reef ecosystems. While there has been significant and increasing work on understanding specific effects of climate change on coral reef fishes, few studies have consid...
Article
Full-text available
For effective conservation and management of marine systems, it is essential that we understand the biological impacts of and capacity for acclimation to increased ocean temperatures. This study investigated for the first time the effects of developing in projected warmer ocean conditions in the tropical wrasse species: Halichoeres melanurus, Halic...
Article
Full-text available
Climate change will affect key ecological processes that structure natural communities, but the outcome of interactions between individuals and species will depend on their thermal plasticity. We tested how short- and long-term exposure to projected future temperatures affects intraspecific and interspecific competitive interactions in two species...
Data
Total number of interactions ± SE by both competitors per contest. Calculated as sum of attacks, displays, and avoids for both competitors. Test temperature listed horizontally, and split by 4d (grey) and 90d exposure treatments (open). Intraspecific contests of Pomacentrus amboinensis (a) had a non-significant reduction of interactions after 4d ex...
Data
Aggression scores ± SE of contest winner. Test temperature listed horizontally and split by 4d (grey) and 90d exposure treatments (open). Intraspecific contests of Pomacentrus amboinensis (a) with after 4d exposure to elevated temperature had no change in winner aggression score compared to controls, but 90d exposure had significantly lower winner...
Data
Statistical summary of one-way ANOVA analyses. Separate tests were generated for the effects of short-term exposure to elevated temperature (left) and comparing exposure durations at elevated temperature (right) on (a) aggression score differences, (b) aggression score of contest winner, and (c) total number of interactions for 3 species combinatio...
Data
Dataset listing counts of behaviours (Attacks, Displays, and Avoids) during competitive interaction trials. Behaviours were used to calculate an “Aggression score” = Attacks + Displays−Avoids. Rows are grouped in pairs, one for each competitor. “Diff, Total interactions, and Aggression difference” reference the competitor from the same row and the...
Data
Experimental design matrix. Aim 1 compared control (grey) fish to individuals with 4d exposure (solid) to elevated temperatures. Aim 2 compared contests using 4d exposed fish with 90d exposure treatments (open). (DOCX)
Article
Full-text available
With global change accelerating the rate of species' range shifts, predicting which are most likely to establish viable populations in their new habitats is key to understanding how biological systems will respond. Annually, in Australia, tropical fish larvae from the Great Barrier Reef (GBR) are transported south via the East Australian Current (E...
Article
Higher temperatures associated with climate change have the potential to significantly alter the population sex ratio of species with temperature-dependent sex determination. Whether or not elevated temperature affects sex determination depends on both the absolute temperature experienced and the stage of development at which the thermal conditions...
Article
Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by en...
Article
Full-text available
Predicting the impacts of climate change to biological systems requires an understanding of the ability for species to acclimate to the projected environmental change through phenotypic plasticity. Determining the effects of higher temperatures on individual performance is made more complex by the potential for environmental conditions experienced...
Article
Table S2: Position and ecological rationale for each morphological trait used for landmarking in current study (adapted from Farré et al 2013)
Article
Table S2: Position and ecological rationale for each morphological trait used for landmarking in current study (adapted from Farré et al 2013)
Article
Understanding the capacity of organisms to cope with projected global warming through acclimation and adaptation is critical to predicting their likely future persistence. The vast majority of research on tropical species suggests they will be substantially negatively affected by future warming and have limited capacity to acclimate to changes. Thi...
Article
Full-text available
Some animals have the remarkable capacity to acclimate across generations to projected future climate change1, 2, 3, 4; however, the underlying molecular processes are unknown. We sequenced and assembled de novo transcriptomes of adult tropical reef fish exposed developmentally or transgenerationally to projected future ocean temperatures and corre...
Article
Global warming poses a threat to organisms with temperature-dependent sex determination because it can affect operational sex ratios. Using a multigenerational experiment with a marine fish, we provide the first evidence that parents developing from early life at elevated temperatures can adjust their offspring gender through nongenetic and nonbeha...
Article
Full-text available
Understanding the capacity of organisms to cope with projected global warming through acclimation and adaptation is critical to predicting their likely future persistence. While recent research has shown that developmental acclimation of metabolic attributes to ocean warming is possible, our understanding of the plasticity of key fitness-associated...